keys: Move more logic out of keys.c

This commit is contained in:
shchmue 2022-10-31 21:46:38 -07:00
parent cbab1ec5b0
commit cc4f8bf1f6
11 changed files with 615 additions and 491 deletions

View file

@ -230,3 +230,17 @@ void power_set_state_ex(void *param)
power_state_t *state = (power_state_t *)param;
power_set_state(*state);
}
u32 read_le_u32(const void *buffer, u32 offset) {
return (*(u8*)(buffer + offset + 0) ) |
(*(u8*)(buffer + offset + 1) << 0x08) |
(*(u8*)(buffer + offset + 2) << 0x10) |
(*(u8*)(buffer + offset + 3) << 0x18);
}
u32 read_be_u32(const void *buffer, u32 offset) {
return (*(u8*)(buffer + offset + 3) ) |
(*(u8*)(buffer + offset + 2) << 0x08) |
(*(u8*)(buffer + offset + 1) << 0x10) |
(*(u8*)(buffer + offset + 0) << 0x18);
}

View file

@ -96,5 +96,7 @@ void panic(u32 val);
void power_set_state(power_state_t state);
void power_set_state_ex(void *param);
u32 read_le_u32(const void *buffer, u32 offset);
u32 read_be_u32(const void *buffer, u32 offset);
#endif

96
source/keys/cal0_read.c Normal file
View file

@ -0,0 +1,96 @@
/*
* Copyright (c) 2022 shchmue
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "cal0_read.h"
#include <gfx_utils.h>
#include <sec/se.h>
#include <sec/se_t210.h>
#include "../storage/emummc.h"
#include "../storage/nx_emmc.h"
#include <utils/util.h>
bool cal0_read(u32 tweak_ks, u32 crypt_ks, void *read_buffer) {
nx_emmc_cal0_t *cal0 = (nx_emmc_cal0_t *)read_buffer;
// Check if CAL0 was already read into this buffer
if (cal0->magic == MAGIC_CAL0) {
return true;
}
if (!emummc_storage_read(NX_EMMC_CALIBRATION_OFFSET / NX_EMMC_BLOCKSIZE, NX_EMMC_CALIBRATION_SIZE / NX_EMMC_BLOCKSIZE, read_buffer)) {
EPRINTF("Unable to read PRODINFO.");
return false;
}
se_aes_xts_crypt(tweak_ks, crypt_ks, DECRYPT, 0, read_buffer, read_buffer, XTS_CLUSTER_SIZE, NX_EMMC_CALIBRATION_SIZE / XTS_CLUSTER_SIZE);
if (cal0->magic != MAGIC_CAL0) {
EPRINTF("Invalid CAL0 magic. Check BIS key 0.");
return false;
}
return true;
}
bool cal0_get_ssl_rsa_key(const nx_emmc_cal0_t *cal0, const void **out_key, u32 *out_key_size, const void **out_iv, u32 *out_generation) {
const u32 ext_key_size = sizeof(cal0->ext_ssl_key_iv) + sizeof(cal0->ext_ssl_key);
const u32 ext_key_crc_size = ext_key_size + sizeof(cal0->ext_ssl_key_ver) + sizeof(cal0->crc16_pad39);
const u32 key_size = sizeof(cal0->ssl_key_iv) + sizeof(cal0->ssl_key);
const u32 key_crc_size = key_size + sizeof(cal0->crc16_pad18);
if (cal0->ext_ssl_key_crc == crc16_calc(cal0->ext_ssl_key_iv, ext_key_crc_size)) {
*out_key = cal0->ext_ssl_key;
*out_key_size = ext_key_size;
*out_iv = cal0->ext_ssl_key_iv;
// Settings sysmodule manually zeroes this out below cal version 9
*out_generation = cal0->version <= 8 ? 0 : cal0->ext_ssl_key_ver;
} else if (cal0->ssl_key_crc == crc16_calc(cal0->ssl_key_iv, key_crc_size)) {
*out_key = cal0->ssl_key;
*out_key_size = key_size;
*out_iv = cal0->ssl_key_iv;
*out_generation = 0;
} else {
EPRINTF("Crc16 error reading device key.");
return false;
}
return true;
}
bool cal0_get_eticket_rsa_key(const nx_emmc_cal0_t *cal0, const void **out_key, u32 *out_key_size, const void **out_iv, u32 *out_generation) {
const u32 ext_key_size = sizeof(cal0->ext_ecc_rsa2048_eticket_key_iv) + sizeof(cal0->ext_ecc_rsa2048_eticket_key);
const u32 ext_key_crc_size = ext_key_size + sizeof(cal0->ext_ecc_rsa2048_eticket_key_ver) + sizeof(cal0->crc16_pad38);
const u32 key_size = sizeof(cal0->rsa2048_eticket_key_iv) + sizeof(cal0->rsa2048_eticket_key);
const u32 key_crc_size = key_size + sizeof(cal0->crc16_pad21);
if (cal0->ext_ecc_rsa2048_eticket_key_crc == crc16_calc(cal0->ext_ecc_rsa2048_eticket_key_iv, ext_key_crc_size)) {
*out_key = cal0->ext_ecc_rsa2048_eticket_key;
*out_key_size = ext_key_size;
*out_iv = cal0->ext_ecc_rsa2048_eticket_key_iv;
// Settings sysmodule manually zeroes this out below cal version 9
*out_generation = cal0->version <= 8 ? 0 : cal0->ext_ecc_rsa2048_eticket_key_ver;
} else if (cal0->rsa2048_eticket_key_crc == crc16_calc(cal0->rsa2048_eticket_key_iv, key_crc_size)) {
*out_key = cal0->rsa2048_eticket_key;
*out_key_size = key_size;
*out_iv = cal0->rsa2048_eticket_key_iv;
*out_generation = 0;
} else {
EPRINTF("Crc16 error reading device key.");
return false;
}
return true;
}

27
source/keys/cal0_read.h Normal file
View file

@ -0,0 +1,27 @@
/*
* Copyright (c) 2022 shchmue
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _CAL0_READ_H_
#define _CAL0_READ_H_
#include "../storage/nx_emmc_bis.h"
#include <utils/types.h>
bool cal0_read(u32 tweak_ks, u32 crypt_ks, void *read_buffer);
bool cal0_get_ssl_rsa_key(const nx_emmc_cal0_t *cal0, const void **out_key, u32 *out_key_size, const void **out_iv, u32 *out_generation);
bool cal0_get_eticket_rsa_key(const nx_emmc_cal0_t *cal0, const void **out_key, u32 *out_key_size, const void **out_iv, u32 *out_generation);
#endif

146
source/keys/crypto.c Normal file
View file

@ -0,0 +1,146 @@
/*
* Copyright (c) 2022 shchmue
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "crypto.h"
#include "../config.h"
#include "../hos/hos.h"
#include <sec/se.h>
#include <sec/se_t210.h>
#include <soc/fuse.h>
#include <utils/util.h>
#include <string.h>
extern hekate_config h_cfg;
bool test_rsa_keypair(const void *public_exponent, const void *private_exponent, const void *modulus) {
u32 plaintext[SE_RSA2048_DIGEST_SIZE / 4] = {0},
ciphertext[SE_RSA2048_DIGEST_SIZE / 4] = {0},
work[SE_RSA2048_DIGEST_SIZE / 4] = {0};
plaintext[63] = 0xCAFEBABE;
se_rsa_key_set(0, modulus, SE_RSA2048_DIGEST_SIZE, private_exponent, SE_RSA2048_DIGEST_SIZE);
se_rsa_exp_mod(0, ciphertext, SE_RSA2048_DIGEST_SIZE, plaintext, SE_RSA2048_DIGEST_SIZE);
se_rsa_key_set(0, modulus, SE_RSA2048_DIGEST_SIZE, public_exponent, 4);
se_rsa_exp_mod(0, work, SE_RSA2048_DIGEST_SIZE, ciphertext, SE_RSA2048_DIGEST_SIZE);
return memcmp(plaintext, work, SE_RSA2048_DIGEST_SIZE) == 0;
}
bool test_eticket_rsa_keypair(const rsa_keypair_t *keypair) {
// Unlike the SSL RSA key, we don't need to check the gmac - we can just verify the public exponent
// and test the keypair since we have the modulus
if ((read_be_u32(keypair->public_exponent, 0) != RSA_PUBLIC_EXPONENT) ||
(!test_rsa_keypair(keypair->public_exponent, keypair->private_exponent, keypair->modulus))) {
return false;
}
return true;
}
// Equivalent to spl::GenerateAesKek
void generate_aes_kek(u32 ks, key_storage_t *keys, void *out_kek, const void *kek_source, u32 generation, u32 option) {
bool device_unique = GET_IS_DEVICE_UNIQUE(option);
u32 seal_key_index = GET_SEAL_KEY_INDEX(option);
if (generation)
generation--;
u8 static_source[SE_KEY_128_SIZE] __attribute__((aligned(4)));
for (u32 i = 0; i < SE_KEY_128_SIZE; i++)
static_source[i] = aes_kek_generation_source[i] ^ seal_key_masks[seal_key_index][i];
if (device_unique) {
get_device_key(ks, keys, keys->temp_key, generation);
} else {
memcpy(keys->temp_key, keys->master_key[generation], sizeof(keys->temp_key));
}
se_aes_key_set(ks, keys->temp_key, SE_KEY_128_SIZE);
se_aes_unwrap_key(ks, ks, static_source);
se_aes_crypt_block_ecb(ks, DECRYPT, out_kek, kek_source);
}
// Based on spl::LoadAesKey but instead of prepping keyslot, returns calculated key
void load_aes_key(u32 ks, void *out_key, const void *access_key, const void *key_source) {
se_aes_key_set(ks, access_key, SE_KEY_128_SIZE);
se_aes_crypt_block_ecb(ks, DECRYPT, out_key, key_source);
}
// Equivalent to spl::GenerateAesKey
void generate_aes_key(u32 ks, key_storage_t *keys, void *out_key, u32 key_size, const void *access_key, const void *key_source) {
void *aes_key = keys->temp_key;
load_aes_key(ks, aes_key, access_key, aes_key_generation_source);
se_aes_key_set(ks, aes_key, SE_KEY_128_SIZE);
se_aes_crypt_ecb(ks, DECRYPT, out_key, key_size, key_source, key_size);
}
// Equivalent to smc::PrepareDeviceUniqueDataKey but with no sealing
void get_device_unique_data_key(u32 ks, void *out_key, const void *access_key, const void *key_source) {
load_aes_key(ks, out_key, access_key, key_source);
}
// Equivalent to spl::DecryptAesKey.
void decrypt_aes_key(u32 ks, key_storage_t *keys, void *out_key, const void *key_source, u32 generation, u32 option) {
void *access_key = keys->temp_key;
generate_aes_kek(ks, keys, access_key, aes_key_decryption_source, generation, option);
generate_aes_key(ks, keys, out_key, SE_KEY_128_SIZE, access_key, key_source);
}
// Equivalent to smc::GetSecureData
void get_secure_data(key_storage_t *keys, void *out_data) {
se_aes_key_set(KS_AES_CTR, keys->device_key, SE_KEY_128_SIZE);
u8 *d = (u8 *)out_data;
se_aes_crypt_ctr(KS_AES_CTR, d + SE_KEY_128_SIZE * 0, SE_KEY_128_SIZE, secure_data_source, SE_KEY_128_SIZE, secure_data_counters[0]);
se_aes_crypt_ctr(KS_AES_CTR, d + SE_KEY_128_SIZE * 1, SE_KEY_128_SIZE, secure_data_source, SE_KEY_128_SIZE, secure_data_counters[0]);
// Apply tweak
for (u32 i = 0; i < SE_KEY_128_SIZE; i++) {
d[SE_KEY_128_SIZE + i] ^= secure_data_tweaks[0][i];
}
}
// Equivalent to spl::GenerateSpecificAesKey
void generate_specific_aes_key(u32 ks, key_storage_t *keys, void *out_key, const void *key_source, u32 generation) {
if (fuse_read_bootrom_rev() >= 0x7F) {
get_device_key(ks, keys, keys->temp_key, generation == 0 ? 0 : generation - 1);
se_aes_key_set(ks, keys->temp_key, SE_KEY_128_SIZE);
se_aes_unwrap_key(ks, ks, retail_specific_aes_key_source);
se_aes_crypt_ecb(ks, DECRYPT, out_key, SE_KEY_128_SIZE * 2, key_source, SE_KEY_128_SIZE * 2);
} else {
get_secure_data(keys, out_key);
}
}
void get_device_key(u32 ks, key_storage_t *keys, void *out_device_key, u32 generation) {
if (generation == KB_FIRMWARE_VERSION_100 && !h_cfg.t210b01) {
memcpy(out_device_key, keys->device_key, SE_KEY_128_SIZE);
return;
}
if (generation >= KB_FIRMWARE_VERSION_400) {
generation -= KB_FIRMWARE_VERSION_400;
} else {
generation = 0;
}
u32 temp_key_source[SE_KEY_128_SIZE / 4] = {0};
load_aes_key(ks, temp_key_source, keys->device_key_4x, device_master_key_source_sources[generation]);
const void *kek_source = fuse_read_hw_state() == FUSE_NX_HW_STATE_PROD ? device_master_kek_sources[generation] : device_master_kek_sources_dev[generation];
se_aes_key_set(ks, keys->master_key[0], SE_KEY_128_SIZE);
se_aes_unwrap_key(ks, ks, kek_source);
se_aes_crypt_block_ecb(ks, DECRYPT, out_device_key, temp_key_source);
}

