keys: Make code more readable

This commit is contained in:
shchmue 2022-10-31 20:20:13 -07:00
parent ab9322af53
commit cbab1ec5b0
4 changed files with 287 additions and 215 deletions

130
source/keys/gmac.c Normal file
View file

@ -0,0 +1,130 @@
/*
* Copyright (c) 2018-2020 Atmosphère-NX
* Copyright (c) 2019-2022 shchmue
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "gmac.h"
#include <sec/se.h>
#include <sec/se_t210.h>
#include <stdint.h>
#include <string.h>
/* Shifts right a little endian 128-bit value. */
static void _shr_128(uint64_t *val) {
val[0] >>= 1;
val[0] |= (val[1] & 1) << 63;
val[1] >>= 1;
}
/* Shifts left a little endian 128-bit value. */
static void _shl_128(uint64_t *val) {
val[1] <<= 1;
val[1] |= (val[0] & (1ull << 63)) >> 63;
val[0] <<= 1;
}
/* Multiplies two 128-bit numbers X,Y in the GF(128) Galois Field. */
static void _gf128_mul(uint8_t *dst, const uint8_t *x, const uint8_t *y) {
uint8_t x_work[0x10];
uint8_t y_work[0x10];
uint8_t dst_work[0x10];
uint64_t *p_x = (uint64_t *)(&x_work[0]);
uint64_t *p_y = (uint64_t *)(&y_work[0]);
uint64_t *p_dst = (uint64_t *)(&dst_work[0]);
/* Initialize buffers. */
for (unsigned int i = 0; i < 0x10; i++) {
x_work[i] = x[0xF-i];
y_work[i] = y[0xF-i];
dst_work[i] = 0;
}
/* Perform operation for each bit in y. */
for (unsigned int round = 0; round < 0x80; round++) {
p_dst[0] ^= p_x[0] * ((y_work[0xF] & 0x80) >> 7);
p_dst[1] ^= p_x[1] * ((y_work[0xF] & 0x80) >> 7);
_shl_128(p_y);
uint8_t xval = 0xE1 * (x_work[0] & 1);
_shr_128(p_x);
x_work[0xF] ^= xval;
}
for (unsigned int i = 0; i < 0x10; i++) {
dst[i] = dst_work[0xF-i];
}
}
static void _ghash(u32 ks, void *dst, const void *src, u32 src_size, const void *j_block, bool encrypt) {
uint8_t x[0x10] = {0};
uint8_t h[0x10];
uint64_t *p_x = (uint64_t *)(&x[0]);
uint64_t *p_data = (uint64_t *)src;
/* H = aes_ecb_encrypt(zeroes) */
se_aes_crypt_block_ecb(ks, ENCRYPT, h, x);
u64 total_size = src_size;
while (src_size >= 0x10) {
/* X = (X ^ current_block) * H */
p_x[0] ^= p_data[0];
p_x[1] ^= p_data[1];
_gf128_mul(x, x, h);
/* Increment p_data by 0x10 bytes. */
p_data += 2;
src_size -= 0x10;
}
/* Nintendo's code *discards all data in the last block* if unaligned. */
/* And treats that block as though it were all-zero. */
/* This is a bug, they just forget to XOR with the copy of the last block they save. */
if (src_size & 0xF) {
_gf128_mul(x, x, h);
}
uint64_t xor_size = total_size << 3;
xor_size = __builtin_bswap64(xor_size);
/* Due to a Nintendo bug, the wrong QWORD gets XOR'd in the "final output block" case. */
if (encrypt) {
p_x[0] ^= xor_size;
} else {
p_x[1] ^= xor_size;
}
_gf128_mul(x, x, h);
/* If final output block, XOR with encrypted J block. */
if (encrypt) {
se_aes_crypt_block_ecb(ks, ENCRYPT, h, j_block);
for (unsigned int i = 0; i < 0x10; i++) {
x[i] ^= h[i];
}
}
/* Copy output. */
memcpy(dst, x, 0x10);
}
void _calc_gmac(u32 ks, void *out_gmac, const void *data, u32 size, const void *key, const void *iv) {
u32 j_block[4] = {0};
se_aes_key_set(ks, key, 0x10);
_ghash(ks, j_block, iv, 0x10, NULL, false);
_ghash(ks, out_gmac, data, size, j_block, true);
}

24
source/keys/gmac.h Normal file
View file

@ -0,0 +1,24 @@
/*
* Copyright (c) 2022 shchmue
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _GMAC_H_
#define _GMAC_H_
#include <utils/types.h>
void _calc_gmac(u32 ks, void *out_gmac, const void *data, u32 size, const void *key, const void *iv);
