Further improve readability

This commit is contained in:
shchmue 2022-11-02 18:36:39 -07:00
parent cc4f8bf1f6
commit c7d90ec8ca
8 changed files with 195 additions and 207 deletions

View file

@ -718,76 +718,6 @@ out:;
return res; return res;
} }
// _mgf1_xor() and rsa_oaep_decode were derived from Atmosphère
static void _mgf1_xor(void *masked, u32 masked_size, const void *seed, u32 seed_size)
{
u8 cur_hash[0x20] __attribute__((aligned(4)));
u8 hash_buf[0xe4] __attribute__((aligned(4)));
u32 hash_buf_size = seed_size + 4;
memcpy(hash_buf, seed, seed_size);
u32 round_num = 0;
u8 *p_out = (u8 *)masked;
while (masked_size) {
u32 cur_size = MIN(masked_size, 0x20);
for (u32 i = 0; i < 4; i++)
hash_buf[seed_size + 3 - i] = (round_num >> (8 * i)) & 0xff;
round_num++;
se_calc_sha256_oneshot(cur_hash, hash_buf, hash_buf_size);
for (unsigned int i = 0; i < cur_size; i++) {
*p_out ^= cur_hash[i];
p_out++;
}
masked_size -= cur_size;
}
}
u32 se_rsa_oaep_decode(void *dst, u32 dst_size, const void *label_digest, u32 label_digest_size, u8 *buf, u32 buf_size)
{
if (dst_size <= 0 || buf_size < 0x43 || label_digest_size != 0x20)
return 0;
bool is_valid = buf[0] == 0;
u32 db_len = buf_size - 0x21;
u8 *seed = buf + 1;
u8 *db = seed + 0x20;
_mgf1_xor(seed, 0x20, db, db_len);
_mgf1_xor(db, db_len, seed, 0x20);
is_valid &= memcmp(label_digest, db, 0x20) ? 0 : 1;
db += 0x20;
db_len -= 0x20;
int msg_ofs = 0;
int looking_for_one = 1;
int invalid_db_padding = 0;
int is_zero;
int is_one;
for (int i = 0; i < db_len; )
{
is_zero = (db[i] == 0);
is_one = (db[i] == 1);
msg_ofs += (looking_for_one & is_one) * (++i);
looking_for_one &= ~is_one;
invalid_db_padding |= (looking_for_one & ~is_zero);
}
is_valid &= (invalid_db_padding == 0);
const u32 msg_size = MIN(dst_size, is_valid * (db_len - msg_ofs));
memcpy(dst, db + msg_ofs, msg_size);
return msg_size;
}
void se_get_aes_keys(u8 *buf, u8 *keys, u32 keysize) void se_get_aes_keys(u8 *buf, u8 *keys, u32 keysize)
{ {
u8 *aligned_buf = (u8 *)ALIGN((u32)buf, 0x40); u8 *aligned_buf = (u8 *)ALIGN((u32)buf, 0x40);

View file

@ -49,6 +49,5 @@ int se_calc_sha256(void *hash, u32 *msg_left, const void *src, u32 src_size, u64
int se_calc_sha256_oneshot(void *hash, const void *src, u32 src_size); int se_calc_sha256_oneshot(void *hash, const void *src, u32 src_size);
int se_calc_sha256_finalize(void *hash, u32 *msg_left); int se_calc_sha256_finalize(void *hash, u32 *msg_left);
int se_calc_hmac_sha256(void *dst, const void *src, u32 src_size, const void *key, u32 key_size); int se_calc_hmac_sha256(void *dst, const void *src, u32 src_size, const void *key, u32 key_size);
u32 se_rsa_oaep_decode(void *dst, u32 dst_size, const void *label_digest, u32 label_digest_size, u8 *buf, u32 buf_size);
#endif #endif

View file

@ -230,17 +230,3 @@ void power_set_state_ex(void *param)
power_state_t *state = (power_state_t *)param; power_state_t *state = (power_state_t *)param;
power_set_state(*state); power_set_state(*state);
} }
u32 read_le_u32(const void *buffer, u32 offset) {
return (*(u8*)(buffer + offset + 0) ) |
(*(u8*)(buffer + offset + 1) << 0x08) |
(*(u8*)(buffer + offset + 2) << 0x10) |
(*(u8*)(buffer + offset + 3) << 0x18);
}
u32 read_be_u32(const void *buffer, u32 offset) {
return (*(u8*)(buffer + offset + 3) ) |
(*(u8*)(buffer + offset + 2) << 0x08) |
(*(u8*)(buffer + offset + 1) << 0x10) |
(*(u8*)(buffer + offset + 0) << 0x18);
}

View file

@ -96,7 +96,4 @@ void panic(u32 val);
void power_set_state(power_state_t state); void power_set_state(power_state_t state);
void power_set_state_ex(void *param); void power_set_state_ex(void *param);
u32 read_le_u32(const void *buffer, u32 offset);
u32 read_be_u32(const void *buffer, u32 offset);
#endif #endif