223
source/keys/crypto.h Normal file
View file

@ -0,0 +1,223 @@
/*
* Copyright (c) 2022 shchmue
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _CRYPTO_H_
#define _CRYPTO_H_
#include "../hos/hos.h"
#include <sec/se_t210.h>
#include <utils/types.h>
static const u8 aes_kek_generation_source[0x10] __attribute__((aligned(4))) = {
0x4D, 0x87, 0x09, 0x86, 0xC4, 0x5D, 0x20, 0x72, 0x2F, 0xBA, 0x10, 0x53, 0xDA, 0x92, 0xE8, 0xA9};
static const u8 aes_key_generation_source[0x10] __attribute__((aligned(4))) = {
0x89, 0x61, 0x5E, 0xE0, 0x5C, 0x31, 0xB6, 0x80, 0x5F, 0xE5, 0x8F, 0x3D, 0xA2, 0x4F, 0x7A, 0xA8};
static const u8 aes_key_decryption_source[0x10] __attribute__((aligned(4))) = {
0x11, 0x70, 0x24, 0x2B, 0x48, 0x69, 0x11, 0xF1, 0x11, 0xB0, 0x0C, 0x47, 0x7C, 0xC3, 0xEF, 0x7E};
static const u8 device_master_kek_sources[KB_FIRMWARE_VERSION_MAX - KB_FIRMWARE_VERSION_400 + 1][0x10] __attribute__((aligned(4))) = {
{0x88, 0x62, 0x34, 0x6E, 0xFA, 0xF7, 0xD8, 0x3F, 0xE1, 0x30, 0x39, 0x50, 0xF0, 0xB7, 0x5D, 0x5D}, /* 4.0.0 Device Master Kek Source. */
{0x06, 0x1E, 0x7B, 0xE9, 0x6D, 0x47, 0x8C, 0x77, 0xC5, 0xC8, 0xE7, 0x94, 0x9A, 0xA8, 0x5F, 0x2E}, /* 5.0.0 Device Master Kek Source. */
{0x99, 0xFA, 0x98, 0xBD, 0x15, 0x1C, 0x72, 0xFD, 0x7D, 0x9A, 0xD5, 0x41, 0x00, 0xFD, 0xB2, 0xEF}, /* 6.0.0 Device Master Kek Source. */
{0x81, 0x3C, 0x6C, 0xBF, 0x5D, 0x21, 0xDE, 0x77, 0x20, 0xD9, 0x6C, 0xE3, 0x22, 0x06, 0xAE, 0xBB}, /* 6.2.0 Device Master Kek Source. */
{0x86, 0x61, 0xB0, 0x16, 0xFA, 0x7A, 0x9A, 0xEA, 0xF6, 0xF5, 0xBE, 0x1A, 0x13, 0x5B, 0x6D, 0x9E}, /* 7.0.0 Device Master Kek Source. */
{0xA6, 0x81, 0x71, 0xE7, 0xB5, 0x23, 0x74, 0xB0, 0x39, 0x8C, 0xB7, 0xFF, 0xA0, 0x62, 0x9F, 0x8D}, /* 8.1.0 Device Master Kek Source. */
{0x03, 0xE7, 0xEB, 0x43, 0x1B, 0xCF, 0x5F, 0xB5, 0xED, 0xDC, 0x97, 0xAE, 0x21, 0x8D, 0x19, 0xED}, /* 9.0.0 Device Master Kek Source. */
{0xCE, 0xFE, 0x41, 0x0F, 0x46, 0x9A, 0x30, 0xD6, 0xF2, 0xE9, 0x0C, 0x6B, 0xB7, 0x15, 0x91, 0x36}, /* 9.1.0 Device Master Kek Source. */
{0xC2, 0x65, 0x34, 0x6E, 0xC7, 0xC6, 0x5D, 0x97, 0x3E, 0x34, 0x5C, 0x6B, 0xB3, 0x7E, 0xC6, 0xE3}, /* 12.1.0 Device Master Kek Source. */
{0x77, 0x52, 0x92, 0xF0, 0xAA, 0xE3, 0xFB, 0xE0, 0x60, 0x16, 0xB3, 0x78, 0x68, 0x53, 0xF7, 0xA8}, /* 13.0.0 Device Master Kek Source. */
{0x67, 0xD5, 0xD6, 0x0C, 0x08, 0xF5, 0xA3, 0x11, 0xBD, 0x6D, 0x5A, 0xEB, 0x96, 0x24, 0xB0, 0xD2}, /* 14.0.0 Device Master Kek Source. */
{0x7C, 0x30, 0xED, 0x8B, 0x39, 0x25, 0x2C, 0x08, 0x8F, 0x48, 0xDC, 0x28, 0xE6, 0x1A, 0x6B, 0x49}, /* 15.0.0 Device Master Kek Source. */
}; //!TODO: Update on mkey changes.
static const u8 device_master_kek_sources_dev[KB_FIRMWARE_VERSION_MAX - KB_FIRMWARE_VERSION_400 + 1][0x10] __attribute__((aligned(4))) = {
{0xD6, 0xBD, 0x9F, 0xC6, 0x18, 0x09, 0xE1, 0x96, 0x20, 0x39, 0x60, 0xD2, 0x89, 0x83, 0x31, 0x34}, /* 4.0.0 Device Master Kek Source. */
{0x59, 0x2D, 0x20, 0x69, 0x33, 0xB5, 0x17, 0xBA, 0xCF, 0xB1, 0x4E, 0xFD, 0xE4, 0xC2, 0x7B, 0xA8}, /* 5.0.0 Device Master Kek Source. */
{0xF6, 0xD8, 0x59, 0x63, 0x8F, 0x47, 0xCB, 0x4A, 0xD8, 0x74, 0x05, 0x7F, 0x88, 0x92, 0x33, 0xA5}, /* 6.0.0 Device Master Kek Source. */
{0x20, 0xAB, 0xF2, 0x0F, 0x05, 0xE3, 0xDE, 0x2E, 0xA1, 0xFB, 0x37, 0x5E, 0x8B, 0x22, 0x1A, 0x38}, /* 6.2.0 Device Master Kek Source. */
{0x60, 0xAE, 0x56, 0x68, 0x11, 0xE2, 0x0C, 0x99, 0xDE, 0x05, 0xAE, 0x68, 0x78, 0x85, 0x04, 0xAE}, /* 7.0.0 Device Master Kek Source. */
{0x94, 0xD6, 0xA8, 0xC0, 0x95, 0xAF, 0xD0, 0xA6, 0x27, 0x53, 0x5E, 0xE5, 0x8E, 0x70, 0x1F, 0x87}, /* 8.1.0 Device Master Kek Source. */
{0x61, 0x6A, 0x88, 0x21, 0xA3, 0x52, 0xB0, 0x19, 0x16, 0x25, 0xA4, 0xE3, 0x4C, 0x54, 0x02, 0x0F}, /* 9.0.0 Device Master Kek Source. */
{0x9D, 0xB1, 0xAE, 0xCB, 0xF6, 0xF6, 0xE3, 0xFE, 0xAB, 0x6F, 0xCB, 0xAF, 0x38, 0x03, 0xFC, 0x7B}, /* 9.1.0 Device Master Kek Source. */
{0xC4, 0xBB, 0xF3, 0x9F, 0xA3, 0xAA, 0x00, 0x99, 0x7C, 0x97, 0xAD, 0x91, 0x8F, 0xE8, 0x45, 0xCB}, /* 12.1.0 Device Master Kek Source. */
{0x20, 0x20, 0xAA, 0xFB, 0x89, 0xC2, 0xF0, 0x70, 0xB5, 0xE0, 0xA3, 0x11, 0x8A, 0x29, 0x8D, 0x0F}, /* 13.0.0 Device Master Kek Source. */
{0xCE, 0x14, 0x74, 0x66, 0x98, 0xA8, 0x6D, 0x7D, 0xBD, 0x54, 0x91, 0x68, 0x5F, 0x1D, 0x0E, 0xEA}, /* 14.0.0 Device Master Kek Source. */
{0xAE, 0x05, 0x48, 0x65, 0xAB, 0x17, 0x9D, 0x3D, 0x51, 0xB7, 0x56, 0xBD, 0x9B, 0x0B, 0x5B, 0x6E}, /* 15.0.0 Device Master Kek Source. */
}; //!TODO: Update on mkey changes.
static const u8 device_master_key_source_sources[KB_FIRMWARE_VERSION_MAX - KB_FIRMWARE_VERSION_400 + 1][0x10] __attribute__((aligned(4))) = {
{0x8B, 0x4E, 0x1C, 0x22, 0x42, 0x07, 0xC8, 0x73, 0x56, 0x94, 0x08, 0x8B, 0xCC, 0x47, 0x0F, 0x5D}, /* 4.0.0 Device Master Key Source Source. */
{0x6C, 0xEF, 0xC6, 0x27, 0x8B, 0xEC, 0x8A, 0x91, 0x99, 0xAB, 0x24, 0xAC, 0x4F, 0x1C, 0x8F, 0x1C}, /* 5.0.0 Device Master Key Source Source. */
{0x70, 0x08, 0x1B, 0x97, 0x44, 0x64, 0xF8, 0x91, 0x54, 0x9D, 0xC6, 0x84, 0x8F, 0x1A, 0xB2, 0xE4}, /* 6.0.0 Device Master Key Source Source. */
{0x8E, 0x09, 0x1F, 0x7A, 0xBB, 0xCA, 0x6A, 0xFB, 0xB8, 0x9B, 0xD5, 0xC1, 0x25, 0x9C, 0xA9, 0x17}, /* 6.2.0 Device Master Key Source Source. */
{0x8F, 0x77, 0x5A, 0x96, 0xB0, 0x94, 0xFD, 0x8D, 0x28, 0xE4, 0x19, 0xC8, 0x16, 0x1C, 0xDB, 0x3D}, /* 7.0.0 Device Master Key Source Source. */
{0x67, 0x62, 0xD4, 0x8E, 0x55, 0xCF, 0xFF, 0x41, 0x31, 0x15, 0x3B, 0x24, 0x0C, 0x7C, 0x07, 0xAE}, /* 8.1.0 Device Master Key Source Source. */
{0x4A, 0xC3, 0x4E, 0x14, 0x8B, 0x96, 0x4A, 0xD5, 0xD4, 0x99, 0x73, 0xC4, 0x45, 0xAB, 0x8B, 0x49}, /* 9.0.0 Device Master Key Source Source. */
{0x14, 0xB8, 0x74, 0x12, 0xCB, 0xBD, 0x0B, 0x8F, 0x20, 0xFB, 0x30, 0xDA, 0x27, 0xE4, 0x58, 0x94}, /* 9.1.0 Device Master Key Source Source. */
{0xAA, 0xFD, 0xBC, 0xBB, 0x25, 0xC3, 0xA4, 0xEF, 0xE3, 0xEE, 0x58, 0x53, 0xB7, 0xF8, 0xDD, 0xD6}, /* 12.1.0 Device Master Key Source Source. */
{0xE4, 0xF3, 0x45, 0x6F, 0x18, 0xA1, 0x89, 0xF8, 0xDA, 0x4C, 0x64, 0x75, 0x68, 0xE6, 0xBD, 0x4F}, /* 13.0.0 Device Master Key Source Source. */
{0x5B, 0x94, 0x63, 0xF7, 0xAD, 0x96, 0x1B, 0xA6, 0x23, 0x30, 0x06, 0x4D, 0x01, 0xE4, 0xCE, 0x1D}, /* 14.0.0 Device Master Key Source Source. */
{0x5E, 0xC9, 0xC5, 0x0A, 0xD0, 0x5F, 0x8B, 0x7B, 0xA7, 0x39, 0xEA, 0xBC, 0x60, 0x0F, 0x74, 0xE6}, /* 15.0.0 Device Master Key Source Source. */
}; //!TODO: Update on mkey changes.
static const u8 seal_key_masks[][0x10] __attribute__((aligned(4))) = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, // SealKey_LoadAesKey
{0xA2, 0xAB, 0xBF, 0x9C, 0x92, 0x2F, 0xBB, 0xE3, 0x78, 0x79, 0x9B, 0xC0, 0xCC, 0xEA, 0xA5, 0x74}, // SealKey_DecryptDeviceUniqueData
{0x57, 0xE2, 0xD9, 0x45, 0xE4, 0x92, 0xF4, 0xFD, 0xC3, 0xF9, 0x86, 0x38, 0x89, 0x78, 0x9F, 0x3C}, // SealKey_ImportLotusKey
{0xE5, 0x4D, 0x9A, 0x02, 0xF0, 0x4F, 0x5F, 0xA8, 0xAD, 0x76, 0x0A, 0xF6, 0x32, 0x95, 0x59, 0xBB}, // SealKey_ImportEsDeviceKey
{0x59, 0xD9, 0x31, 0xF4, 0xA7, 0x97, 0xB8, 0x14, 0x40, 0xD6, 0xA2, 0x60, 0x2B, 0xED, 0x15, 0x31}, // SealKey_ReencryptDeviceUniqueData
{0xFD, 0x6A, 0x25, 0xE5, 0xD8, 0x38, 0x7F, 0x91, 0x49, 0xDA, 0xF8, 0x59, 0xA8, 0x28, 0xE6, 0x75}, // SealKey_ImportSslKey
{0x89, 0x96, 0x43, 0x9A, 0x7C, 0xD5, 0x59, 0x55, 0x24, 0xD5, 0x24, 0x18, 0xAB, 0x6C, 0x04, 0x61}, // SealKey_ImportEsClientCertKey
};
static const u8 retail_specific_aes_key_source[0x10] __attribute__((aligned(4))) = {
0xE2, 0xD6, 0xB8, 0x7A, 0x11, 0x9C, 0xB8, 0x80, 0xE8, 0x22, 0x88, 0x8A, 0x46, 0xFB, 0xA1, 0x95};
static const u8 secure_data_source[0x10] __attribute__((aligned(4))) = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
static const u8 secure_data_counters[1][0x10] __attribute__((aligned(4))) = {
{0x3C, 0xD5, 0x92, 0xEC, 0x68, 0x31, 0x4A, 0x06, 0xD4, 0x1B, 0x0C, 0xD9, 0xF6, 0x2E, 0xD9, 0xE9}
};
static const u8 secure_data_tweaks[1][0x10] __attribute__((aligned(4))) = {
{0xAC, 0xCA, 0x9A, 0xCA, 0xFF, 0x2E, 0xB9, 0x22, 0xCC, 0x1F, 0x4F, 0xAD, 0xDD, 0x77, 0x21, 0x1E}
};
// Lockpick_RCM keyslots
#define KS_BIS_00_CRYPT 0
#define KS_BIS_00_TWEAK 1
#define KS_BIS_01_CRYPT 2
#define KS_BIS_01_TWEAK 3
#define KS_BIS_02_CRYPT 4
#define KS_BIS_02_TWEAK 5
#define KS_AES_CTR 6
#define KS_AES_ECB 8
#define KS_AES_CMAC 10
// Mariko keyslots
#define KS_MARIKO_KEK 12
#define KS_MARIKO_BEK 13
// Other Switch keyslots
#define KS_TSEC 12
#define KS_SECURE_BOOT 14
// Atmosphere keygen keyslots
#define KS_TSEC_ROOT_DEV 11
#define KS_TSEC_ROOT 13
#define RSA_PUBLIC_EXPONENT 65537
#define SSL_RSA_KEY_SIZE (SE_AES_IV_SIZE + SE_RSA2048_DIGEST_SIZE)
#define ETICKET_RSA_KEYPAIR_SIZE (SE_AES_IV_SIZE + SE_RSA2048_DIGEST_SIZE * 2 + SE_KEY_128_SIZE)
typedef struct {
u8 private_exponent[SE_RSA2048_DIGEST_SIZE];
u8 modulus[SE_RSA2048_DIGEST_SIZE];
u8 public_exponent[4];
u8 reserved[0xC];
} rsa_keypair_t;
typedef struct {
u8 master_kek[SE_KEY_128_SIZE];
u8 data[0x70];
u8 package1_key[SE_KEY_128_SIZE];
} keyblob_t;
typedef struct {
u8 cmac[0x10];
u8 iv[0x10];
keyblob_t key_data;
u8 unused[0x150];
} encrypted_keyblob_t;
typedef struct {
u8 temp_key[SE_KEY_128_SIZE],
bis_key[4][SE_KEY_128_SIZE * 2],
device_key[SE_KEY_128_SIZE],
device_key_4x[SE_KEY_128_SIZE],
sd_seed[SE_KEY_128_SIZE],
// FS-related keys
header_key[SE_KEY_128_SIZE * 2],
save_mac_key[SE_KEY_128_SIZE],
// other sysmodule keys
eticket_rsa_kek[SE_KEY_128_SIZE],
eticket_rsa_kek_personalized[SE_KEY_128_SIZE],
ssl_rsa_kek[SE_KEY_128_SIZE],
ssl_rsa_kek_legacy[SE_KEY_128_SIZE],
ssl_rsa_kek_personalized[SE_KEY_128_SIZE],
ssl_rsa_key[SE_RSA2048_DIGEST_SIZE + 0x20],
// keyblob-derived families
keyblob_key[KB_FIRMWARE_VERSION_600 + 1][SE_KEY_128_SIZE],
keyblob_mac_key[KB_FIRMWARE_VERSION_600 + 1][SE_KEY_128_SIZE],
package1_key[KB_FIRMWARE_VERSION_600 + 1][SE_KEY_128_SIZE],
// master key-derived families
key_area_key[3][KB_FIRMWARE_VERSION_MAX + 1][SE_KEY_128_SIZE],
master_kek[KB_FIRMWARE_VERSION_MAX + 1][SE_KEY_128_SIZE],
master_key[KB_FIRMWARE_VERSION_MAX + 1][SE_KEY_128_SIZE],
package2_key[KB_FIRMWARE_VERSION_MAX + 1][SE_KEY_128_SIZE],
titlekek[KB_FIRMWARE_VERSION_MAX + 1][SE_KEY_128_SIZE],
tsec_key[SE_KEY_128_SIZE],
tsec_root_key[SE_KEY_128_SIZE];
u32 sbk[4];
keyblob_t keyblob[KB_FIRMWARE_VERSION_600 + 1];
rsa_keypair_t eticket_rsa_keypair;
} key_storage_t;
typedef enum {
SEAL_KEY_LOAD_AES_KEY = 0,
SEAL_KEY_DECRYPT_DEVICE_UNIQUE_DATA = 1,
SEAL_KEY_IMPORT_LOTUS_KEY = 2,
SEAL_KEY_IMPORT_ES_DEVICE_KEY = 3,
SEAL_KEY_REENCRYPT_DEVICE_UNIQUE_DATA = 4,
SEAL_KEY_IMPORT_SSL_KEY = 5,
SEAL_KEY_IMPORT_ES_CLIENT_CERT_KEY = 6,
} seal_key_t;
typedef enum {
NOT_DEVICE_UNIQUE = 0,
IS_DEVICE_UNIQUE = 1,
} device_unique_t;
#define SET_SEAL_KEY_INDEX(x) (((x) & 7) << 5)
#define GET_SEAL_KEY_INDEX(x) (((x) >> 5) & 7)
#define GET_IS_DEVICE_UNIQUE(x) ((x) & 1)
bool test_rsa_keypair(const void *public_exponent, const void *private_exponent, const void *modulus);
bool test_eticket_rsa_keypair(const rsa_keypair_t *keypair);
// Equivalent to spl::GenerateAesKek
void generate_aes_kek(u32 ks, key_storage_t *keys, void *out_kek, const void *kek_source, u32 generation, u32 option);
// Equivalent to spl::GenerateAesKey
void generate_aes_key(u32 ks, key_storage_t *keys, void *out_key, u32 key_size, const void *access_key, const void *key_source);
// Equivalent to spl::GenerateSpecificAesKey
void generate_specific_aes_key(u32 ks, key_storage_t *keys, void *out_key, const void *key_source, u32 generation);
// Equivalent to spl::DecryptAesKey.
void decrypt_aes_key(u32 ks, key_storage_t *keys, void *out_key, const void *key_source, u32 generation, u32 option);
// Based on spl::LoadAesKey but instead of prepping keyslot, returns calculated key
void load_aes_key(u32 ks, void *out_key, const void *access_key, const void *key_source);
// Equivalent to smc::PrepareDeviceUniqueDataKey but with no sealing
void get_device_unique_data_key(u32 ks, void *out_key, const void *access_key, const void *key_source);
// Equivalent to smc::GetSecureData
void get_secure_data(key_storage_t *keys, void *out_data);
// Equivalent to smc::PrepareDeviceMasterKey
void get_device_key(u32 ks, key_storage_t *keys, void *out_device_key, u32 generation);
#endif