#endif

View file

@ -16,6 +16,8 @@
#include "keys.h"
#include "gmac.h"
#include "../../keygen/tsec_keygen.h"
#include "../config.h"
@ -25,6 +27,7 @@
#include "../gfx/tui.h"
#include "../hos/hos.h"
#include <libs/fatfs/ff.h>
#include <libs/nx_savedata/header.h>
#include <libs/nx_savedata/save.h>
#include <mem/heap.h>
#include <mem/minerva.h>
@ -80,7 +83,6 @@ static void _get_device_unique_data_key(u32 ks, void *out_key, const void *acces
static void _decrypt_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 generation, u32 option);
static void _generate_specific_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 generation);
static void _get_device_key(u32 ks, key_derivation_ctx_t *keys, void *out_device_key, u32 generation);
static void _ghash(u32 ks, void *dst, const void *src, u32 src_size, const void *j_block, bool encrypt);
// titlekey functions
static bool _test_rsa_keypair(const void *E, const void *D, const void *N);
@ -206,7 +208,7 @@ static void _derive_bis_keys(key_derivation_ctx_t *keys) {
}
_generate_specific_aes_key(KS_AES_ECB, keys, &keys->bis_key[0], bis_key_sources[0], generation);
u32 access_key[AES_128_KEY_SIZE / 4] = {0};
const u32 option = GET_IS_DEVICE_UNIQUE(IS_DEVICE_UNIQUE);
const u32 option = IS_DEVICE_UNIQUE;
_generate_aes_kek(KS_AES_ECB, keys, access_key, bis_kek_source, generation, option);
_generate_aes_key(KS_AES_ECB, keys, keys->bis_key[1], sizeof(keys->bis_key[1]), access_key, bis_key_sources[1]);
_generate_aes_key(KS_AES_ECB, keys, keys->bis_key[2], sizeof(keys->bis_key[2]), access_key, bis_key_sources[2]);
@ -222,14 +224,7 @@ static void _derive_non_unique_keys(key_derivation_ctx_t *keys, bool is_dev) {
}
}
static void _derive_eticket_rsa_kek(u32 ks, key_derivation_ctx_t *keys, void *out_rsa_kek, const void *kek_source, u32 generation, u32 option) {
void *access_key = keys->temp_key;
_generate_aes_kek(ks, keys, access_key, eticket_rsa_kekek_source, generation, option);
_get_device_unique_data_key(ks, out_rsa_kek, access_key, kek_source);
}
static void _derive_ssl_rsa_kek(u32 ks, key_derivation_ctx_t *keys, void *out_rsa_kek, const void *kekek_source, const void *kek_source, u32 generation, u32 option) {
static void _derive_rsa_kek(u32 ks, key_derivation_ctx_t *keys, void *out_rsa_kek, const void *kekek_source, const void *kek_source, u32 generation, u32 option) {
void *access_key = keys->temp_key;
_generate_aes_kek(ks, keys, access_key, kekek_source, generation, option);
_get_device_unique_data_key(ks, out_rsa_kek, access_key, kek_source);
@ -239,7 +234,7 @@ static void _derive_misc_keys(key_derivation_ctx_t *keys, bool is_dev) {
if (_key_exists(keys->device_key) || (_key_exists(keys->master_key[0]) && _key_exists(keys->device_key_4x))) {
void *access_key = keys->temp_key;
const u32 generation = 0;
const u32 option = GET_IS_DEVICE_UNIQUE(IS_DEVICE_UNIQUE);
const u32 option = IS_DEVICE_UNIQUE;
_generate_aes_kek(KS_AES_ECB, keys, access_key, save_mac_kek_source, generation, option);
_load_aes_key(KS_AES_ECB, keys->save_mac_key, access_key, save_mac_key_source);
}
@ -247,12 +242,12 @@ static void _derive_misc_keys(key_derivation_ctx_t *keys, bool is_dev) {
if (_key_exists(keys->master_key[0])) {
const void *eticket_kek_source = is_dev ? eticket_rsa_kek_source_dev : eticket_rsa_kek_source;
const u32 generation = 0;
u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_ES_DEVICE_KEY);