View file

@ -1,5 +1,6 @@
/* /*
* Copyright (c) 2022 shchmue * Copyright (c) 2022 shchmue
* Copyright (c) 2018 Atmosphère-NX
* *
* This program is free software; you can redistribute it and/or modify it * This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License, * under the terms and conditions of the GNU General Public License,
@ -27,6 +28,15 @@
extern hekate_config h_cfg; extern hekate_config h_cfg;
bool check_keyslot_access() {
u8 test_data[SE_KEY_128_SIZE] = {0};
const u8 test_ciphertext[SE_KEY_128_SIZE] = {0};
se_aes_key_set(KS_AES_ECB, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", SE_KEY_128_SIZE);
se_aes_crypt_block_ecb(KS_AES_ECB, DECRYPT, test_data, test_ciphertext);
return memcmp(test_data, "\x7b\x1d\x29\xa1\x6c\xf8\xcc\xab\x84\xf0\xb8\xa5\x98\xe4\x2f\xa6", SE_KEY_128_SIZE) == 0;
}
bool test_rsa_keypair(const void *public_exponent, const void *private_exponent, const void *modulus) { bool test_rsa_keypair(const void *public_exponent, const void *private_exponent, const void *modulus) {
u32 plaintext[SE_RSA2048_DIGEST_SIZE / 4] = {0}, u32 plaintext[SE_RSA2048_DIGEST_SIZE / 4] = {0},
ciphertext[SE_RSA2048_DIGEST_SIZE / 4] = {0}, ciphertext[SE_RSA2048_DIGEST_SIZE / 4] = {0},
@ -46,13 +56,82 @@ bool test_rsa_keypair(const void *public_exponent, const void *private_exponent,
bool test_eticket_rsa_keypair(const rsa_keypair_t *keypair) { bool test_eticket_rsa_keypair(const rsa_keypair_t *keypair) {
// Unlike the SSL RSA key, we don't need to check the gmac - we can just verify the public exponent // Unlike the SSL RSA key, we don't need to check the gmac - we can just verify the public exponent
// and test the keypair since we have the modulus // and test the keypair since we have the modulus
if ((read_be_u32(keypair->public_exponent, 0) != RSA_PUBLIC_EXPONENT) || if ((byte_swap_32(keypair->public_exponent) != RSA_PUBLIC_EXPONENT) ||
(!test_rsa_keypair(keypair->public_exponent, keypair->private_exponent, keypair->modulus))) { (!test_rsa_keypair(&keypair->public_exponent, keypair->private_exponent, keypair->modulus))
) {
return false; return false;
} }
return true; return true;
} }
// _mgf1_xor() and rsa_oaep_decode were derived from Atmosphère
static void _mgf1_xor(void *masked, u32 masked_size, const void *seed, u32 seed_size)
{
u8 cur_hash[0x20] __attribute__((aligned(4)));
u8 hash_buf[0xe4] __attribute__((aligned(4)));
u32 hash_buf_size = seed_size + 4;
memcpy(hash_buf, seed, seed_size);
u32 round_num = 0;
u8 *p_out = (u8 *)masked;
while (masked_size) {
u32 cur_size = MIN(masked_size, 0x20);
for (u32 i = 0; i < 4; i++)
hash_buf[seed_size + 3 - i] = (round_num >> (8 * i)) & 0xff;
round_num++;
se_calc_sha256_oneshot(cur_hash, hash_buf, hash_buf_size);
for (unsigned int i = 0; i < cur_size; i++) {
*p_out ^= cur_hash[i];
p_out++;
}
masked_size -= cur_size;
}
}
u32 rsa_oaep_decode(void *dst, u32 dst_size, const void *label_digest, u32 label_digest_size, u8 *buf, u32 buf_size) {
if (dst_size <= 0 || buf_size < 0x43 || label_digest_size != 0x20)
return 0;
bool is_valid = buf[0] == 0;
u32 db_len = buf_size - 0x21;
u8 *seed = buf + 1;
u8 *db = seed + 0x20;
_mgf1_xor(seed, 0x20, db, db_len);
_mgf1_xor(db, db_len, seed, 0x20);
is_valid &= memcmp(label_digest, db, 0x20) ? 0 : 1;
db += 0x20;
db_len -= 0x20;
int msg_ofs = 0;
int looking_for_one = 1;
int invalid_db_padding = 0;
int is_zero;
int is_one;
for (int i = 0; i < db_len; ) {
is_zero = (db[i] == 0);
is_one = (db[i] == 1);
msg_ofs += (looking_for_one & is_one) * (++i);
looking_for_one &= ~is_one;
invalid_db_padding |= (looking_for_one & ~is_zero);
}
is_valid &= (invalid_db_padding == 0);
const u32 msg_size = MIN(dst_size, is_valid * (db_len - msg_ofs));
memcpy(dst, db + msg_ofs, msg_size);
return msg_size;
}
// Equivalent to spl::GenerateAesKek // Equivalent to spl::GenerateAesKek
void generate_aes_kek(u32 ks, key_storage_t *keys, void *out_kek, const void *kek_source, u32 generation, u32 option) { void generate_aes_kek(u32 ks, key_storage_t *keys, void *out_kek, const void *kek_source, u32 generation, u32 option) {
bool device_unique = GET_IS_DEVICE_UNIQUE(option); bool device_unique = GET_IS_DEVICE_UNIQUE(option);