View file

@ -122,7 +122,7 @@ static void _ghash(u32 ks, void *dst, const void *src, u32 src_size, const void
memcpy(dst, x, 0x10);
}
void _calc_gmac(u32 ks, void *out_gmac, const void *data, u32 size, const void *key, const void *iv) {
void calc_gmac(u32 ks, void *out_gmac, const void *data, u32 size, const void *key, const void *iv) {
u32 j_block[4] = {0};
se_aes_key_set(ks, key, 0x10);
_ghash(ks, j_block, iv, 0x10, NULL, false);

View file

@ -19,6 +19,6 @@
#include <utils/types.h>
void _calc_gmac(u32 ks, void *out_gmac, const void *data, u32 size, const void *key, const void *iv);
void calc_gmac(u32 ks, void *out_gmac, const void *data, u32 size, const void *key, const void *iv);
#endif

View file

@ -98,31 +98,10 @@ static const u8 mariko_key_vectors[][0x10] __attribute__((aligned(4))) = {
//======================================Keys======================================//
// from Package1 -> Secure_Monitor
static const u8 aes_kek_generation_source[0x10] __attribute__((aligned(4))) = {
0x4D, 0x87, 0x09, 0x86, 0xC4, 0x5D, 0x20, 0x72, 0x2F, 0xBA, 0x10, 0x53, 0xDA, 0x92, 0xE8, 0xA9};
static const u8 seal_key_masks[][0x10] __attribute__((aligned(4))) = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, // SealKey_LoadAesKey
{0xA2, 0xAB, 0xBF, 0x9C, 0x92, 0x2F, 0xBB, 0xE3, 0x78, 0x79, 0x9B, 0xC0, 0xCC, 0xEA, 0xA5, 0x74}, // SealKey_DecryptDeviceUniqueData
{0x57, 0xE2, 0xD9, 0x45, 0xE4, 0x92, 0xF4, 0xFD, 0xC3, 0xF9, 0x86, 0x38, 0x89, 0x78, 0x9F, 0x3C}, // SealKey_ImportLotusKey
{0xE5, 0x4D, 0x9A, 0x02, 0xF0, 0x4F, 0x5F, 0xA8, 0xAD, 0x76, 0x0A, 0xF6, 0x32, 0x95, 0x59, 0xBB}, // SealKey_ImportEsDeviceKey
{0x59, 0xD9, 0x31, 0xF4, 0xA7, 0x97, 0xB8, 0x14, 0x40, 0xD6, 0xA2, 0x60, 0x2B, 0xED, 0x15, 0x31}, // SealKey_ReencryptDeviceUniqueData
{0xFD, 0x6A, 0x25, 0xE5, 0xD8, 0x38, 0x7F, 0x91, 0x49, 0xDA, 0xF8, 0x59, 0xA8, 0x28, 0xE6, 0x75}, // SealKey_ImportSslKey
{0x89, 0x96, 0x43, 0x9A, 0x7C, 0xD5, 0x59, 0x55, 0x24, 0xD5, 0x24, 0x18, 0xAB, 0x6C, 0x04, 0x61}, // SealKey_ImportEsClientCertKey
};
static const u8 package2_key_source[0x10] __attribute__((aligned(4))) = {
0xFB, 0x8B, 0x6A, 0x9C, 0x79, 0x00, 0xC8, 0x49, 0xEF, 0xD2, 0x4D, 0x85, 0x4D, 0x30, 0xA0, 0xC7};
static const u8 titlekek_source[0x10] __attribute__((aligned(4))) = {
0x1E, 0xDC, 0x7B, 0x3B, 0x60, 0xE6, 0xB4, 0xD8, 0x78, 0xB8, 0x17, 0x15, 0x98, 0x5E, 0x62, 0x9B};
static const u8 retail_specific_aes_key_source[0x10] __attribute__((aligned(4))) = {
0xE2, 0xD6, 0xB8, 0x7A, 0x11, 0x9C, 0xB8, 0x80, 0xE8, 0x22, 0x88, 0x8A, 0x46, 0xFB, 0xA1, 0x95};
static const u8 secure_data_source[0x10] __attribute__((aligned(4))) = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
static const u8 secure_data_counters[1][0x10] __attribute__((aligned(4))) = {
{0x3C, 0xD5, 0x92, 0xEC, 0x68, 0x31, 0x4A, 0x06, 0xD4, 0x1B, 0x0C, 0xD9, 0xF6, 0x2E, 0xD9, 0xE9}
};
static const u8 secure_data_tweaks[1][0x10] __attribute__((aligned(4))) = {
{0xAC, 0xCA, 0x9A, 0xCA, 0xFF, 0x2E, 0xB9, 0x22, 0xCC, 0x1F, 0x4F, 0xAD, 0xDD, 0x77, 0x21, 0x1E}
};
// from Package1ldr (or Secure_Monitor on 6.2.0+)
static const u8 keyblob_mac_key_source[0x10] __attribute__((aligned(4))) = {
@ -158,21 +137,6 @@ static const u8 mariko_master_kek_sources_dev[KB_FIRMWARE_VERSION_MAX - KB_FIRMW
{0x18, 0xA5, 0x6F, 0xEF, 0x72, 0x11, 0x62, 0xC5, 0x1A, 0x14, 0xF1, 0x8C, 0x21, 0x83, 0x27, 0xB7}, // 15.0.0.
}; //!TODO: Update on mkey changes.
static const u8 device_master_key_source_sources[KB_FIRMWARE_VERSION_MAX - KB_FIRMWARE_VERSION_400 + 1][0x10] __attribute__((aligned(4))) = {
{0x8B, 0x4E, 0x1C, 0x22, 0x42, 0x07, 0xC8, 0x73, 0x56, 0x94, 0x08, 0x8B, 0xCC, 0x47, 0x0F, 0x5D}, /* 4.0.0 Device Master Key Source Source. */
{0x6C, 0xEF, 0xC6, 0x27, 0x8B, 0xEC, 0x8A, 0x91, 0x99, 0xAB, 0x24, 0xAC, 0x4F, 0x1C, 0x8F, 0x1C}, /* 5.0.0 Device Master Key Source Source. */
{0x70, 0x08, 0x1B, 0x97, 0x44, 0x64, 0xF8, 0x91, 0x54, 0x9D, 0xC6, 0x84, 0x8F, 0x1A, 0xB2, 0xE4}, /* 6.0.0 Device Master Key Source Source. */
{0x8E, 0x09, 0x1F, 0x7A, 0xBB, 0xCA, 0x6A, 0xFB, 0xB8, 0x9B, 0xD5, 0xC1, 0x25, 0x9C, 0xA9, 0x17}, /* 6.2.0 Device Master Key Source Source. */
{0x8F, 0x77, 0x5A, 0x96, 0xB0, 0x94, 0xFD, 0x8D, 0x28, 0xE4, 0x19, 0xC8, 0x16, 0x1C, 0xDB, 0x3D}, /* 7.0.0 Device Master Key Source Source. */
{0x67, 0x62, 0xD4, 0x8E, 0x55, 0xCF, 0xFF, 0x41, 0x31, 0x15, 0x3B, 0x24, 0x0C, 0x7C, 0x07, 0xAE}, /* 8.1.0 Device Master Key Source Source. */
{0x4A, 0xC3, 0x4E, 0x14, 0x8B, 0x96, 0x4A, 0xD5, 0xD4, 0x99, 0x73, 0xC4, 0x45, 0xAB, 0x8B, 0x49}, /* 9.0.0 Device Master Key Source Source. */
{0x14, 0xB8, 0x74, 0x12, 0xCB, 0xBD, 0x0B, 0x8F, 0x20, 0xFB, 0x30, 0xDA, 0x27, 0xE4, 0x58, 0x94}, /* 9.1.0 Device Master Key Source Source. */
{0xAA, 0xFD, 0xBC, 0xBB, 0x25, 0xC3, 0xA4, 0xEF, 0xE3, 0xEE, 0x58, 0x53, 0xB7, 0xF8, 0xDD, 0xD6}, /* 12.1.0 Device Master Key Source Source. */
{0xE4, 0xF3, 0x45, 0x6F, 0x18, 0xA1, 0x89, 0xF8, 0xDA, 0x4C, 0x64, 0x75, 0x68, 0xE6, 0xBD, 0x4F}, /* 13.0.0 Device Master Key Source Source. */
{0x5B, 0x94, 0x63, 0xF7, 0xAD, 0x96, 0x1B, 0xA6, 0x23, 0x30, 0x06, 0x4D, 0x01, 0xE4, 0xCE, 0x1D}, /* 14.0.0 Device Master Key Source Source. */
{0x5E, 0xC9, 0xC5, 0x0A, 0xD0, 0x5F, 0x8B, 0x7B, 0xA7, 0x39, 0xEA, 0xBC, 0x60, 0x0F, 0x74, 0xE6}, /* 15.0.0 Device Master Key Source Source. */
}; //!TODO: Update on mkey changes.
// from ES
static const u8 eticket_rsa_kek_source[0x10] __attribute__((aligned(4))) = {
0XDB, 0XA4, 0X51, 0X12, 0X4C, 0XA0, 0XA9, 0X83, 0X68, 0X14, 0XF5, 0XED, 0X95, 0XE3, 0X12, 0X5B};
@ -197,42 +161,6 @@ static const u8 ssl_client_cert_kek_source[0x10] __attribute__((aligned(4))) = {
static const u8 ssl_client_cert_key_source[0x10] __attribute__((aligned(4))) = {
0x4D, 0x92, 0x5A, 0x69, 0x42, 0x23, 0xBB, 0x92, 0x59, 0x16, 0x3E, 0x51, 0x8C, 0x78, 0x14, 0x0F};
static const u8 device_master_kek_sources[KB_FIRMWARE_VERSION_MAX - KB_FIRMWARE_VERSION_400 + 1][0x10] __attribute__((aligned(4))) = {
{0x88, 0x62, 0x34, 0x6E, 0xFA, 0xF7, 0xD8, 0x3F, 0xE1, 0x30, 0x39, 0x50, 0xF0, 0xB7, 0x5D, 0x5D}, /* 4.0.0 Device Master Kek Source. */
{0x06, 0x1E, 0x7B, 0xE9, 0x6D, 0x47, 0x8C, 0x77, 0xC5, 0xC8, 0xE7, 0x94, 0x9A, 0xA8, 0x5F, 0x2E}, /* 5.0.0 Device Master Kek Source. */
{0x99, 0xFA, 0x98, 0xBD, 0x15, 0x1C, 0x72, 0xFD, 0x7D, 0x9A, 0xD5, 0x41, 0x00, 0xFD, 0xB2, 0xEF}, /* 6.0.0 Device Master Kek Source. */
{0x81, 0x3C, 0x6C, 0xBF, 0x5D, 0x21, 0xDE, 0x77, 0x20, 0xD9, 0x6C, 0xE3, 0x22, 0x06, 0xAE, 0xBB}, /* 6.2.0 Device Master Kek Source. */
{0x86, 0x61, 0xB0, 0x16, 0xFA, 0x7A, 0x9A, 0xEA, 0xF6, 0xF5, 0xBE, 0x1A, 0x13, 0x5B, 0x6D, 0x9E}, /* 7.0.0 Device Master Kek Source. */
{0xA6, 0x81, 0x71, 0xE7, 0xB5, 0x23, 0x74, 0xB0, 0x39, 0x8C, 0xB7, 0xFF, 0xA0, 0x62, 0x9F, 0x8D}, /* 8.1.0 Device Master Kek Source. */
{0x03, 0xE7, 0xEB, 0x43, 0x1B, 0xCF, 0x5F, 0xB5, 0xED, 0xDC, 0x97, 0xAE, 0x21, 0x8D, 0x19, 0xED}, /* 9.0.0 Device Master Kek Source. */
{0xCE, 0xFE, 0x41, 0x0F, 0x46, 0x9A, 0x30, 0xD6, 0xF2, 0xE9, 0x0C, 0x6B, 0xB7, 0x15, 0x91, 0x36}, /* 9.1.0 Device Master Kek Source. */
{0xC2, 0x65, 0x34, 0x6E, 0xC7, 0xC6, 0x5D, 0x97, 0x3E, 0x34, 0x5C, 0x6B, 0xB3, 0x7E, 0xC6, 0xE3}, /* 12.1.0 Device Master Kek Source. */
{0x77, 0x52, 0x92, 0xF0, 0xAA, 0xE3, 0xFB, 0xE0, 0x60, 0x16, 0xB3, 0x78, 0x68, 0x53, 0xF7, 0xA8}, /* 13.0.0 Device Master Kek Source. */
{0x67, 0xD5, 0xD6, 0x0C, 0x08, 0xF5, 0xA3, 0x11, 0xBD, 0x6D, 0x5A, 0xEB, 0x96, 0x24, 0xB0, 0xD2}, /* 14.0.0 Device Master Kek Source. */
{0x7C, 0x30, 0xED, 0x8B, 0x39, 0x25, 0x2C, 0x08, 0x8F, 0x48, 0xDC, 0x28, 0xE6, 0x1A, 0x6B, 0x49}, /* 15.0.0 Device Master Kek Source. */
}; //!TODO: Update on mkey changes.
static const u8 device_master_kek_sources_dev[KB_FIRMWARE_VERSION_MAX - KB_FIRMWARE_VERSION_400 + 1][0x10] __attribute__((aligned(4))) = {
{0xD6, 0xBD, 0x9F, 0xC6, 0x18, 0x09, 0xE1, 0x96, 0x20, 0x39, 0x60, 0xD2, 0x89, 0x83, 0x31, 0x34}, /* 4.0.0 Device Master Kek Source. */
{0x59, 0x2D, 0x20, 0x69, 0x33, 0xB5, 0x17, 0xBA, 0xCF, 0xB1, 0x4E, 0xFD, 0xE4, 0xC2, 0x7B, 0xA8}, /* 5.0.0 Device Master Kek Source. */
{0xF6, 0xD8, 0x59, 0x63, 0x8F, 0x47, 0xCB, 0x4A, 0xD8, 0x74, 0x05, 0x7F, 0x88, 0x92, 0x33, 0xA5}, /* 6.0.0 Device Master Kek Source. */
{0x20, 0xAB, 0xF2, 0x0F, 0x05, 0xE3, 0xDE, 0x2E, 0xA1, 0xFB, 0x37, 0x5E, 0x8B, 0x22, 0x1A, 0x38}, /* 6.2.0 Device Master Kek Source. */
{0x60, 0xAE, 0x56, 0x68, 0x11, 0xE2, 0x0C, 0x99, 0xDE, 0x05, 0xAE, 0x68, 0x78, 0x85, 0x04, 0xAE}, /* 7.0.0 Device Master Kek Source. */
{0x94, 0xD6, 0xA8, 0xC0, 0x95, 0xAF, 0xD0, 0xA6, 0x27, 0x53, 0x5E, 0xE5, 0x8E, 0x70, 0x1F, 0x87}, /* 8.1.0 Device Master Kek Source. */
{0x61, 0x6A, 0x88, 0x21, 0xA3, 0x52, 0xB0, 0x19, 0x16, 0x25, 0xA4, 0xE3, 0x4C, 0x54, 0x02, 0x0F}, /* 9.0.0 Device Master Kek Source. */
{0x9D, 0xB1, 0xAE, 0xCB, 0xF6, 0xF6, 0xE3, 0xFE, 0xAB, 0x6F, 0xCB, 0xAF, 0x38, 0x03, 0xFC, 0x7B}, /* 9.1.0 Device Master Kek Source. */
{0xC4, 0xBB, 0xF3, 0x9F, 0xA3, 0xAA, 0x00, 0x99, 0x7C, 0x97, 0xAD, 0x91, 0x8F, 0xE8, 0x45, 0xCB}, /* 12.1.0 Device Master Kek Source. */
{0x20, 0x20, 0xAA, 0xFB, 0x89, 0xC2, 0xF0, 0x70, 0xB5, 0xE0, 0xA3, 0x11, 0x8A, 0x29, 0x8D, 0x0F}, /* 13.0.0 Device Master Kek Source. */
{0xCE, 0x14, 0x74, 0x66, 0x98, 0xA8, 0x6D, 0x7D, 0xBD, 0x54, 0x91, 0x68, 0x5F, 0x1D, 0x0E, 0xEA}, /* 14.0.0 Device Master Kek Source. */
{0xAE, 0x05, 0x48, 0x65, 0xAB, 0x17, 0x9D, 0x3D, 0x51, 0xB7, 0x56, 0xBD, 0x9B, 0x0B, 0x5B, 0x6E}, /* 15.0.0 Device Master Kek Source. */
}; //!TODO: Update on mkey changes.
// from SPL
static const u8 aes_key_generation_source[0x10] __attribute__((aligned(4))) = {
0x89, 0x61, 0x5E, 0xE0, 0x5C, 0x31, 0xB6, 0x80, 0x5F, 0xE5, 0x8F, 0x3D, 0xA2, 0x4F, 0x7A, 0xA8};
static const u8 aes_key_decryption_source[0x10] __attribute__((aligned(4))) = {
0x11, 0x70, 0x24, 0x2B, 0x48, 0x69, 0x11, 0xF1, 0x11, 0xB0, 0x0C, 0x47, 0x7C, 0xC3, 0xEF, 0x7E};
// from FS
static const u8 bis_kek_source[0x10] __attribute__((aligned(4))) = {
0x34, 0xC1, 0xA0, 0xC4, 0x82, 0x58, 0xF8, 0xB4, 0xFA, 0x9E, 0x5E, 0x6A, 0xDA, 0xFC, 0x7E, 0x4F};