_derive_eticket_rsa_kek(KS_AES_ECB, keys, keys->eticket_rsa_kek, eticket_kek_source, generation, option);
u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_ES_DEVICE_KEY) | NOT_DEVICE_UNIQUE;
_derive_rsa_kek(KS_AES_ECB, keys, keys->eticket_rsa_kek, eticket_rsa_kekek_source, eticket_kek_source, generation, option);
const void *ssl_kek_source = is_dev ? ssl_rsa_kek_source_dev : ssl_rsa_kek_source;
option = SET_SEAL_KEY_INDEX(SEAL_KEY_DECRYPT_DEVICE_UNIQUE_DATA);
_derive_ssl_rsa_kek(KS_AES_ECB, keys, keys->ssl_rsa_kek, ssl_rsa_kekek_source, ssl_kek_source, generation, option);
option = SET_SEAL_KEY_INDEX(SEAL_KEY_DECRYPT_DEVICE_UNIQUE_DATA) | NOT_DEVICE_UNIQUE;
_derive_rsa_kek(KS_AES_ECB, keys, keys->ssl_rsa_kek, ssl_rsa_kekek_source, ssl_kek_source, generation, option);
}
}
@ -440,10 +435,11 @@ static bool _derive_sd_seed(key_derivation_ctx_t *keys) {
}
u8 read_buf[0x20] __attribute__((aligned(4))) = {0};
for (u32 i = SZ_32K; i < f_size(&fp); i += SZ_16K) {
// Skip the two header blocks and only check the first bytes of each block - file contents are always block-aligned
for (u32 i = SAVE_BLOCK_SIZE_DEFAULT * 2; i < f_size(&fp); i += SAVE_BLOCK_SIZE_DEFAULT) {
if (f_lseek(&fp, i) || f_read(&fp, read_buf, 0x20, &read_bytes) || read_bytes != 0x20)
break;
if (!memcmp(keys->temp_key, read_buf, sizeof(keys->temp_key))) {
if (memcmp(keys->temp_key, read_buf, sizeof(keys->temp_key)) == 0) {
memcpy(keys->sd_seed, read_buf + 0x10, sizeof(keys->sd_seed));
break;
}
@ -456,14 +452,20 @@ static bool _derive_sd_seed(key_derivation_ctx_t *keys) {
}
static bool _read_cal0(void *read_buffer) {
nx_emmc_cal0_t *cal0 = (nx_emmc_cal0_t *)read_buffer;
// Check if CAL0 was already read into this buffer
if (cal0->magic == MAGIC_CAL0) {
return true;
}
if (!emummc_storage_read(NX_EMMC_CALIBRATION_OFFSET / NX_EMMC_BLOCKSIZE, NX_EMMC_CALIBRATION_SIZE / NX_EMMC_BLOCKSIZE, read_buffer)) {
EPRINTF("Unable to read PRODINFO.");
return false;
}
se_aes_xts_crypt(1, 0, DECRYPT, 0, read_buffer, read_buffer, XTS_CLUSTER_SIZE, NX_EMMC_CALIBRATION_SIZE / XTS_CLUSTER_SIZE);
se_aes_xts_crypt(KS_BIS_00_TWEAK, KS_BIS_00_CRYPT, DECRYPT, 0, read_buffer, read_buffer, XTS_CLUSTER_SIZE, NX_EMMC_CALIBRATION_SIZE / XTS_CLUSTER_SIZE);
nx_emmc_cal0_t *cal0 = (nx_emmc_cal0_t *)read_buffer;
if (cal0->magic != MAGIC_CAL0) {
EPRINTF("Invalid CAL0 magic. Check BIS key 0.");
return false;
@ -472,7 +474,7 @@ static bool _read_cal0(void *read_buffer) {
return true;
}
static bool _get_rsa_ssl_key(const nx_emmc_cal0_t *cal0, const void **out_key, u32 *out_key_size, const void **out_iv, u32 *out_generation) {
static bool _cal0_read_ssl_rsa_key(const nx_emmc_cal0_t *cal0, const void **out_key, u32 *out_key_size, const void **out_iv, u32 *out_generation) {
const u32 ext_key_size = sizeof(cal0->ext_ssl_key_iv) + sizeof(cal0->ext_ssl_key);
const u32 ext_key_crc_size = ext_key_size + sizeof(cal0->ext_ssl_key_ver) + sizeof(cal0->crc16_pad39);
const u32 key_size = sizeof(cal0->ssl_key_iv) + sizeof(cal0->ssl_key);
@ -495,27 +497,27 @@ static bool _get_rsa_ssl_key(const nx_emmc_cal0_t *cal0, const void **out_key, u
return true;
}
static bool _derive_personalized_ssl_key(key_derivation_ctx_t *keys, titlekey_buffer_t *titlekey_buffer) {
static bool _decrypt_ssl_rsa_key(key_derivation_ctx_t *keys, titlekey_buffer_t *titlekey_buffer) {
if (!_read_cal0(titlekey_buffer->read_buffer)) {
return false;
}