View file

@ -127,10 +127,12 @@ static const u8 secure_data_tweaks[1][0x10] __attribute__((aligned(4))) = {
#define SSL_RSA_KEY_SIZE (SE_AES_IV_SIZE + SE_RSA2048_DIGEST_SIZE) #define SSL_RSA_KEY_SIZE (SE_AES_IV_SIZE + SE_RSA2048_DIGEST_SIZE)
#define ETICKET_RSA_KEYPAIR_SIZE (SE_AES_IV_SIZE + SE_RSA2048_DIGEST_SIZE * 2 + SE_KEY_128_SIZE) #define ETICKET_RSA_KEYPAIR_SIZE (SE_AES_IV_SIZE + SE_RSA2048_DIGEST_SIZE * 2 + SE_KEY_128_SIZE)
#define TICKET_SIG_TYPE_RSA2048_SHA256 0x10004
typedef struct { typedef struct {
u8 private_exponent[SE_RSA2048_DIGEST_SIZE]; u8 private_exponent[SE_RSA2048_DIGEST_SIZE];
u8 modulus[SE_RSA2048_DIGEST_SIZE]; u8 modulus[SE_RSA2048_DIGEST_SIZE];
u8 public_exponent[4]; u32 public_exponent;
u8 reserved[0xC]; u8 reserved[0xC];
} rsa_keypair_t; } rsa_keypair_t;
@ -199,8 +201,11 @@ typedef enum {
#define GET_SEAL_KEY_INDEX(x) (((x) >> 5) & 7) #define GET_SEAL_KEY_INDEX(x) (((x) >> 5) & 7)
#define GET_IS_DEVICE_UNIQUE(x) ((x) & 1) #define GET_IS_DEVICE_UNIQUE(x) ((x) & 1)
bool check_keyslot_access();
bool test_rsa_keypair(const void *public_exponent, const void *private_exponent, const void *modulus); bool test_rsa_keypair(const void *public_exponent, const void *private_exponent, const void *modulus);
bool test_eticket_rsa_keypair(const rsa_keypair_t *keypair); bool test_eticket_rsa_keypair(const rsa_keypair_t *keypair);
u32 rsa_oaep_decode(void *dst, u32 dst_size, const void *label_digest, u32 label_digest_size, u8 *buf, u32 buf_size);
// Equivalent to spl::GenerateAesKek // Equivalent to spl::GenerateAesKek
void generate_aes_kek(u32 ks, key_storage_t *keys, void *out_kek, const void *kek_source, u32 generation, u32 option); void generate_aes_kek(u32 ks, key_storage_t *keys, void *out_kek, const void *kek_source, u32 generation, u32 option);