View file

@ -16,6 +16,7 @@
#include "keys.h"
#include "cal0_read.h"
#include "gmac.h"
#include "../../keygen/tsec_keygen.h"
@ -58,46 +59,23 @@ static u32 _key_count = 0, _titlekey_count = 0;
static u32 start_time, end_time;
u32 color_idx = 0;
static ALWAYS_INLINE u32 _read_le_u32(const void *buffer, u32 offset) {
return (*(u8*)(buffer + offset + 0) ) |
(*(u8*)(buffer + offset + 1) << 0x08) |
(*(u8*)(buffer + offset + 2) << 0x10) |
(*(u8*)(buffer + offset + 3) << 0x18);
}
static ALWAYS_INLINE u32 _read_be_u32(const void *buffer, u32 offset) {
return (*(u8*)(buffer + offset + 3) ) |
(*(u8*)(buffer + offset + 2) << 0x08) |
(*(u8*)(buffer + offset + 1) << 0x10) |
(*(u8*)(buffer + offset + 0) << 0x18);
}
// key functions
static int _key_exists(const void *data) { return memcmp(data, "\x00\x00\x00\x00\x00\x00\x00\x00", 8) != 0; };
static void _save_key(const char *name, const void *data, u32 len, char *outbuf);
static void _save_key_family(const char *name, const void *data, u32 start_key, u32 num_keys, u32 len, char *outbuf);
static void _generate_aes_kek(u32 ks, key_derivation_ctx_t *keys, void *out_kek, const void *kek_source, u32 generation, u32 option);
static void _generate_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, u32 key_size, const void *access_key, const void *key_source);
static void _load_aes_key(u32 ks, void *out_key, const void *access_key, const void *key_source);
static void _get_device_unique_data_key(u32 ks, void *out_key, const void *access_key, const void *key_source);
static void _decrypt_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 generation, u32 option);
static void _generate_specific_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 generation);
static void _get_device_key(u32 ks, key_derivation_ctx_t *keys, void *out_device_key, u32 generation);
// titlekey functions
static bool _test_rsa_keypair(const void *E, const void *D, const void *N);
static void _derive_master_key_mariko(key_derivation_ctx_t *keys, bool is_dev) {
static void _derive_master_key_mariko(key_storage_t *keys, bool is_dev) {
// Relies on the SBK being properly set in slot 14
se_aes_crypt_block_ecb(KS_SECURE_BOOT, DECRYPT, keys->device_key_4x, device_master_key_source_kek_source);
// Derive all master keys based on Mariko KEK
for (u32 i = KB_FIRMWARE_VERSION_600; i < ARRAY_SIZE(mariko_master_kek_sources) + KB_FIRMWARE_VERSION_600; i++) {
// Relies on the Mariko KEK being properly set in slot 12
se_aes_crypt_block_ecb(KS_MARIKO_KEK, DECRYPT, keys->master_kek[i], is_dev ? &mariko_master_kek_sources_dev[i - KB_FIRMWARE_VERSION_600] : &mariko_master_kek_sources[i - KB_FIRMWARE_VERSION_600]);
_load_aes_key(KS_AES_ECB, keys->master_key[i], keys->master_kek[i], master_key_source);
load_aes_key(KS_AES_ECB, keys->master_key[i], keys->master_kek[i], master_key_source);
}
}
static int _run_ams_keygen(key_derivation_ctx_t *keys) {
static int _run_ams_keygen(key_storage_t *keys) {
tsec_ctxt_t tsec_ctxt;
tsec_ctxt.fw = tsec_keygen;
tsec_ctxt.size = sizeof(tsec_keygen);
@ -115,21 +93,21 @@ static int _run_ams_keygen(key_derivation_ctx_t *keys) {
return 0;
}
static void _derive_master_keys_from_latest_key(key_derivation_ctx_t *keys, bool is_dev) {
static void _derive_master_keys_from_latest_key(key_storage_t *keys, bool is_dev) {
if (!h_cfg.t210b01) {
u32 tsec_root_key_slot = is_dev ? 11 : 13;
// Derive all master keys based on current root key
for (u32 i = KB_FIRMWARE_VERSION_810 - KB_FIRMWARE_VERSION_620; i < ARRAY_SIZE(master_kek_sources); i++) {
se_aes_crypt_block_ecb(tsec_root_key_slot, DECRYPT, keys->master_kek[i + KB_FIRMWARE_VERSION_620], master_kek_sources[i]);
_load_aes_key(KS_AES_ECB, keys->master_key[i + KB_FIRMWARE_VERSION_620], keys->master_kek[i + KB_FIRMWARE_VERSION_620], master_key_source);
load_aes_key(KS_AES_ECB, keys->master_key[i + KB_FIRMWARE_VERSION_620], keys->master_kek[i + KB_FIRMWARE_VERSION_620], master_key_source);
}
}
// Derive all lower master keys
for (u32 i = KB_FIRMWARE_VERSION_MAX; i > 0; i--) {
_load_aes_key(KS_AES_ECB, keys->master_key[i - 1], keys->master_key[i], is_dev ? master_key_vectors_dev[i] : master_key_vectors[i]);
load_aes_key(KS_AES_ECB, keys->master_key[i - 1], keys->master_key[i], is_dev ? master_key_vectors_dev[i] : master_key_vectors[i]);
}
_load_aes_key(KS_AES_ECB, keys->temp_key, keys->master_key[0], is_dev ? master_key_vectors_dev[0] : master_key_vectors[0]);
load_aes_key(KS_AES_ECB, keys->temp_key, keys->master_key[0], is_dev ? master_key_vectors_dev[0] : master_key_vectors[0]);
if (_key_exists(keys->temp_key)) {
EPRINTFARGS("Unable to derive master keys for %s.", is_dev ? "dev" : "prod");
@ -137,15 +115,15 @@ static void _derive_master_keys_from_latest_key(key_derivation_ctx_t *keys, bool
}
}
static void _derive_keyblob_keys(key_derivation_ctx_t *keys) {
static void _derive_keyblob_keys(key_storage_t *keys) {
u8 *keyblob_block = (u8 *)calloc(KB_FIRMWARE_VERSION_600 + 1, NX_EMMC_BLOCKSIZE);
u32 keyblob_mac[AES_128_KEY_SIZE / 4] = {0};
u32 keyblob_mac[SE_KEY_128_SIZE / 4] = {0};
bool have_keyblobs = true;
if (FUSE(FUSE_PRIVATE_KEY0) == 0xFFFFFFFF) {
u8 *aes_keys = (u8 *)calloc(SZ_4K, 1);
se_get_aes_keys(aes_keys + SZ_2K, aes_keys, AES_128_KEY_SIZE);
memcpy(keys->sbk, aes_keys + 14 * AES_128_KEY_SIZE, AES_128_KEY_SIZE);
se_get_aes_keys(aes_keys + SZ_2K, aes_keys, SE_KEY_128_SIZE);
memcpy(keys->sbk, aes_keys + 14 * SE_KEY_128_SIZE, SE_KEY_128_SIZE);
free(aes_keys);
} else {
keys->sbk[0] = FUSE(FUSE_PRIVATE_KEY0);
@ -168,7 +146,7 @@ static void _derive_keyblob_keys(key_derivation_ctx_t *keys) {
minerva_periodic_training();
se_aes_crypt_block_ecb(KS_TSEC, DECRYPT, keys->keyblob_key[i], keyblob_key_sources[i]);
se_aes_crypt_block_ecb(KS_SECURE_BOOT, DECRYPT, keys->keyblob_key[i], keys->keyblob_key[i]);
_load_aes_key(KS_AES_ECB, keys->keyblob_mac_key[i], keys->keyblob_key[i], keyblob_mac_key_source);
load_aes_key(KS_AES_ECB, keys->keyblob_mac_key[i], keys->keyblob_key[i], keyblob_mac_key_source);
if (i == 0) {
se_aes_crypt_block_ecb(KS_AES_ECB, DECRYPT, keys->device_key, per_console_key_source);
se_aes_crypt_block_ecb(KS_AES_ECB, DECRYPT, keys->device_key_4x, device_master_key_source_kek_source);
@ -193,50 +171,50 @@ static void _derive_keyblob_keys(key_derivation_ctx_t *keys) {
memcpy(keys->package1_key[i], keys->keyblob[i].package1_key, sizeof(keys->package1_key[i]));
memcpy(keys->master_kek[i], keys->keyblob[i].master_kek, sizeof(keys->master_kek[i]));
if (!_key_exists(keys->master_key[i])) {
_load_aes_key(KS_AES_ECB, keys->master_key[i], keys->master_kek[i], master_key_source);
load_aes_key(KS_AES_ECB, keys->master_key[i], keys->master_kek[i], master_key_source);
}
}
free(keyblob_block);
}
static void _derive_bis_keys(key_derivation_ctx_t *keys) {
static void _derive_bis_keys(key_storage_t *keys) {
minerva_periodic_training();
u32 generation = fuse_read_odm_keygen_rev();
if (!(_key_exists(keys->device_key) || (generation && _key_exists(keys->master_key[0]) && _key_exists(keys->device_key_4x)))) {
return;
}
_generate_specific_aes_key(KS_AES_ECB, keys, &keys->bis_key[0], bis_key_sources[0], generation);
u32 access_key[AES_128_KEY_SIZE / 4] = {0};
generate_specific_aes_key(KS_AES_ECB, keys, &keys->bis_key[0], bis_key_sources[0], generation);
u32 access_key[SE_KEY_128_SIZE / 4] = {0};
const u32 option = IS_DEVICE_UNIQUE;
_generate_aes_kek(KS_AES_ECB, keys, access_key, bis_kek_source, generation, option);
_generate_aes_key(KS_AES_ECB, keys, keys->bis_key[1], sizeof(keys->bis_key[1]), access_key, bis_key_sources[1]);
_generate_aes_key(KS_AES_ECB, keys, keys->bis_key[2], sizeof(keys->bis_key[2]), access_key, bis_key_sources[2]);
generate_aes_kek(KS_AES_ECB, keys, access_key, bis_kek_source, generation, option);
generate_aes_key(KS_AES_ECB, keys, keys->bis_key[1], sizeof(keys->bis_key[1]), access_key, bis_key_sources[1]);
generate_aes_key(KS_AES_ECB, keys, keys->bis_key[2], sizeof(keys->bis_key[2]), access_key, bis_key_sources[2]);
memcpy(keys->bis_key[3], keys->bis_key[2], sizeof(keys->bis_key[3]));
}
static void _derive_non_unique_keys(key_derivation_ctx_t *keys, bool is_dev) {
static void _derive_non_unique_keys(key_storage_t *keys, bool is_dev) {
if (_key_exists(keys->master_key[0])) {
const u32 generation = 0;
const u32 option = GET_IS_DEVICE_UNIQUE(NOT_DEVICE_UNIQUE);
_generate_aes_kek(KS_AES_ECB, keys, keys->temp_key, header_kek_source, generation, option);
_generate_aes_key(KS_AES_ECB, keys, keys->header_key, sizeof(keys->header_key), keys->temp_key, header_key_source);
generate_aes_kek(KS_AES_ECB, keys, keys->temp_key, header_kek_source, generation, option);
generate_aes_key(KS_AES_ECB, keys, keys->header_key, sizeof(keys->header_key), keys->temp_key, header_key_source);
}
}
static void _derive_rsa_kek(u32 ks, key_derivation_ctx_t *keys, void *out_rsa_kek, const void *kekek_source, const void *kek_source, u32 generation, u32 option) {
static void _derive_rsa_kek(u32 ks, key_storage_t *keys, void *out_rsa_kek, const void *kekek_source, const void *kek_source, u32 generation, u32 option) {