nx_emmc_cal0_t *cal0 = (nx_emmc_cal0_t *)titlekey_buffer->read_buffer;
u32 generation = 0;
const void *ssl_device_key = NULL;
const void *ssl_iv = NULL;
const void *encrypted_key = NULL;
const void *iv = NULL;
u32 key_size = 0;
void *keypair_ctr_key = NULL;
bool enforce_unique = true;
if (!_get_rsa_ssl_key(cal0, &ssl_device_key, &key_size, &ssl_iv, &generation)) {
if (!_cal0_read_ssl_rsa_key(cal0, &encrypted_key, &key_size, &iv, &generation)) {
EPRINTF("Crc16 error reading device key.");
return false;
}
if (key_size == SSL_RSA_KEY_SIZE) {
bool all_zero = true;
const u8 *key8 = (const u8 *)ssl_device_key;
const u8 *key8 = (const u8 *)encrypted_key;
for (u32 i = RSA_2048_KEY_SIZE; i < SSL_RSA_KEY_SIZE; i++) {
if (key8[i] != 0) {
all_zero = false;
@ -523,38 +525,32 @@ static bool _derive_personalized_ssl_key(key_derivation_ctx_t *keys, titlekey_bu
}
}
if (all_zero) {
// Keypairs of this form are not encrypted
memcpy(keys->ssl_rsa_key, ssl_device_key, RSA_2048_KEY_SIZE);
// Keys of this form are not encrypted
memcpy(keys->ssl_rsa_key, encrypted_key, RSA_2048_KEY_SIZE);
return true;
}
u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_DECRYPT_DEVICE_UNIQUE_DATA);
const u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_DECRYPT_DEVICE_UNIQUE_DATA) | NOT_DEVICE_UNIQUE;
keypair_ctr_key = keys->ssl_rsa_kek_legacy;
_derive_ssl_rsa_kek(KS_AES_ECB, keys, keypair_ctr_key, ssl_rsa_kekek_source, ssl_rsa_kek_source_legacy, generation, option);
_derive_rsa_kek(KS_AES_ECB, keys, keypair_ctr_key, ssl_rsa_kekek_source, ssl_rsa_kek_source_legacy, generation, option);
enforce_unique = false;
}
if (generation) {
u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_SSL_KEY) | IS_DEVICE_UNIQUE;
} else if (generation) {
const u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_SSL_KEY) | IS_DEVICE_UNIQUE;
keypair_ctr_key = keys->ssl_rsa_kek_personalized;
_derive_ssl_rsa_kek(KS_AES_ECB, keys, keypair_ctr_key, ssl_client_cert_kek_source, ssl_client_cert_key_source, generation, option);
_derive_rsa_kek(KS_AES_ECB, keys, keypair_ctr_key, ssl_client_cert_kek_source, ssl_client_cert_key_source, generation, option);
} else {
keypair_ctr_key = keys->ssl_rsa_kek;
}
u32 ctr_size = enforce_unique ? key_size - 0x20 : key_size - 0x10;
se_aes_key_set(KS_AES_CTR, keypair_ctr_key, AES_128_KEY_SIZE);
se_aes_crypt_ctr(KS_AES_CTR, keys->ssl_rsa_key, ctr_size, ssl_device_key, ctr_size, ssl_iv);
se_aes_crypt_ctr(KS_AES_CTR, keys->ssl_rsa_key, ctr_size, encrypted_key, ctr_size, iv);
if (enforce_unique) {
u32 j_block[AES_128_KEY_SIZE / 4] = {0};
se_aes_key_set(KS_AES_ECB, keypair_ctr_key, AES_128_KEY_SIZE);
_ghash(KS_AES_ECB, j_block, ssl_iv, 0x10, NULL, false);
u32 calc_mac[AES_128_KEY_SIZE / 4] = {0};
_ghash(KS_AES_ECB, calc_mac, keys->ssl_rsa_key, ctr_size, j_block, true);
_calc_gmac(KS_AES_ECB, calc_mac, keys->ssl_rsa_key, ctr_size, keypair_ctr_key, iv);
const u8 *key8 = (const u8 *)ssl_device_key;
const u8 *key8 = (const u8 *)encrypted_key;
if (memcmp(calc_mac, &key8[ctr_size], 0x10) != 0) {
EPRINTF("SSL keypair has invalid GMac.");
memset(keys->ssl_rsa_key, 0, sizeof(keys->ssl_rsa_key));
@ -565,7 +561,7 @@ static bool _derive_personalized_ssl_key(key_derivation_ctx_t *keys, titlekey_bu
return true;
}
static bool _get_rsa_eticket_key(const nx_emmc_cal0_t *cal0, const void **out_key, const void **out_iv, u32 *out_generation) {