View file

@ -65,6 +65,7 @@ static void _save_key(const char *name, const void *data, u32 len, char *outbuf)
static void _save_key_family(const char *name, const void *data, u32 start_key, u32 num_keys, u32 len, char *outbuf); static void _save_key_family(const char *name, const void *data, u32 start_key, u32 num_keys, u32 len, char *outbuf);
static void _derive_master_key_mariko(key_storage_t *keys, bool is_dev) { static void _derive_master_key_mariko(key_storage_t *keys, bool is_dev) {
minerva_periodic_training();
// Relies on the SBK being properly set in slot 14 // Relies on the SBK being properly set in slot 14
se_aes_crypt_block_ecb(KS_SECURE_BOOT, DECRYPT, keys->device_key_4x, device_master_key_source_kek_source); se_aes_crypt_block_ecb(KS_SECURE_BOOT, DECRYPT, keys->device_key_4x, device_master_key_source_kek_source);
// Derive all master keys based on Mariko KEK // Derive all master keys based on Mariko KEK
@ -94,6 +95,7 @@ static int _run_ams_keygen(key_storage_t *keys) {
} }
static void _derive_master_keys_from_latest_key(key_storage_t *keys, bool is_dev) { static void _derive_master_keys_from_latest_key(key_storage_t *keys, bool is_dev) {
minerva_periodic_training();
if (!h_cfg.t210b01) { if (!h_cfg.t210b01) {
u32 tsec_root_key_slot = is_dev ? 11 : 13; u32 tsec_root_key_slot = is_dev ? 11 : 13;
// Derive all master keys based on current root key // Derive all master keys based on current root key
@ -103,6 +105,8 @@ static void _derive_master_keys_from_latest_key(key_storage_t *keys, bool is_dev
} }
} }
minerva_periodic_training();
// Derive all lower master keys // Derive all lower master keys
for (u32 i = KB_FIRMWARE_VERSION_MAX; i > 0; i--) { for (u32 i = KB_FIRMWARE_VERSION_MAX; i > 0; i--) {
load_aes_key(KS_AES_ECB, keys->master_key[i - 1], keys->master_key[i], is_dev ? master_key_vectors_dev[i] : master_key_vectors[i]); load_aes_key(KS_AES_ECB, keys->master_key[i - 1], keys->master_key[i], is_dev ? master_key_vectors_dev[i] : master_key_vectors[i]);
@ -116,6 +120,8 @@ static void _derive_master_keys_from_latest_key(key_storage_t *keys, bool is_dev
} }
static void _derive_keyblob_keys(key_storage_t *keys) { static void _derive_keyblob_keys(key_storage_t *keys) {
minerva_periodic_training();
u8 *keyblob_block = (u8 *)calloc(KB_FIRMWARE_VERSION_600 + 1, NX_EMMC_BLOCKSIZE); u8 *keyblob_block = (u8 *)calloc(KB_FIRMWARE_VERSION_600 + 1, NX_EMMC_BLOCKSIZE);
u32 keyblob_mac[SE_KEY_128_SIZE / 4] = {0}; u32 keyblob_mac[SE_KEY_128_SIZE / 4] = {0};
bool have_keyblobs = true; bool have_keyblobs = true;
@ -194,6 +200,7 @@ static void _derive_bis_keys(key_storage_t *keys) {
} }
static void _derive_non_unique_keys(key_storage_t *keys, bool is_dev) { static void _derive_non_unique_keys(key_storage_t *keys, bool is_dev) {
minerva_periodic_training();
if (_key_exists(keys->master_key[0])) { if (_key_exists(keys->master_key[0])) {
const u32 generation = 0; const u32 generation = 0;
const u32 option = GET_IS_DEVICE_UNIQUE(NOT_DEVICE_UNIQUE); const u32 option = GET_IS_DEVICE_UNIQUE(NOT_DEVICE_UNIQUE);
@ -209,6 +216,7 @@ static void _derive_rsa_kek(u32 ks, key_storage_t *keys, void *out_rsa_kek, cons
} }
static void _derive_misc_keys(key_storage_t *keys, bool is_dev) { static void _derive_misc_keys(key_storage_t *keys, bool is_dev) {
minerva_periodic_training();
if (_key_exists(keys->device_key) || (_key_exists(keys->master_key[0]) && _key_exists(keys->device_key_4x))) { if (_key_exists(keys->device_key) || (_key_exists(keys->master_key[0]) && _key_exists(keys->device_key_4x))) {
void *access_key = keys->temp_key; void *access_key = keys->temp_key;
const u32 generation = 0; const u32 generation = 0;
@ -231,6 +239,7 @@ static void _derive_misc_keys(key_storage_t *keys, bool is_dev) {
static void _derive_per_generation_keys(key_storage_t *keys) { static void _derive_per_generation_keys(key_storage_t *keys) {