void *access_key = keys->temp_key;
_generate_aes_kek(ks, keys, access_key, kekek_source, generation, option);
_get_device_unique_data_key(ks, out_rsa_kek, access_key, kek_source);
generate_aes_kek(ks, keys, access_key, kekek_source, generation, option);
get_device_unique_data_key(ks, out_rsa_kek, access_key, kek_source);
}
static void _derive_misc_keys(key_derivation_ctx_t *keys, bool is_dev) {
static void _derive_misc_keys(key_storage_t *keys, bool is_dev) {
if (_key_exists(keys->device_key) || (_key_exists(keys->master_key[0]) && _key_exists(keys->device_key_4x))) {
void *access_key = keys->temp_key;
const u32 generation = 0;
const u32 option = IS_DEVICE_UNIQUE;
_generate_aes_kek(KS_AES_ECB, keys, access_key, save_mac_kek_source, generation, option);
_load_aes_key(KS_AES_ECB, keys->save_mac_key, access_key, save_mac_key_source);
generate_aes_kek(KS_AES_ECB, keys, access_key, save_mac_kek_source, generation, option);
load_aes_key(KS_AES_ECB, keys->save_mac_key, access_key, save_mac_key_source);
}
if (_key_exists(keys->master_key[0])) {
@ -251,18 +229,18 @@ static void _derive_misc_keys(key_derivation_ctx_t *keys, bool is_dev) {
}
}
static void _derive_per_generation_keys(key_derivation_ctx_t *keys) {
static void _derive_per_generation_keys(key_storage_t *keys) {
for (u32 generation = 0; generation < ARRAY_SIZE(keys->master_key); generation++) {
if (!_key_exists(keys->master_key[generation]))
continue;
for (u32 source_type = 0; source_type < ARRAY_SIZE(key_area_key_sources); source_type++) {
void *access_key = keys->temp_key;
const u32 option = GET_IS_DEVICE_UNIQUE(NOT_DEVICE_UNIQUE);
_generate_aes_kek(KS_AES_ECB, keys, access_key, key_area_key_sources[source_type], generation + 1, option);
_load_aes_key(KS_AES_ECB, keys->key_area_key[source_type][generation], access_key, aes_key_generation_source);
generate_aes_kek(KS_AES_ECB, keys, access_key, key_area_key_sources[source_type], generation + 1, option);
load_aes_key(KS_AES_ECB, keys->key_area_key[source_type][generation], access_key, aes_key_generation_source);
}
_load_aes_key(KS_AES_ECB, keys->package2_key[generation], keys->master_key[generation], package2_key_source);
_load_aes_key(KS_AES_ECB, keys->titlekek[generation], keys->master_key[generation], titlekek_source);
load_aes_key(KS_AES_ECB, keys->package2_key[generation], keys->master_key[generation], package2_key_source);
load_aes_key(KS_AES_ECB, keys->titlekek[generation], keys->master_key[generation], titlekek_source);
}
}
@ -402,7 +380,7 @@ static bool _get_titlekeys_from_save(u32 buf_size, const u8 *save_mac_key, title
return true;
}
static bool _derive_sd_seed(key_derivation_ctx_t *keys) {
static bool _derive_sd_seed(key_storage_t *keys) {
FIL fp;
u32 read_bytes = 0;
char *private_path = malloc(200);
@ -421,7 +399,7 @@ static bool _derive_sd_seed(key_derivation_ctx_t *keys) {
return false;
}
// Get sd seed verification vector
if (f_read(&fp, keys->temp_key, AES_128_KEY_SIZE, &read_bytes) || read_bytes != AES_128_KEY_SIZE) {
if (f_read(&fp, keys->temp_key, SE_KEY_128_SIZE, &read_bytes) || read_bytes != SE_KEY_128_SIZE) {
EPRINTF("Unable to read SD seed vector. Skipping.");
f_close(&fp);
return false;
@ -451,54 +429,8 @@ static bool _derive_sd_seed(key_derivation_ctx_t *keys) {
return true;
}
static bool _read_cal0(void *read_buffer) {
nx_emmc_cal0_t *cal0 = (nx_emmc_cal0_t *)read_buffer;
// Check if CAL0 was already read into this buffer
if (cal0->magic == MAGIC_CAL0) {
return true;
}
if (!emummc_storage_read(NX_EMMC_CALIBRATION_OFFSET / NX_EMMC_BLOCKSIZE, NX_EMMC_CALIBRATION_SIZE / NX_EMMC_BLOCKSIZE, read_buffer)) {
EPRINTF("Unable to read PRODINFO.");
return false;
}
se_aes_xts_crypt(KS_BIS_00_TWEAK, KS_BIS_00_CRYPT, DECRYPT, 0, read_buffer, read_buffer, XTS_CLUSTER_SIZE, NX_EMMC_CALIBRATION_SIZE / XTS_CLUSTER_SIZE);
if (cal0->magic != MAGIC_CAL0) {
EPRINTF("Invalid CAL0 magic. Check BIS key 0.");
return false;
}
return true;
}
static bool _cal0_read_ssl_rsa_key(const nx_emmc_cal0_t *cal0, const void **out_key, u32 *out_key_size, const void **out_iv, u32 *out_generation) {
const u32 ext_key_size = sizeof(cal0->ext_ssl_key_iv) + sizeof(cal0->ext_ssl_key);
const u32 ext_key_crc_size = ext_key_size + sizeof(cal0->ext_ssl_key_ver) + sizeof(cal0->crc16_pad39);
const u32 key_size = sizeof(cal0->ssl_key_iv) + sizeof(cal0->ssl_key);
const u32 key_crc_size = key_size + sizeof(cal0->crc16_pad18);
if (cal0->ext_ssl_key_crc == crc16_calc(cal0->ext_ssl_key_iv, ext_key_crc_size)) {
*out_key = cal0->ext_ssl_key;
*out_key_size = ext_key_size;
*out_iv = cal0->ext_ssl_key_iv;
// Settings sysmodule manually zeroes this out below cal version 9
*out_generation = cal0->version <= 8 ? 0 : cal0->ext_ssl_key_ver;
} else if (cal0->ssl_key_crc == crc16_calc(cal0->ssl_key_iv, key_crc_size)) {
*out_key = cal0->ssl_key;
*out_key_size = key_size;
*out_iv = cal0->ssl_key_iv;
*out_generation = 0;
} else {
return false;
}
return true;
}
static bool _decrypt_ssl_rsa_key(key_derivation_ctx_t *keys, titlekey_buffer_t *titlekey_buffer) {
if (!_read_cal0(titlekey_buffer->read_buffer)) {
static bool _decrypt_ssl_rsa_key(key_storage_t *keys, titlekey_buffer_t *titlekey_buffer) {
if (!cal0_read(KS_BIS_00_TWEAK, KS_BIS_00_CRYPT, titlekey_buffer->read_buffer)) {
return false;
}
@ -507,18 +439,17 @@ static bool _decrypt_ssl_rsa_key(key_derivation_ctx_t *keys, titlekey_buffer_t *
const void *encrypted_key = NULL;
const void *iv = NULL;
u32 key_size = 0;
void *keypair_ctr_key = NULL;
void *ctr_key = NULL;
bool enforce_unique = true;
if (!_cal0_read_ssl_rsa_key(cal0, &encrypted_key, &key_size, &iv, &generation)) {
EPRINTF("Crc16 error reading device key.");
if (!cal0_get_ssl_rsa_key(cal0, &encrypted_key, &key_size, &iv, &generation)) {
return false;
}
if (key_size == SSL_RSA_KEY_SIZE) {
bool all_zero = true;
const u8 *key8 = (const u8 *)encrypted_key;
for (u32 i = RSA_2048_KEY_SIZE; i < SSL_RSA_KEY_SIZE; i++) {
for (u32 i = SE_RSA2048_DIGEST_SIZE; i < SSL_RSA_KEY_SIZE; i++) {
if (key8[i] != 0) {
all_zero = false;
break;
@ -526,29 +457,29 @@ static bool _decrypt_ssl_rsa_key(key_derivation_ctx_t *keys, titlekey_buffer_t *
}
if (all_zero) {
// Keys of this form are not encrypted
memcpy(keys->ssl_rsa_key, encrypted_key, RSA_2048_KEY_SIZE);
memcpy(keys->ssl_rsa_key, encrypted_key, SE_RSA2048_DIGEST_SIZE);
return true;
}
const u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_DECRYPT_DEVICE_UNIQUE_DATA) | NOT_DEVICE_UNIQUE;
keypair_ctr_key = keys->ssl_rsa_kek_legacy;
_derive_rsa_kek(KS_AES_ECB, keys, keypair_ctr_key, ssl_rsa_kekek_source, ssl_rsa_kek_source_legacy, generation, option);
ctr_key = keys->ssl_rsa_kek_legacy;
_derive_rsa_kek(KS_AES_ECB, keys, ctr_key, ssl_rsa_kekek_source, ssl_rsa_kek_source_legacy, generation, option);
enforce_unique = false;
} else if (generation) {
const u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_SSL_KEY) | IS_DEVICE_UNIQUE;
keypair_ctr_key = keys->ssl_rsa_kek_personalized;
_derive_rsa_kek(KS_AES_ECB, keys, keypair_ctr_key, ssl_client_cert_kek_source, ssl_client_cert_key_source, generation, option);
ctr_key = keys->ssl_rsa_kek_personalized;
_derive_rsa_kek(KS_AES_ECB, keys, ctr_key, ssl_client_cert_kek_source, ssl_client_cert_key_source, generation, option);
} else {
keypair_ctr_key = keys->ssl_rsa_kek;
ctr_key = keys->ssl_rsa_kek;
}
u32 ctr_size = enforce_unique ? key_size - 0x20 : key_size - 0x10;
se_aes_key_set(KS_AES_CTR, keypair_ctr_key, AES_128_KEY_SIZE);
se_aes_key_set(KS_AES_CTR, ctr_key, SE_KEY_128_SIZE);
se_aes_crypt_ctr(KS_AES_CTR, keys->ssl_rsa_key, ctr_size, encrypted_key, ctr_size, iv);
if (enforce_unique) {
u32 calc_mac[AES_128_KEY_SIZE / 4] = {0};
_calc_gmac(KS_AES_ECB, calc_mac, keys->ssl_rsa_key, ctr_size, keypair_ctr_key, iv);
u32 calc_mac[SE_KEY_128_SIZE / 4] = {0};
calc_gmac(KS_AES_ECB, calc_mac, keys->ssl_rsa_key, ctr_size, ctr_key, iv);
const u8 *key8 = (const u8 *)encrypted_key;
if (memcmp(calc_mac, &key8[ctr_size], 0x10) != 0) {
@ -561,41 +492,8 @@ static bool _decrypt_ssl_rsa_key(key_derivation_ctx_t *keys, titlekey_buffer_t *
return true;
}
static bool _cal0_read_eticket_rsa_key(const nx_emmc_cal0_t *cal0, const void **out_key, u32 *out_key_size, const void **out_iv, u32 *out_generation) {
const u32 ext_key_size = sizeof(cal0->ext_ecc_rsa2048_eticket_key_iv) + sizeof(cal0->ext_ecc_rsa2048_eticket_key);
const u32 ext_key_crc_size = ext_key_size + sizeof(cal0->ext_ecc_rsa2048_eticket_key_ver) + sizeof(cal0->crc16_pad38);
const u32 key_size = sizeof(cal0->rsa2048_eticket_key_iv) + sizeof(cal0->rsa2048_eticket_key);
const u32 key_crc_size = key_size + sizeof(cal0->crc16_pad21);
if (cal0->ext_ecc_rsa2048_eticket_key_crc == crc16_calc(cal0->ext_ecc_rsa2048_eticket_key_iv, ext_key_crc_size)) {
*out_key = cal0->ext_ecc_rsa2048_eticket_key;
*out_key_size = ext_key_size;
*out_iv = cal0->ext_ecc_rsa2048_eticket_key_iv;
// Settings sysmodule manually zeroes this out below cal version 9
*out_generation = cal0->version <= 8 ? 0 : cal0->ext_ecc_rsa2048_eticket_key_ver;