static bool _cal0_read_eticket_rsa_key(const nx_emmc_cal0_t *cal0, const void **out_key, u32 *out_key_size, const void **out_iv, u32 *out_generation) {
const u32 ext_key_size = sizeof(cal0->ext_ecc_rsa2048_eticket_key_iv) + sizeof(cal0->ext_ecc_rsa2048_eticket_key);
const u32 ext_key_crc_size = ext_key_size + sizeof(cal0->ext_ecc_rsa2048_eticket_key_ver) + sizeof(cal0->crc16_pad38);
const u32 key_size = sizeof(cal0->rsa2048_eticket_key_iv) + sizeof(cal0->rsa2048_eticket_key);
@ -573,11 +569,13 @@ static bool _get_rsa_eticket_key(const nx_emmc_cal0_t *cal0, const void **out_ke
if (cal0->ext_ecc_rsa2048_eticket_key_crc == crc16_calc(cal0->ext_ecc_rsa2048_eticket_key_iv, ext_key_crc_size)) {
*out_key = cal0->ext_ecc_rsa2048_eticket_key;
*out_key_size = ext_key_size;
*out_iv = cal0->ext_ecc_rsa2048_eticket_key_iv;
// Settings sysmodule manually zeroes this out below cal version 9
*out_generation = cal0->version <= 8 ? 0 : cal0->ext_ecc_rsa2048_eticket_key_ver;
} else if (cal0->rsa2048_eticket_key_crc == crc16_calc(cal0->rsa2048_eticket_key_iv, key_crc_size)) {
*out_key = cal0->rsa2048_eticket_key;
*out_key_size = key_size;
*out_iv = cal0->rsa2048_eticket_key_iv;
*out_generation = 0;
} else {
@ -586,6 +584,70 @@ static bool _get_rsa_eticket_key(const nx_emmc_cal0_t *cal0, const void **out_ke
return true;
}
static bool _test_eticket_rsa_keypair(const rsa_keypair_t *keypair) {
// Unlike the SSL RSA key, we don't need to check the gmac - we can just verify the public exponent
// and test the keypair since we have the modulus
if ((_read_be_u32(keypair->public_exponent, 0) != RSA_PUBLIC_EXPONENT) ||
(!_test_rsa_keypair(keypair->public_exponent, keypair->private_exponent, keypair->modulus))) {
return false;
}
return true;
}
static bool _decrypt_eticket_rsa_key(key_derivation_ctx_t *keys, titlekey_buffer_t *titlekey_buffer, bool is_dev) {
if (!_read_cal0(titlekey_buffer->read_buffer)) {
return false;
}
nx_emmc_cal0_t *cal0 = (nx_emmc_cal0_t *)titlekey_buffer->read_buffer;
u32 generation = 0;
const void *encrypted_key = NULL;
const void *iv = NULL;
u32 key_size = 0;
void *keypair_ctr_key = NULL;
if (!_cal0_read_eticket_rsa_key(cal0, &encrypted_key, &key_size, &iv, &generation)) {
EPRINTF("Crc16 error reading device key.");
return false;
}
// Handle legacy case
if (key_size == ETICKET_RSA_KEYPAIR_SIZE) {
const u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_ES_DEVICE_KEY) | NOT_DEVICE_UNIQUE;
keypair_ctr_key = keys->temp_key;
_derive_rsa_kek(KS_AES_ECB, keys, keypair_ctr_key, eticket_rsa_kekek_source, eticket_rsa_kek_source_legacy, generation, option);
se_aes_key_set(KS_AES_CTR, keypair_ctr_key, AES_128_KEY_SIZE);
se_aes_crypt_ctr(KS_AES_CTR, &keys->eticket_rsa_keypair, sizeof(keys->eticket_rsa_keypair), encrypted_key, sizeof(keys->eticket_rsa_keypair), iv);
if (_test_eticket_rsa_keypair(&keys->eticket_rsa_keypair)) {
memcpy(keys->eticket_rsa_kek, keypair_ctr_key, sizeof(keys->eticket_rsa_kek));
return true;
}
// Fall through and try usual method if not applicable
}
if (generation) {
const u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_ES_DEVICE_KEY) | IS_DEVICE_UNIQUE;
keypair_ctr_key = keys->eticket_rsa_kek_personalized;
const void *kek_source = is_dev ? eticket_rsa_kek_source_dev : eticket_rsa_kek_source;
_derive_rsa_kek(KS_AES_ECB, keys, keypair_ctr_key, eticket_rsa_kekek_source, kek_source, generation, option);
} else {
keypair_ctr_key = keys->eticket_rsa_kek;
}