for (u32 generation = 0; generation < ARRAY_SIZE(keys->master_key); generation++) { for (u32 generation = 0; generation < ARRAY_SIZE(keys->master_key); generation++) {
minerva_periodic_training();
if (!_key_exists(keys->master_key[generation])) if (!_key_exists(keys->master_key[generation]))
continue; continue;
for (u32 source_type = 0; source_type < ARRAY_SIZE(key_area_key_sources); source_type++) { for (u32 source_type = 0; source_type < ARRAY_SIZE(key_area_key_sources); source_type++) {
@ -244,6 +253,45 @@ static void _derive_per_generation_keys(key_storage_t *keys) {
} }
} }
// Returns true when terminator is found
static bool _count_ticket_records(u32 buf_size, titlekey_buffer_t *titlekey_buffer, u32 *tkey_count) {
ticket_record_t *curr_ticket_record = (ticket_record_t *)titlekey_buffer->read_buffer;
for (u32 i = 0; i < buf_size; i += sizeof(ticket_record_t), curr_ticket_record++) {
if (curr_ticket_record->rights_id[0] == 0xFF)
return true;
(*tkey_count)++;
}
return false;
}
static void _decode_tickets(u32 buf_size, titlekey_buffer_t *titlekey_buffer, u32 remaining, u32 total, u32 x, u32 y, u32 *pct, u32 *last_pct, bool is_personalized) {
ticket_t *curr_ticket = (ticket_t *)titlekey_buffer->read_buffer;
for (u32 i = 0; i < MIN(buf_size / sizeof(ticket_t), remaining) * sizeof(ticket_t) && curr_ticket->signature_type != 0; i += sizeof(ticket_t), curr_ticket++) {
minerva_periodic_training();
*pct = (total - remaining) * 100 / total;
if (*pct > *last_pct && *pct <= 100) {
*last_pct = *pct;
tui_pbar(x, y, *pct, COLOR_GREEN, 0xFF155500);
}
// This is in case an encrypted volatile ticket is left behind
if (curr_ticket->signature_type != TICKET_SIG_TYPE_RSA2048_SHA256)
continue;
u8 *curr_titlekey = curr_ticket->titlekey_block;
const u32 block_size = SE_RSA2048_DIGEST_SIZE;
const u32 titlekey_size = sizeof(titlekey_buffer->titlekeys[0]);
if (is_personalized) {
se_rsa_exp_mod(0, curr_titlekey, block_size, curr_titlekey, block_size);
if (rsa_oaep_decode(curr_titlekey, titlekey_size, null_hash, sizeof(null_hash), curr_titlekey, block_size) != titlekey_size)
continue;
}
memcpy(titlekey_buffer->rights_ids[_titlekey_count], curr_ticket->rights_id, sizeof(titlekey_buffer->rights_ids[0]));
memcpy(titlekey_buffer->titlekeys[_titlekey_count], curr_titlekey, titlekey_size);
_titlekey_count++;
}
}
static bool _get_titlekeys_from_save(u32 buf_size, const u8 *save_mac_key, titlekey_buffer_t *titlekey_buffer, rsa_keypair_t *rsa_keypair) { static bool _get_titlekeys_from_save(u32 buf_size, const u8 *save_mac_key, titlekey_buffer_t *titlekey_buffer, rsa_keypair_t *rsa_keypair) {
FIL fp; FIL fp;
u64 br = buf_size; u64 br = buf_size;
@ -251,8 +299,10 @@ static bool _get_titlekeys_from_save(u32 buf_size, const u8 *save_mac_key, title
u32 file_tkey_count = 0; u32 file_tkey_count = 0;
u32 save_x = gfx_con.x, save_y = gfx_con.y; u32 save_x = gfx_con.x, save_y = gfx_con.y;
bool is_personalized = rsa_keypair != NULL; bool is_personalized = rsa_keypair != NULL;
u32 start_titlekey_count = _titlekey_count; const char ticket_bin_path[32] = "/ticket.bin";
const char ticket_list_bin_path[32] = "/ticket_list.bin";
char titlekey_save_path[32] = "bis:/save/80000000000000E1"; char titlekey_save_path[32] = "bis:/save/80000000000000E1";
save_data_file_ctx_t ticket_file;
if (is_personalized) { if (is_personalized) {
titlekey_save_path[25] = '2'; titlekey_save_path[25] = '2';
@ -280,10 +330,6 @@ static bool _get_titlekeys_from_save(u32 buf_size, const u8 *save_mac_key, title
return false; return false;
} }
const char ticket_bin_path[32] = "/ticket.bin";
const char ticket_list_bin_path[32] = "/ticket_list.bin";
save_data_file_ctx_t ticket_file;
if (!save_open_file(save_ctx, &ticket_file, ticket_list_bin_path, OPEN_MODE_READ)) { if (!save_open_file(save_ctx, &ticket_file, ticket_list_bin_path, OPEN_MODE_READ)) {
EPRINTF("Unable to locate ticket_list.bin in save."); EPRINTF("Unable to locate ticket_list.bin in save.");
f_close(&fp); f_close(&fp);