} else if (cal0->rsa2048_eticket_key_crc == crc16_calc(cal0->rsa2048_eticket_key_iv, key_crc_size)) {
*out_key = cal0->rsa2048_eticket_key;
*out_key_size = key_size;
*out_iv = cal0->rsa2048_eticket_key_iv;
*out_generation = 0;
} else {
return false;
}
return true;
}
static bool _test_eticket_rsa_keypair(const rsa_keypair_t *keypair) {
// Unlike the SSL RSA key, we don't need to check the gmac - we can just verify the public exponent
// and test the keypair since we have the modulus
if ((_read_be_u32(keypair->public_exponent, 0) != RSA_PUBLIC_EXPONENT) ||
(!_test_rsa_keypair(keypair->public_exponent, keypair->private_exponent, keypair->modulus))) {
return false;
}
return true;
}
static bool _decrypt_eticket_rsa_key(key_derivation_ctx_t *keys, titlekey_buffer_t *titlekey_buffer, bool is_dev) {
if (!_read_cal0(titlekey_buffer->read_buffer)) {
static bool _decrypt_eticket_rsa_key(key_storage_t *keys, titlekey_buffer_t *titlekey_buffer, bool is_dev) {
if (!cal0_read(KS_BIS_00_TWEAK, KS_BIS_00_CRYPT, titlekey_buffer->read_buffer)) {
return false;
}
@ -604,24 +502,23 @@ static bool _decrypt_eticket_rsa_key(key_derivation_ctx_t *keys, titlekey_buffer
const void *encrypted_key = NULL;
const void *iv = NULL;
u32 key_size = 0;
void *keypair_ctr_key = NULL;
void *ctr_key = NULL;
if (!_cal0_read_eticket_rsa_key(cal0, &encrypted_key, &key_size, &iv, &generation)) {
EPRINTF("Crc16 error reading device key.");
if (!cal0_get_eticket_rsa_key(cal0, &encrypted_key, &key_size, &iv, &generation)) {
return false;
}
// Handle legacy case
if (key_size == ETICKET_RSA_KEYPAIR_SIZE) {
const u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_ES_DEVICE_KEY) | NOT_DEVICE_UNIQUE;
keypair_ctr_key = keys->temp_key;
_derive_rsa_kek(KS_AES_ECB, keys, keypair_ctr_key, eticket_rsa_kekek_source, eticket_rsa_kek_source_legacy, generation, option);
ctr_key = keys->temp_key;
_derive_rsa_kek(KS_AES_ECB, keys, ctr_key, eticket_rsa_kekek_source, eticket_rsa_kek_source_legacy, generation, option);
se_aes_key_set(KS_AES_CTR, keypair_ctr_key, AES_128_KEY_SIZE);
se_aes_key_set(KS_AES_CTR, ctr_key, SE_KEY_128_SIZE);
se_aes_crypt_ctr(KS_AES_CTR, &keys->eticket_rsa_keypair, sizeof(keys->eticket_rsa_keypair), encrypted_key, sizeof(keys->eticket_rsa_keypair), iv);
if (_test_eticket_rsa_keypair(&keys->eticket_rsa_keypair)) {
memcpy(keys->eticket_rsa_kek, keypair_ctr_key, sizeof(keys->eticket_rsa_kek));
if (test_eticket_rsa_keypair(&keys->eticket_rsa_keypair)) {
memcpy(keys->eticket_rsa_kek, ctr_key, sizeof(keys->eticket_rsa_kek));
return true;
}
// Fall through and try usual method if not applicable
@ -629,17 +526,17 @@ static bool _decrypt_eticket_rsa_key(key_derivation_ctx_t *keys, titlekey_buffer
if (generation) {
const u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_ES_DEVICE_KEY) | IS_DEVICE_UNIQUE;
keypair_ctr_key = keys->eticket_rsa_kek_personalized;
ctr_key = keys->eticket_rsa_kek_personalized;
const void *kek_source = is_dev ? eticket_rsa_kek_source_dev : eticket_rsa_kek_source;
_derive_rsa_kek(KS_AES_ECB, keys, keypair_ctr_key, eticket_rsa_kekek_source, kek_source, generation, option);
_derive_rsa_kek(KS_AES_ECB, keys, ctr_key, eticket_rsa_kekek_source, kek_source, generation, option);
} else {
keypair_ctr_key = keys->eticket_rsa_kek;
ctr_key = keys->eticket_rsa_kek;
}
se_aes_key_set(KS_AES_CTR, keypair_ctr_key, AES_128_KEY_SIZE);
se_aes_key_set(KS_AES_CTR, ctr_key, SE_KEY_128_SIZE);
se_aes_crypt_ctr(KS_AES_CTR, &keys->eticket_rsa_keypair, sizeof(keys->eticket_rsa_keypair), encrypted_key, sizeof(keys->eticket_rsa_keypair), iv);
if (!_test_eticket_rsa_keypair(&keys->eticket_rsa_keypair)) {
if (!test_eticket_rsa_keypair(&keys->eticket_rsa_keypair)) {
EPRINTF("Invalid eticket keypair.");
memset(&keys->eticket_rsa_keypair, 0, sizeof(keys->eticket_rsa_keypair));
return false;
@ -648,7 +545,7 @@ static bool _decrypt_eticket_rsa_key(key_derivation_ctx_t *keys, titlekey_buffer
return true;
}
static bool _derive_titlekeys(key_derivation_ctx_t *keys, titlekey_buffer_t *titlekey_buffer, bool is_dev) {
static bool _derive_titlekeys(key_storage_t *keys, titlekey_buffer_t *titlekey_buffer, bool is_dev) {
if (!_key_exists(keys->eticket_rsa_kek)) {
return false;
}
@ -668,17 +565,17 @@ static bool _derive_titlekeys(key_derivation_ctx_t *keys, titlekey_buffer_t *tit
return true;
}
static bool _derive_emmc_keys(key_derivation_ctx_t *keys, titlekey_buffer_t *titlekey_buffer, bool is_dev) {
static bool _derive_emmc_keys(key_storage_t *keys, titlekey_buffer_t *titlekey_buffer, bool is_dev) {
// Set BIS keys.
// PRODINFO/PRODINFOF
se_aes_key_set(KS_BIS_00_CRYPT, keys->bis_key[0] + 0x00, AES_128_KEY_SIZE);
se_aes_key_set(KS_BIS_00_TWEAK, keys->bis_key[0] + 0x10, AES_128_KEY_SIZE);
se_aes_key_set(KS_BIS_00_CRYPT, keys->bis_key[0] + 0x00, SE_KEY_128_SIZE);
se_aes_key_set(KS_BIS_00_TWEAK, keys->bis_key[0] + 0x10, SE_KEY_128_SIZE);
// SAFE
se_aes_key_set(KS_BIS_01_CRYPT, keys->bis_key[1] + 0x00, AES_128_KEY_SIZE);
se_aes_key_set(KS_BIS_01_TWEAK, keys->bis_key[1] + 0x10, AES_128_KEY_SIZE);
se_aes_key_set(KS_BIS_01_CRYPT, keys->bis_key[1] + 0x00, SE_KEY_128_SIZE);
se_aes_key_set(KS_BIS_01_TWEAK, keys->bis_key[1] + 0x10, SE_KEY_128_SIZE);
// SYSTEM/USER
se_aes_key_set(KS_BIS_02_CRYPT, keys->bis_key[2] + 0x00, AES_128_KEY_SIZE);
se_aes_key_set(KS_BIS_02_TWEAK, keys->bis_key[2] + 0x10, AES_128_KEY_SIZE);
se_aes_key_set(KS_BIS_02_CRYPT, keys->bis_key[2] + 0x00, SE_KEY_128_SIZE);
se_aes_key_set(KS_BIS_02_TWEAK, keys->bis_key[2] + 0x10, SE_KEY_128_SIZE);
if (!emummc_storage_set_mmc_partition(EMMC_GPP)) {
EPRINTF("Unable to set partition.");
@ -745,8 +642,8 @@ int save_mariko_partial_keys(u32 start, u32 count, bool append) {
color_idx = 0;
u32 pos = 0;
u32 zeros[AES_128_KEY_SIZE / 4] = {0};
u8 *data = malloc(4 * AES_128_KEY_SIZE);
u32 zeros[SE_KEY_128_SIZE / 4] = {0};
u8 *data = malloc(4 * SE_KEY_128_SIZE);
char *text_buffer = calloc(1, 0x100 * count);
for (u32 ks = start; ks < start + count; ks++) {
@ -760,26 +657,26 @@ int save_mariko_partial_keys(u32 start, u32 count, bool append) {
}
// Encrypt zeros with complete key
se_aes_crypt_block_ecb(ks, ENCRYPT, &data[3 * AES_128_KEY_SIZE], zeros);
se_aes_crypt_block_ecb(ks, ENCRYPT, &data[3 * SE_KEY_128_SIZE], zeros);
// We only need to overwrite 3 of the dwords of the key
for (u32 i = 0; i < 3; i++) {
// Overwrite ith dword of key with zeros
se_aes_key_partial_set(ks, i, 0);
// Encrypt zeros with more of the key zeroed out
se_aes_crypt_block_ecb(ks, ENCRYPT, &data[(2 - i) * AES_128_KEY_SIZE], zeros);
se_aes_crypt_block_ecb(ks, ENCRYPT, &data[(2 - i) * SE_KEY_128_SIZE], zeros);
}
// Skip saving key if two results are the same indicating unsuccessful overwrite or empty slot
if (memcmp(&data[0], &data[SE_KEY_128_SIZE], AES_128_KEY_SIZE) == 0) {
if (memcmp(&data[0], &data[SE_KEY_128_SIZE], SE_KEY_128_SIZE) == 0) {
EPRINTFARGS("Failed to overwrite keyslot %d.", ks);
continue;
}
pos += s_printf(&text_buffer[pos], "%d\n", ks);
for (u32 i = 0; i < 4; i++) {
for (u32 j = 0; j < AES_128_KEY_SIZE; j++)
pos += s_printf(&text_buffer[pos], "%02x", data[i * AES_128_KEY_SIZE + j]);
for (u32 j = 0; j < SE_KEY_128_SIZE; j++)
pos += s_printf(&text_buffer[pos], "%02x", data[i * SE_KEY_128_SIZE + j]);
pos += s_printf(&text_buffer[pos], " ");
}
pos += s_printf(&text_buffer[pos], "\n");
@ -823,7 +720,7 @@ int save_mariko_partial_keys(u32 start, u32 count, bool append) {
return 0;
}
static void _save_keys_to_sd(key_derivation_ctx_t *keys, titlekey_buffer_t *titlekey_buffer, bool is_dev) {
static void _save_keys_to_sd(key_storage_t *keys, titlekey_buffer_t *titlekey_buffer, bool is_dev) {
char *text_buffer = NULL;
if (!sd_mount()) {
EPRINTF("Unable to mount SD.");
@ -896,7 +793,7 @@ static void _save_keys_to_sd(key_derivation_ctx_t *keys, titlekey_buffer_t *titl
SAVE_KEY(ssl_rsa_kek_source);
}
SAVE_KEY(ssl_rsa_kekek_source);
_save_key("ssl_rsa_key", keys->ssl_rsa_key, RSA_2048_KEY_SIZE, text_buffer);
_save_key("ssl_rsa_key", keys->ssl_rsa_key, SE_RSA2048_DIGEST_SIZE, text_buffer);
SAVE_KEY_FAMILY_VAR(titlekek, keys->titlekek, 0);
SAVE_KEY(titlekek_source);
SAVE_KEY_VAR(tsec_key, keys->tsec_key);
@ -904,7 +801,7 @@ static void _save_keys_to_sd(key_derivation_ctx_t *keys, titlekey_buffer_t *titl
const u32 root_key_ver = 2;
char root_key_name[21] = "tsec_root_key_00";
s_printf(root_key_name + 14, "%02x", root_key_ver);
_save_key(root_key_name, keys->tsec_root_key, AES_128_KEY_SIZE, text_buffer);
_save_key(root_key_name, keys->tsec_root_key, SE_KEY_128_SIZE, text_buffer);
gfx_printf("\n%k Found %d %s keys.\n\n", colors[(color_idx++) % 6], _key_count, is_dev ? "dev" : "prod");
gfx_printf("%kFound through master_key_%02x.\n\n", colors[(color_idx++) % 6], KB_FIRMWARE_VERSION_MAX);
@ -929,10 +826,10 @@ static void _save_keys_to_sd(key_derivation_ctx_t *keys, titlekey_buffer_t *titl
titlekey_text_buffer_t *titlekey_text = (titlekey_text_buffer_t *)text_buffer;
for (u32 i = 0; i < _titlekey_count; i++) {
for (u32 j = 0; j < AES_128_KEY_SIZE; j++)
for (u32 j = 0; j < SE_KEY_128_SIZE; j++)