se_aes_key_set(KS_AES_CTR, keypair_ctr_key, AES_128_KEY_SIZE);
se_aes_crypt_ctr(KS_AES_CTR, &keys->eticket_rsa_keypair, sizeof(keys->eticket_rsa_keypair), encrypted_key, sizeof(keys->eticket_rsa_keypair), iv);
if (!_test_eticket_rsa_keypair(&keys->eticket_rsa_keypair)) {
EPRINTF("Invalid eticket keypair.");
memset(&keys->eticket_rsa_keypair, 0, sizeof(keys->eticket_rsa_keypair));
return false;
}
return true;
}
static bool _derive_titlekeys(key_derivation_ctx_t *keys, titlekey_buffer_t *titlekey_buffer, bool is_dev) {
if (!_key_exists(keys->eticket_rsa_kek)) {
return false;
@ -593,57 +655,11 @@ static bool _derive_titlekeys(key_derivation_ctx_t *keys, titlekey_buffer_t *tit
gfx_printf("%kTitlekeys... \n", colors[(color_idx++) % 6]);
if (!_read_cal0(titlekey_buffer->read_buffer)) {
if (!_decrypt_eticket_rsa_key(keys, titlekey_buffer, is_dev)) {
return false;
}
nx_emmc_cal0_t *cal0 = (nx_emmc_cal0_t *)titlekey_buffer->read_buffer;
u32 generation = 0;
const void *eticket_device_key = NULL;
const void *eticket_iv = NULL;
void *keypair_ctr_key = NULL;
if (!_get_rsa_eticket_key(cal0, &eticket_device_key, &eticket_iv, &generation)) {
EPRINTF("Crc16 error reading device key.");
return false;
}
if (generation) {
u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_ES_DEVICE_KEY) | IS_DEVICE_UNIQUE;
_derive_eticket_rsa_kek(KS_AES_ECB, keys, keys->eticket_rsa_kek_personalized, is_dev ? eticket_rsa_kek_source_dev : eticket_rsa_kek_source, generation, option);
keypair_ctr_key = keys->eticket_rsa_kek_personalized;
} else {
keypair_ctr_key = keys->eticket_rsa_kek;
}
se_aes_key_set(KS_AES_CTR, keypair_ctr_key, AES_128_KEY_SIZE);
se_aes_crypt_ctr(KS_AES_CTR, &keys->eticket_rsa_keypair, sizeof(keys->eticket_rsa_keypair), eticket_device_key, sizeof(keys->eticket_rsa_keypair), eticket_iv);
if (_read_be_u32(keys->eticket_rsa_keypair.public_exponent, 0) != RSA_PUBLIC_EXPONENT) {
// Try legacy kek source
u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_ES_DEVICE_KEY);
keypair_ctr_key = keys->temp_key;
_derive_eticket_rsa_kek(KS_AES_ECB, keys, keypair_ctr_key, eticket_rsa_kek_source_legacy, 0, option);
se_aes_key_set(KS_AES_CTR, keypair_ctr_key, AES_128_KEY_SIZE);
se_aes_crypt_ctr(KS_AES_CTR, &keys->eticket_rsa_keypair, sizeof(keys->eticket_rsa_keypair), eticket_device_key, sizeof(keys->eticket_rsa_keypair), eticket_iv);
if (_read_be_u32(keys->eticket_rsa_keypair.public_exponent, 0) != RSA_PUBLIC_EXPONENT) {
EPRINTF("Invalid public exponent.");
memset(&keys->eticket_rsa_keypair, 0, sizeof(keys->eticket_rsa_keypair));
return false;
} else {
memcpy(keys->eticket_rsa_kek, keys->temp_key, sizeof(keys->eticket_rsa_kek));
}
}
if (!_test_rsa_keypair(keys->eticket_rsa_keypair.public_exponent, keys->eticket_rsa_keypair.private_exponent, keys->eticket_rsa_keypair.modulus)) {
EPRINTF("Invalid keypair. Check eticket_rsa_kek.");
memset(&keys->eticket_rsa_keypair, 0, sizeof(keys->eticket_rsa_keypair));
return false;
}
const u32 buf_size = SZ_16K;
const u32 buf_size = SAVE_BLOCK_SIZE_DEFAULT;
_get_titlekeys_from_save(buf_size, keys->save_mac_key, titlekey_buffer, NULL);
_get_titlekeys_from_save(buf_size, keys->save_mac_key, titlekey_buffer, &keys->eticket_rsa_keypair);
@ -655,14 +671,14 @@ static bool _derive_titlekeys(key_derivation_ctx_t *keys, titlekey_buffer_t *tit
static bool _derive_emmc_keys(key_derivation_ctx_t *keys, titlekey_buffer_t *titlekey_buffer, bool is_dev) {
// Set BIS keys.