@ -292,22 +338,19 @@ static bool _get_titlekeys_from_save(u32 buf_size, const u8 *save_mac_key, title
return false; return false;
} }
bool terminator_reached = false; // Read ticket list to get ticket count
while (offset < ticket_file.size && !terminator_reached) { while (offset < ticket_file.size) {
if (!save_data_file_read(&ticket_file, &br, offset, titlekey_buffer->read_buffer, buf_size) || titlekey_buffer->read_buffer[0] == 0 || br != buf_size)
break;
offset += br;
minerva_periodic_training(); minerva_periodic_training();
ticket_record_t *curr_ticket_record = (ticket_record_t *)titlekey_buffer->read_buffer; if (!save_data_file_read(&ticket_file, &br, offset, titlekey_buffer->read_buffer, buf_size) ||
for (u32 i = 0; i < buf_size; i += sizeof(ticket_record_t), curr_ticket_record++) { titlekey_buffer->read_buffer[0] == 0 ||
if (curr_ticket_record->rights_id[0] == 0xFF) { br != buf_size ||
terminator_reached = true; _count_ticket_records(buf_size, titlekey_buffer, &file_tkey_count)
) {
break; break;
} }
file_tkey_count++; offset += br;
} }
} TPRINTF(" Count titlekeys...");
TPRINTF(" Count keys...");
if (!save_open_file(save_ctx, &ticket_file, ticket_bin_path, OPEN_MODE_READ)) { if (!save_open_file(save_ctx, &ticket_file, ticket_bin_path, OPEN_MODE_READ)) {
EPRINTF("Unable to locate ticket.bin in save."); EPRINTF("Unable to locate ticket.bin in save.");
@ -317,50 +360,17 @@ static bool _get_titlekeys_from_save(u32 buf_size, const u8 *save_mac_key, title
return false; return false;
} }
if (is_personalized) { if (is_personalized)
se_rsa_key_set(0, rsa_keypair->modulus, sizeof(rsa_keypair->modulus), rsa_keypair->private_exponent, sizeof(rsa_keypair->private_exponent)); se_rsa_key_set(0, rsa_keypair->modulus, sizeof(rsa_keypair->modulus), rsa_keypair->private_exponent, sizeof(rsa_keypair->private_exponent));
}
const u32 ticket_sig_type_rsa2048_sha256 = 0x10004;
offset = 0; offset = 0;
terminator_reached = false; u32 pct = 0, last_pct = 0, remaining = file_tkey_count;
u32 pct = 0, last_pct = 0, i = 0; while (offset < ticket_file.size && remaining) {
while (offset < ticket_file.size && !terminator_reached) {
if (!save_data_file_read(&ticket_file, &br, offset, titlekey_buffer->read_buffer, buf_size) || titlekey_buffer->read_buffer[0] == 0 || br != buf_size) if (!save_data_file_read(&ticket_file, &br, offset, titlekey_buffer->read_buffer, buf_size) || titlekey_buffer->read_buffer[0] == 0 || br != buf_size)
break; break;
offset += br; offset += br;
ticket_t *curr_ticket = (ticket_t *)titlekey_buffer->read_buffer; _decode_tickets(buf_size, titlekey_buffer, remaining, file_tkey_count, save_x, save_y, &pct, &last_pct, is_personalized);
for (u32 j = 0; j < buf_size; j += sizeof(ticket_t), curr_ticket++) { remaining -= MIN(buf_size / sizeof(ticket_t), remaining);
minerva_periodic_training();
pct = (_titlekey_count - start_titlekey_count) * 100 / file_tkey_count;
if (pct > last_pct && pct <= 100) {
last_pct = pct;
tui_pbar(save_x, save_y, pct, COLOR_GREEN, 0xFF155500);
}
if (i == file_tkey_count || curr_ticket->signature_type == 0) {
terminator_reached = true;
break;
}
if (curr_ticket->signature_type != ticket_sig_type_rsa2048_sha256) {
i++;
continue;
}
if (is_personalized) {
se_rsa_exp_mod(0, curr_ticket->titlekey_block, sizeof(curr_ticket->titlekey_block), curr_ticket->titlekey_block, sizeof(curr_ticket->titlekey_block));
if (se_rsa_oaep_decode(
curr_ticket->titlekey_block, sizeof(titlekey_buffer->titlekeys[0]),
null_hash, sizeof(null_hash),
curr_ticket->titlekey_block, sizeof(curr_ticket->titlekey_block)
) != sizeof(titlekey_buffer->titlekeys[0])
)
continue;
}
memcpy(titlekey_buffer->rights_ids[_titlekey_count], curr_ticket->rights_id, sizeof(titlekey_buffer->rights_ids[0]));
memcpy(titlekey_buffer->titlekeys[_titlekey_count], curr_ticket->titlekey_block, sizeof(titlekey_buffer->titlekeys[0]));
_titlekey_count++;
i++;
}
} }