s_printf(&titlekey_text[i].rights_id[j * 2], "%02x", titlekey_buffer->rights_ids[i][j]);
s_printf(titlekey_text[i].equals, " = ");
for (u32 j = 0; j < AES_128_KEY_SIZE; j++)
for (u32 j = 0; j < SE_KEY_128_SIZE; j++)
s_printf(&titlekey_text[i].titlekey[j * 2], "%02x", titlekey_buffer->titlekeys[i][j]);
s_printf(titlekey_text[i].newline, "\n");
}
@ -948,16 +845,16 @@ static void _save_keys_to_sd(key_derivation_ctx_t *keys, titlekey_buffer_t *titl
}
static bool _check_keyslot_access() {
u8 test_data[AES_128_KEY_SIZE] = {0};
const u8 test_ciphertext[AES_128_KEY_SIZE] = {0};
u8 test_data[SE_KEY_128_SIZE] = {0};
const u8 test_ciphertext[SE_KEY_128_SIZE] = {0};
se_aes_key_set(KS_AES_ECB, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", SE_KEY_128_SIZE);
se_aes_crypt_block_ecb(KS_AES_ECB, DECRYPT, test_data, test_ciphertext);
return memcmp(test_data, "\x7b\x1d\x29\xa1\x6c\xf8\xcc\xab\x84\xf0\xb8\xa5\x98\xe4\x2f\xa6", SE_KEY_128_SIZE) == 0;
}
static void _derive_master_keys(key_derivation_ctx_t *prod_keys, key_derivation_ctx_t *dev_keys, bool is_dev) {
key_derivation_ctx_t *keys = is_dev ? dev_keys : prod_keys;
static void _derive_master_keys(key_storage_t *prod_keys, key_storage_t *dev_keys, bool is_dev) {
key_storage_t *keys = is_dev ? dev_keys : prod_keys;
if (h_cfg.t210b01) {
_derive_master_key_mariko(keys, is_dev);
@ -970,10 +867,10 @@ static void _derive_master_keys(key_derivation_ctx_t *prod_keys, key_derivation_
}
u8 *aes_keys = (u8 *)calloc(SZ_4K, 1);
se_get_aes_keys(aes_keys + SZ_2K, aes_keys, AES_128_KEY_SIZE);
memcpy(&dev_keys->tsec_root_key, aes_keys + KS_TSEC_ROOT_DEV * AES_128_KEY_SIZE, AES_128_KEY_SIZE);
memcpy(keys->tsec_key, aes_keys + KS_TSEC * AES_128_KEY_SIZE, AES_128_KEY_SIZE);
memcpy(&prod_keys->tsec_root_key, aes_keys + KS_TSEC_ROOT * AES_128_KEY_SIZE, AES_128_KEY_SIZE);
se_get_aes_keys(aes_keys + SZ_2K, aes_keys, SE_KEY_128_SIZE);
memcpy(&dev_keys->tsec_root_key, aes_keys + KS_TSEC_ROOT_DEV * SE_KEY_128_SIZE, SE_KEY_128_SIZE);
memcpy(keys->tsec_key, aes_keys + KS_TSEC * SE_KEY_128_SIZE, SE_KEY_128_SIZE);
memcpy(&prod_keys->tsec_root_key, aes_keys + KS_TSEC_ROOT * SE_KEY_128_SIZE, SE_KEY_128_SIZE);
free(aes_keys);
_derive_master_keys_from_latest_key(prod_keys, false);
@ -1009,8 +906,8 @@ static void _derive_keys() {
bool is_dev = fuse_read_hw_state() == FUSE_NX_HW_STATE_DEV;
key_derivation_ctx_t __attribute__((aligned(4))) prod_keys = {0}, dev_keys = {0};
key_derivation_ctx_t *keys = is_dev ? &dev_keys : &prod_keys;
key_storage_t __attribute__((aligned(4))) prod_keys = {0}, dev_keys = {0};
key_storage_t *keys = is_dev ? &dev_keys : &prod_keys;
_derive_master_keys(&prod_keys, &dev_keys, is_dev);
@ -1065,8 +962,8 @@ void derive_amiibo_keys() {
bool is_dev = fuse_read_hw_state() == FUSE_NX_HW_STATE_DEV;
key_derivation_ctx_t __attribute__((aligned(4))) prod_keys = {0}, dev_keys = {0};
key_derivation_ctx_t *keys = is_dev ? &dev_keys : &prod_keys;
key_storage_t __attribute__((aligned(4))) prod_keys = {0}, dev_keys = {0};
key_storage_t *keys = is_dev ? &dev_keys : &prod_keys;
const u8 *encrypted_keys = is_dev ? encrypted_nfc_keys_dev : encrypted_nfc_keys;
_derive_master_keys(&prod_keys, &dev_keys, is_dev);
@ -1088,18 +985,18 @@ void derive_amiibo_keys() {
return;
}
_decrypt_aes_key(KS_AES_ECB, keys, keys->temp_key, nfc_key_source, 0, 0);
decrypt_aes_key(KS_AES_ECB, keys, keys->temp_key, nfc_key_source, 0, 0);
nfc_keyblob_t __attribute__((aligned(4))) nfc_keyblob;
static const u8 nfc_iv[AES_128_KEY_SIZE] = {
static const u8 nfc_iv[SE_KEY_128_SIZE] = {
0xB9, 0x1D, 0xC1, 0xCF, 0x33, 0x5F, 0xA6, 0x13, 0x2A, 0xEF, 0x90, 0x99, 0xAA, 0xCA, 0x93, 0xC8};
se_aes_key_set(KS_AES_CTR, keys->temp_key, AES_128_KEY_SIZE);
se_aes_key_set(KS_AES_CTR, keys->temp_key, SE_KEY_128_SIZE);
se_aes_crypt_ctr(KS_AES_CTR, &nfc_keyblob, sizeof(nfc_keyblob), encrypted_keys, sizeof(nfc_keyblob), &nfc_iv);
minerva_periodic_training();
u8 xor_pad[0x20] __attribute__((aligned(4))) = {0};
se_aes_key_set(KS_AES_CTR, nfc_keyblob.ctr_key, AES_128_KEY_SIZE);
se_aes_key_set(KS_AES_CTR, nfc_keyblob.ctr_key, SE_KEY_128_SIZE);
se_aes_crypt_ctr(KS_AES_CTR, xor_pad, sizeof(xor_pad), xor_pad, sizeof(xor_pad), nfc_keyblob.ctr_iv);
minerva_periodic_training();
@ -1204,111 +1101,3 @@ static void _save_key_family(const char *name, const void *data, u32 start_key,
}
free(temp_name);
}
// Equivalent to spl::GenerateAesKek
static void _generate_aes_kek(u32 ks, key_derivation_ctx_t *keys, void *out_kek, const void *kek_source, u32 generation, u32 option) {
bool device_unique = GET_IS_DEVICE_UNIQUE(option);
u32 seal_key_index = GET_SEAL_KEY_INDEX(option);
if (generation)
generation--;
u8 static_source[AES_128_KEY_SIZE] __attribute__((aligned(4)));
for (u32 i = 0; i < AES_128_KEY_SIZE; i++)
static_source[i] = aes_kek_generation_source[i] ^ seal_key_masks[seal_key_index][i];
if (device_unique) {
_get_device_key(ks, keys, keys->temp_key, generation);
} else {
memcpy(keys->temp_key, keys->master_key[generation], sizeof(keys->temp_key));
}
se_aes_key_set(ks, keys->temp_key, AES_128_KEY_SIZE);
se_aes_unwrap_key(ks, ks, static_source);
se_aes_crypt_block_ecb(ks, DECRYPT, out_kek, kek_source);
}
// Based on spl::LoadAesKey but instead of prepping keyslot, returns calculated key
static void _load_aes_key(u32 ks, void *out_key, const void *access_key, const void *key_source) {
se_aes_key_set(ks, access_key, AES_128_KEY_SIZE);
se_aes_crypt_block_ecb(ks, DECRYPT, out_key, key_source);
}
// Equivalent to spl::GenerateAesKey
static void _generate_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, u32 key_size, const void *access_key, const void *key_source) {
void *aes_key = keys->temp_key;
_load_aes_key(ks, aes_key, access_key, aes_key_generation_source);
se_aes_key_set(ks, aes_key, AES_128_KEY_SIZE);
se_aes_crypt_ecb(ks, DECRYPT, out_key, key_size, key_source, key_size);
}
// Equivalent to smc::PrepareDeviceUniqueDataKey but with no sealing
static void _get_device_unique_data_key(u32 ks, void *out_key, const void *access_key, const void *key_source) {
_load_aes_key(ks, out_key, access_key, key_source);
}
// Equivalent to spl::DecryptAesKey.
static void _decrypt_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 generation, u32 option) {
void *access_key = keys->temp_key;
_generate_aes_kek(ks, keys, access_key, aes_key_decryption_source, generation, option);
_generate_aes_key(ks, keys, out_key, AES_128_KEY_SIZE, access_key, key_source);
}
// Equivalent to smc::GetSecureData
static void _get_secure_data(key_derivation_ctx_t *keys, void *out_data) {
se_aes_key_set(KS_AES_CTR, keys->device_key, AES_128_KEY_SIZE);
u8 *d = (u8 *)out_data;
se_aes_crypt_ctr(KS_AES_CTR, d + AES_128_KEY_SIZE * 0, AES_128_KEY_SIZE, secure_data_source, AES_128_KEY_SIZE, secure_data_counters[0]);
se_aes_crypt_ctr(KS_AES_CTR, d + AES_128_KEY_SIZE * 1, AES_128_KEY_SIZE, secure_data_source, AES_128_KEY_SIZE, secure_data_counters[0]);
// Apply tweak
for (u32 i = 0; i < AES_128_KEY_SIZE; i++) {
d[AES_128_KEY_SIZE + i] ^= secure_data_tweaks[0][i];
}
}
// Equivalent to spl::GenerateSpecificAesKey
static void _generate_specific_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 generation) {
if (fuse_read_bootrom_rev() >= 0x7F) {
_get_device_key(ks, keys, keys->temp_key, generation == 0 ? 0 : generation - 1);
se_aes_key_set(ks, keys->temp_key, AES_128_KEY_SIZE);
se_aes_unwrap_key(ks, ks, retail_specific_aes_key_source);
se_aes_crypt_ecb(ks, DECRYPT, out_key, AES_128_KEY_SIZE * 2, key_source, AES_128_KEY_SIZE * 2);
} else {
_get_secure_data(keys, out_key);
}
}
static void _get_device_key(u32 ks, key_derivation_ctx_t *keys, void *out_device_key, u32 generation) {
if (generation == KB_FIRMWARE_VERSION_100 && !h_cfg.t210b01) {
memcpy(out_device_key, keys->device_key, AES_128_KEY_SIZE);
return;
}
if (generation >= KB_FIRMWARE_VERSION_400) {
generation -= KB_FIRMWARE_VERSION_400;
} else {
generation = 0;
}
u32 temp_key_source[AES_128_KEY_SIZE / 4] = {0};
_load_aes_key(ks, temp_key_source, keys->device_key_4x, device_master_key_source_sources[generation]);
const void *kek_source = fuse_read_hw_state() == FUSE_NX_HW_STATE_PROD ? device_master_kek_sources[generation] : device_master_kek_sources_dev[generation];
se_aes_key_set(ks, keys->master_key[0], AES_128_KEY_SIZE);
se_aes_unwrap_key(ks, ks, kek_source);
se_aes_crypt_block_ecb(ks, DECRYPT, out_device_key, temp_key_source);
}
static bool _test_rsa_keypair(const void *public_exponent, const void *private_exponent, const void *modulus) {
u32 plaintext[RSA_2048_KEY_SIZE / 4] = {0},
ciphertext[RSA_2048_KEY_SIZE / 4] = {0},
work[RSA_2048_KEY_SIZE / 4] = {0};
plaintext[63] = 0xCAFEBABE;
se_rsa_key_set(0, modulus, RSA_2048_KEY_SIZE, private_exponent, RSA_2048_KEY_SIZE);
se_rsa_exp_mod(0, ciphertext, RSA_2048_KEY_SIZE, plaintext, RSA_2048_KEY_SIZE);
se_rsa_key_set(0, modulus, RSA_2048_KEY_SIZE, public_exponent, 4);
se_rsa_exp_mod(0, work, RSA_2048_KEY_SIZE, ciphertext, RSA_2048_KEY_SIZE);
return memcmp(plaintext, work, RSA_2048_KEY_SIZE) == 0;
}