// PRODINFO/PRODINFOF
se_aes_key_set(KS_BIS_00_0, keys->bis_key[0] + 0x00, AES_128_KEY_SIZE);
se_aes_key_set(KS_BIS_00_1, keys->bis_key[0] + 0x10, AES_128_KEY_SIZE);
se_aes_key_set(KS_BIS_00_CRYPT, keys->bis_key[0] + 0x00, AES_128_KEY_SIZE);
se_aes_key_set(KS_BIS_00_TWEAK, keys->bis_key[0] + 0x10, AES_128_KEY_SIZE);
// SAFE
se_aes_key_set(KS_BIS_01_0, keys->bis_key[1] + 0x00, AES_128_KEY_SIZE);
se_aes_key_set(KS_BIS_01_1, keys->bis_key[1] + 0x10, AES_128_KEY_SIZE);
se_aes_key_set(KS_BIS_01_CRYPT, keys->bis_key[1] + 0x00, AES_128_KEY_SIZE);
se_aes_key_set(KS_BIS_01_TWEAK, keys->bis_key[1] + 0x10, AES_128_KEY_SIZE);
// SYSTEM/USER
se_aes_key_set(KS_BIS_02_0, keys->bis_key[2] + 0x00, AES_128_KEY_SIZE);
se_aes_key_set(KS_BIS_02_1, keys->bis_key[2] + 0x10, AES_128_KEY_SIZE);
se_aes_key_set(KS_BIS_02_CRYPT, keys->bis_key[2] + 0x00, AES_128_KEY_SIZE);
se_aes_key_set(KS_BIS_02_TWEAK, keys->bis_key[2] + 0x10, AES_128_KEY_SIZE);
if (!emummc_storage_set_mmc_partition(EMMC_GPP)) {
EPRINTF("Unable to set partition.");
@ -693,13 +709,16 @@ static bool _derive_emmc_keys(key_derivation_ctx_t *keys, titlekey_buffer_t *tit
EPRINTF("Unable to get SD seed.");
}
bool res = _derive_titlekeys(keys, titlekey_buffer, is_dev);
bool res = _decrypt_ssl_rsa_key(keys, titlekey_buffer);
if (!res) {
EPRINTF("Unable to derive SSL key.");
}
res = _derive_titlekeys(keys, titlekey_buffer, is_dev);
if (!res) {
EPRINTF("Unable to derive titlekeys.");
}
_derive_personalized_ssl_key(keys, titlekey_buffer);
f_mount(NULL, "bis:", 1);
nx_emmc_gpt_free(&gpt);
@ -1194,7 +1213,7 @@ static void _generate_aes_kek(u32 ks, key_derivation_ctx_t *keys, void *out_kek,
if (generation)
generation--;
u8 static_source[AES_128_KEY_SIZE];
u8 static_source[AES_128_KEY_SIZE] __attribute__((aligned(4)));
for (u32 i = 0; i < AES_128_KEY_SIZE; i++)
static_source[i] = aes_kek_generation_source[i] ^ seal_key_masks[seal_key_index][i];
@ -1250,7 +1269,7 @@ static void _get_secure_data(key_derivation_ctx_t *keys, void *out_data) {
// Equivalent to spl::GenerateSpecificAesKey
static void _generate_specific_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 generation) {
if (fuse_read_bootrom_rev() >= 0x7F) {
_get_device_key(ks, keys, keys->temp_key, generation - 1);
_get_device_key(ks, keys, keys->temp_key, generation == 0 ? 0 : generation - 1);
se_aes_key_set(ks, keys->temp_key, AES_128_KEY_SIZE);
se_aes_unwrap_key(ks, ks, retail_specific_aes_key_source);
se_aes_crypt_ecb(ks, DECRYPT, out_key, AES_128_KEY_SIZE * 2, key_source, AES_128_KEY_SIZE * 2);
@ -1278,114 +1297,12 @@ static void _get_device_key(u32 ks, key_derivation_ctx_t *keys, void *out_device
se_aes_crypt_block_ecb(ks, DECRYPT, out_device_key, temp_key_source);
}
// The following ghash implementation is from Atmosphère's original exosphere implementation
/* Shifts right a little endian 128-bit value. */
static void _shr_128(uint64_t *val) {
val[0] >>= 1;
val[0] |= (val[1] & 1) << 63;
val[1] >>= 1;
}
/* Shifts left a little endian 128-bit value. */
static void _shl_128(uint64_t *val) {
val[1] <<= 1;
val[1] |= (val[0] & (1ull << 63)) >> 63;
val[0] <<= 1;
}
/* Multiplies two 128-bit numbers X,Y in the GF(128) Galois Field. */
static void _gf128_mul(uint8_t *dst, const uint8_t *x, const uint8_t *y) {
uint8_t x_work[0x10];
uint8_t y_work[0x10];
uint8_t dst_work[0x10];
uint64_t *p_x = (uint64_t *)(&x_work[0]);
uint64_t *p_y = (uint64_t *)(&y_work[0]);
uint64_t *p_dst = (uint64_t *)(&dst_work[0]);
/* Initialize buffers. */
for (unsigned int i = 0; i < 0x10; i++) {
x_work[i] = x[0xF-i];