tui_pbar(save_x, save_y, 100, COLOR_GREEN, 0xFF155500); tui_pbar(save_x, save_y, 100, COLOR_GREEN, 0xFF155500);
f_close(&fp); f_close(&fp);
@ -844,21 +854,11 @@ static void _save_keys_to_sd(key_storage_t *keys, titlekey_buffer_t *titlekey_bu
free(text_buffer); free(text_buffer);
} }
static bool _check_keyslot_access() {
u8 test_data[SE_KEY_128_SIZE] = {0};
const u8 test_ciphertext[SE_KEY_128_SIZE] = {0};
se_aes_key_set(KS_AES_ECB, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", SE_KEY_128_SIZE);
se_aes_crypt_block_ecb(KS_AES_ECB, DECRYPT, test_data, test_ciphertext);
return memcmp(test_data, "\x7b\x1d\x29\xa1\x6c\xf8\xcc\xab\x84\xf0\xb8\xa5\x98\xe4\x2f\xa6", SE_KEY_128_SIZE) == 0;
}
static void _derive_master_keys(key_storage_t *prod_keys, key_storage_t *dev_keys, bool is_dev) { static void _derive_master_keys(key_storage_t *prod_keys, key_storage_t *dev_keys, bool is_dev) {
key_storage_t *keys = is_dev ? dev_keys : prod_keys; key_storage_t *keys = is_dev ? dev_keys : prod_keys;
if (h_cfg.t210b01) { if (h_cfg.t210b01) {
_derive_master_key_mariko(keys, is_dev); _derive_master_key_mariko(keys, is_dev);
minerva_periodic_training();
_derive_master_keys_from_latest_key(keys, is_dev); _derive_master_keys_from_latest_key(keys, is_dev);
} else { } else {
int res = _run_ams_keygen(keys); int res = _run_ams_keygen(keys);
@ -874,9 +874,7 @@ static void _derive_master_keys(key_storage_t *prod_keys, key_storage_t *dev_key
free(aes_keys); free(aes_keys);
_derive_master_keys_from_latest_key(prod_keys, false); _derive_master_keys_from_latest_key(prod_keys, false);
minerva_periodic_training();
_derive_master_keys_from_latest_key(dev_keys, true); _derive_master_keys_from_latest_key(dev_keys, true);
minerva_periodic_training();
_derive_keyblob_keys(keys); _derive_keyblob_keys(keys);
} }
} }
@ -884,7 +882,7 @@ static void _derive_master_keys(key_storage_t *prod_keys, key_storage_t *dev_key
static void _derive_keys() { static void _derive_keys() {
minerva_periodic_training(); minerva_periodic_training();
if (!_check_keyslot_access()) { if (!check_keyslot_access()) {
EPRINTF("Unable to set crypto keyslots!\nTry launching payload differently\n or flash Spacecraft-NX if using a modchip."); EPRINTF("Unable to set crypto keyslots!\nTry launching payload differently\n or flash Spacecraft-NX if using a modchip.");
return; return;
} }
@ -917,19 +915,10 @@ static void _derive_keys() {
TPRINTFARGS("%kBIS keys... ", colors[(color_idx++) % 6]); TPRINTFARGS("%kBIS keys... ", colors[(color_idx++) % 6]);
minerva_periodic_training();
_derive_misc_keys(keys, is_dev); _derive_misc_keys(keys, is_dev);
minerva_periodic_training();
_derive_non_unique_keys(&prod_keys, is_dev); _derive_non_unique_keys(&prod_keys, is_dev);
minerva_periodic_training();
_derive_non_unique_keys(&dev_keys, is_dev); _derive_non_unique_keys(&dev_keys, is_dev);
minerva_periodic_training();
_derive_per_generation_keys(&prod_keys); _derive_per_generation_keys(&prod_keys);
minerva_periodic_training();
_derive_per_generation_keys(&dev_keys); _derive_per_generation_keys(&dev_keys);
titlekey_buffer_t *titlekey_buffer = (titlekey_buffer_t *)TITLEKEY_BUF_ADR; titlekey_buffer_t *titlekey_buffer = (titlekey_buffer_t *)TITLEKEY_BUF_ADR;
@ -957,6 +946,37 @@ static void _derive_keys() {
} }
} }
static void _decrypt_amiibo_keys(key_storage_t *keys, const u8 *encrypted_keys, nfc_save_key_t nfc_save_keys[2]) {
u32 kek[SE_KEY_128_SIZE / 4] = {0};
decrypt_aes_key(KS_AES_ECB, keys, kek, nfc_key_source, 0, 0);
nfc_keyblob_t __attribute__((aligned(4))) nfc_keyblob;
static const u8 nfc_iv[SE_KEY_128_SIZE] = {
0xB9, 0x1D, 0xC1, 0xCF, 0x33, 0x5F, 0xA6, 0x13, 0x2A, 0xEF, 0x90, 0x99, 0xAA, 0xCA, 0x93, 0xC8};
se_aes_key_set(KS_AES_CTR, kek, SE_KEY_128_SIZE);
se_aes_crypt_ctr(KS_AES_CTR, &nfc_keyblob, sizeof(nfc_keyblob), encrypted_keys, sizeof(nfc_keyblob), &nfc_iv);
minerva_periodic_training();
u32 xor_pad[0x20 / 4] = {0};
se_aes_key_set(KS_AES_CTR, nfc_keyblob.ctr_key, SE_KEY_128_SIZE);