View file

@ -17,45 +17,19 @@
#ifndef _KEYS_H_
#define _KEYS_H_
#include <utils/types.h>
#include "crypto.h"
#include "../hos/hos.h"
#define AES_128_KEY_SIZE 16
#define RSA_2048_KEY_SIZE 256
#define RSA_PUBLIC_EXPONENT 65537
// Lockpick_RCM keyslots
#define KS_BIS_00_CRYPT 0
#define KS_BIS_00_TWEAK 1
#define KS_BIS_01_CRYPT 2
#define KS_BIS_01_TWEAK 3
#define KS_BIS_02_CRYPT 4
#define KS_BIS_02_TWEAK 5
#define KS_AES_CTR 6
#define KS_AES_ECB 8
#define KS_AES_CMAC 10
// Mariko keyslots
#define KS_MARIKO_KEK 12
#define KS_MARIKO_BEK 13
// Other Switch keyslots
#define KS_TSEC 12
#define KS_SECURE_BOOT 14
// Atmosphere keygen keyslots
#define KS_TSEC_ROOT_DEV 11
#define KS_TSEC_ROOT 13
#include <sec/se_t210.h>
#include <utils/types.h>
// only tickets of type Rsa2048Sha256 are expected
typedef struct {
u32 signature_type; // always 0x10004
u8 signature[RSA_2048_KEY_SIZE];
u8 signature[SE_RSA2048_DIGEST_SIZE];
u8 sig_padding[0x3C];
char issuer[0x40];
u8 titlekey_block[RSA_2048_KEY_SIZE];
u8 titlekey_block[SE_RSA2048_DIGEST_SIZE];
u8 format_version;
u8 titlekey_type;
u16 ticket_version;
@ -88,26 +62,6 @@ typedef struct {
u8 titlekeys[SZ_256K / 0x10][0x10];
} titlekey_buffer_t;
typedef struct {
u8 private_exponent[RSA_2048_KEY_SIZE];
u8 modulus[RSA_2048_KEY_SIZE];
u8 public_exponent[4];
u8 reserved[0xC];
} rsa_keypair_t;
typedef struct {
u8 master_kek[AES_128_KEY_SIZE];
u8 data[0x70];
u8 package1_key[AES_128_KEY_SIZE];
} keyblob_t;
typedef struct {
u8 cmac[0x10];
u8 iv[0x10];
keyblob_t key_data;
u8 unused[0x150];
} encrypted_keyblob_t;
typedef struct {
char phrase[0xE];
u8 seed[0xE];
@ -129,61 +83,6 @@ typedef struct {
u8 xor_pad[0x20];
} nfc_save_key_t;
typedef enum {
SEAL_KEY_LOAD_AES_KEY = 0,
SEAL_KEY_DECRYPT_DEVICE_UNIQUE_DATA = 1,
SEAL_KEY_IMPORT_LOTUS_KEY = 2,
SEAL_KEY_IMPORT_ES_DEVICE_KEY = 3,
SEAL_KEY_REENCRYPT_DEVICE_UNIQUE_DATA = 4,
SEAL_KEY_IMPORT_SSL_KEY = 5,
SEAL_KEY_IMPORT_ES_CLIENT_CERT_KEY = 6,
} seal_key_t;
typedef enum {
NOT_DEVICE_UNIQUE = 0,
IS_DEVICE_UNIQUE = 1,
} device_unique_t;
#define SET_SEAL_KEY_INDEX(x) (((x) & 7) << 5)
#define GET_SEAL_KEY_INDEX(x) (((x) >> 5) & 7)
#define GET_IS_DEVICE_UNIQUE(x) ((x) & 1)
#define SSL_RSA_KEY_SIZE (RSA_2048_KEY_SIZE + AES_128_KEY_SIZE)
#define ETICKET_RSA_KEYPAIR_SIZE (RSA_2048_KEY_SIZE * 2 + AES_128_KEY_SIZE * 2)
typedef struct {
u8 temp_key[AES_128_KEY_SIZE],
bis_key[4][AES_128_KEY_SIZE * 2],
device_key[AES_128_KEY_SIZE],
device_key_4x[AES_128_KEY_SIZE],
sd_seed[AES_128_KEY_SIZE],
// FS-related keys
header_key[AES_128_KEY_SIZE * 2],
save_mac_key[AES_128_KEY_SIZE],
// other sysmodule keys
eticket_rsa_kek[AES_128_KEY_SIZE],
eticket_rsa_kek_personalized[AES_128_KEY_SIZE],
ssl_rsa_kek[AES_128_KEY_SIZE],
ssl_rsa_kek_legacy[AES_128_KEY_SIZE],
ssl_rsa_kek_personalized[AES_128_KEY_SIZE],
ssl_rsa_key[RSA_2048_KEY_SIZE + 0x20],
// keyblob-derived families
keyblob_key[KB_FIRMWARE_VERSION_600 + 1][AES_128_KEY_SIZE],
keyblob_mac_key[KB_FIRMWARE_VERSION_600 + 1][AES_128_KEY_SIZE],
package1_key[KB_FIRMWARE_VERSION_600 + 1][AES_128_KEY_SIZE],
// master key-derived families
key_area_key[3][KB_FIRMWARE_VERSION_MAX + 1][AES_128_KEY_SIZE],
master_kek[KB_FIRMWARE_VERSION_MAX + 1][AES_128_KEY_SIZE],
master_key[KB_FIRMWARE_VERSION_MAX + 1][AES_128_KEY_SIZE],
package2_key[KB_FIRMWARE_VERSION_MAX + 1][AES_128_KEY_SIZE],
titlekek[KB_FIRMWARE_VERSION_MAX + 1][AES_128_KEY_SIZE],
tsec_key[AES_128_KEY_SIZE],
tsec_root_key[AES_128_KEY_SIZE];
u32 sbk[4];
keyblob_t keyblob[KB_FIRMWARE_VERSION_600 + 1];
rsa_keypair_t eticket_rsa_keypair;
} key_derivation_ctx_t;
typedef struct {
char rights_id[0x20];
char equals[3];