y_work[i] = y[0xF-i];
dst_work[i] = 0;
}
/* Perform operation for each bit in y. */
for (unsigned int round = 0; round < 0x80; round++) {
p_dst[0] ^= p_x[0] * ((y_work[0xF] & 0x80) >> 7);
p_dst[1] ^= p_x[1] * ((y_work[0xF] & 0x80) >> 7);
_shl_128(p_y);
uint8_t xval = 0xE1 * (x_work[0] & 1);
_shr_128(p_x);
x_work[0xF] ^= xval;
}
for (unsigned int i = 0; i < 0x10; i++) {
dst[i] = dst_work[0xF-i];
}
}
static void _ghash(u32 ks, void *dst, const void *src, u32 src_size, const void *j_block, bool encrypt) {
uint8_t x[0x10] = {0};
uint8_t h[0x10];
uint64_t *p_x = (uint64_t *)(&x[0]);
uint64_t *p_data = (uint64_t *)src;
/* H = aes_ecb_encrypt(zeroes) */
se_aes_crypt_block_ecb(ks, ENCRYPT, h, x);
u64 total_size = src_size;
while (src_size >= 0x10) {
/* X = (X ^ current_block) * H */
p_x[0] ^= p_data[0];
p_x[1] ^= p_data[1];
_gf128_mul(x, x, h);
/* Increment p_data by 0x10 bytes. */
p_data += 2;
src_size -= 0x10;
}
/* Nintendo's code *discards all data in the last block* if unaligned. */
/* And treats that block as though it were all-zero. */
/* This is a bug, they just forget to XOR with the copy of the last block they save. */
if (src_size & 0xF) {
_gf128_mul(x, x, h);
}
uint64_t xor_size = total_size << 3;
xor_size = __builtin_bswap64(xor_size);
/* Due to a Nintendo bug, the wrong QWORD gets XOR'd in the "final output block" case. */
if (encrypt) {
p_x[0] ^= xor_size;
} else {
p_x[1] ^= xor_size;
}
_gf128_mul(x, x, h);
/* If final output block, XOR with encrypted J block. */
if (encrypt) {
se_aes_crypt_block_ecb(ks, ENCRYPT, h, j_block);
for (unsigned int i = 0; i < 0x10; i++) {
x[i] ^= h[i];
}
}
/* Copy output. */
memcpy(dst, x, 0x10);
}
static bool _test_rsa_keypair(const void *public_exponent, const void *private_exponent, const void *modulus) {
u8 plaintext[RSA_2048_KEY_SIZE] __attribute__((aligned(4))) = {0},
ciphertext[RSA_2048_KEY_SIZE] __attribute__((aligned(4))) = {0},
work[RSA_2048_KEY_SIZE] __attribute__((aligned(4))) = {0};
u32 plaintext[RSA_2048_KEY_SIZE / 4] = {0},
ciphertext[RSA_2048_KEY_SIZE / 4] = {0},
work[RSA_2048_KEY_SIZE / 4] = {0};
// 0xCAFEBABE
plaintext[0xfc] = 0xca; plaintext[0xfd] = 0xfe; plaintext[0xfe] = 0xba; plaintext[0xff] = 0xbe;
plaintext[63] = 0xCAFEBABE;
se_rsa_key_set(0, modulus, RSA_2048_KEY_SIZE, private_exponent, RSA_2048_KEY_SIZE);
se_rsa_exp_mod(0, ciphertext, RSA_2048_KEY_SIZE, plaintext, RSA_2048_KEY_SIZE);
@ -1393,5 +1310,5 @@ static bool _test_rsa_keypair(const void *public_exponent, const void *private_e
se_rsa_key_set(0, modulus, RSA_2048_KEY_SIZE, public_exponent, 4);
se_rsa_exp_mod(0, work, RSA_2048_KEY_SIZE, ciphertext, RSA_2048_KEY_SIZE);
return !memcmp(plaintext, work, RSA_2048_KEY_SIZE);
return memcmp(plaintext, work, RSA_2048_KEY_SIZE) == 0;
}

View file

@ -27,12 +27,12 @@
#define RSA_PUBLIC_EXPONENT 65537
// Lockpick_RCM keyslots
#define KS_BIS_00_0 0
#define KS_BIS_00_1 1
#define KS_BIS_01_0 2
#define KS_BIS_01_1 3
#define KS_BIS_02_0 4
#define KS_BIS_02_1 5
#define KS_BIS_00_CRYPT 0
#define KS_BIS_00_TWEAK 1
#define KS_BIS_01_CRYPT 2
#define KS_BIS_01_TWEAK 3
#define KS_BIS_02_CRYPT 4
#define KS_BIS_02_TWEAK 5
#define KS_AES_CTR 6
#define KS_AES_ECB 8
#define KS_AES_CMAC 10
@ -148,7 +148,8 @@ typedef enum {
#define GET_SEAL_KEY_INDEX(x) (((x) >> 5) & 7)
#define GET_IS_DEVICE_UNIQUE(x) ((x) & 1)
#define SSL_RSA_KEY_SIZE (RSA_2048_KEY_SIZE + AES_128_KEY_SIZE)
#define SSL_RSA_KEY_SIZE (RSA_2048_KEY_SIZE + AES_128_KEY_SIZE)
#define ETICKET_RSA_KEYPAIR_SIZE (RSA_2048_KEY_SIZE * 2 + AES_128_KEY_SIZE * 2)
typedef struct {
u8 temp_key[AES_128_KEY_SIZE],