se_aes_crypt_ctr(KS_AES_CTR, xor_pad, sizeof(xor_pad), xor_pad, sizeof(xor_pad), nfc_keyblob.ctr_iv);
minerva_periodic_training();
memcpy(nfc_save_keys[0].hmac_key, nfc_keyblob.hmac_key, sizeof(nfc_keyblob.hmac_key));
memcpy(nfc_save_keys[0].phrase, nfc_keyblob.phrase, sizeof(nfc_keyblob.phrase));
nfc_save_keys[0].seed_size = sizeof(nfc_keyblob.seed);
memcpy(nfc_save_keys[0].seed, nfc_keyblob.seed, sizeof(nfc_keyblob.seed));
memcpy(nfc_save_keys[0].xor_pad, xor_pad, sizeof(xor_pad));
memcpy(nfc_save_keys[1].hmac_key, nfc_keyblob.hmac_key_for_verif, sizeof(nfc_keyblob.hmac_key_for_verif));
memcpy(nfc_save_keys[1].phrase, nfc_keyblob.phrase_for_verif, sizeof(nfc_keyblob.phrase_for_verif));
nfc_save_keys[1].seed_size = sizeof(nfc_keyblob.seed_for_verif);
memcpy(nfc_save_keys[1].seed, nfc_keyblob.seed_for_verif, sizeof(nfc_keyblob.seed_for_verif));
memcpy(nfc_save_keys[1].xor_pad, xor_pad, sizeof(xor_pad));
}
void derive_amiibo_keys() { void derive_amiibo_keys() {
minerva_change_freq(FREQ_1600); minerva_change_freq(FREQ_1600);
@ -985,47 +1005,18 @@ void derive_amiibo_keys() {
return; return;
} }
decrypt_aes_key(KS_AES_ECB, keys, keys->temp_key, nfc_key_source, 0, 0);
nfc_keyblob_t __attribute__((aligned(4))) nfc_keyblob;
static const u8 nfc_iv[SE_KEY_128_SIZE] = {
0xB9, 0x1D, 0xC1, 0xCF, 0x33, 0x5F, 0xA6, 0x13, 0x2A, 0xEF, 0x90, 0x99, 0xAA, 0xCA, 0x93, 0xC8};
se_aes_key_set(KS_AES_CTR, keys->temp_key, SE_KEY_128_SIZE);
se_aes_crypt_ctr(KS_AES_CTR, &nfc_keyblob, sizeof(nfc_keyblob), encrypted_keys, sizeof(nfc_keyblob), &nfc_iv);
minerva_periodic_training();
u8 xor_pad[0x20] __attribute__((aligned(4))) = {0};
se_aes_key_set(KS_AES_CTR, nfc_keyblob.ctr_key, SE_KEY_128_SIZE);
se_aes_crypt_ctr(KS_AES_CTR, xor_pad, sizeof(xor_pad), xor_pad, sizeof(xor_pad), nfc_keyblob.ctr_iv);
minerva_periodic_training();
nfc_save_key_t __attribute__((aligned(4))) nfc_save_keys[2] = {0}; nfc_save_key_t __attribute__((aligned(4))) nfc_save_keys[2] = {0};
memcpy(nfc_save_keys[0].hmac_key, nfc_keyblob.hmac_key, sizeof(nfc_keyblob.hmac_key));
memcpy(nfc_save_keys[0].phrase, nfc_keyblob.phrase, sizeof(nfc_keyblob.phrase));
nfc_save_keys[0].seed_size = sizeof(nfc_keyblob.seed);
memcpy(nfc_save_keys[0].seed, nfc_keyblob.seed, sizeof(nfc_keyblob.seed));
memcpy(nfc_save_keys[0].xor_pad, xor_pad, sizeof(xor_pad));
memcpy(nfc_save_keys[1].hmac_key, nfc_keyblob.hmac_key_for_verif, sizeof(nfc_keyblob.hmac_key_for_verif)); _decrypt_amiibo_keys(keys, encrypted_keys, nfc_save_keys);
memcpy(nfc_save_keys[1].phrase, nfc_keyblob.phrase_for_verif, sizeof(nfc_keyblob.phrase_for_verif));
nfc_save_keys[1].seed_size = sizeof(nfc_keyblob.seed_for_verif);
memcpy(nfc_save_keys[1].seed, nfc_keyblob.seed_for_verif, sizeof(nfc_keyblob.seed_for_verif));
memcpy(nfc_save_keys[1].xor_pad, xor_pad, sizeof(xor_pad));
minerva_periodic_training(); minerva_periodic_training();
u8 hash[0x20] = {0}; u32 hash[SE_SHA_256_SIZE / 4] = {0};
se_calc_sha256_oneshot(hash, &nfc_save_keys[0], sizeof(nfc_save_keys)); se_calc_sha256_oneshot(hash, &nfc_save_keys[0], sizeof(nfc_save_keys));
if (memcmp(hash, is_dev ? nfc_blob_hash_dev : nfc_blob_hash, sizeof(hash)) != 0) { if (memcmp(hash, is_dev ? nfc_blob_hash_dev : nfc_blob_hash, sizeof(hash)) != 0) {
EPRINTF("Amiibo hash mismatch. Skipping save."); EPRINTF("Amiibo hash mismatch. Skipping save.");
minerva_change_freq(FREQ_800); } else {
btn_wait();
return;
}
const char *keyfile_path = is_dev ? "sd:/switch/key_dev.bin" : "sd:/switch/key_retail.bin"; const char *keyfile_path = is_dev ? "sd:/switch/key_dev.bin" : "sd:/switch/key_retail.bin";
if (!sd_save_to_file(&nfc_save_keys[0], sizeof(nfc_save_keys), keyfile_path)) { if (!sd_save_to_file(&nfc_save_keys[0], sizeof(nfc_save_keys), keyfile_path)) {
@ -1033,6 +1024,7 @@ void derive_amiibo_keys() {
} else { } else {
EPRINTF("Unable to save Amiibo keys to SD."); EPRINTF("Unable to save Amiibo keys to SD.");
} }
}
gfx_printf("\n%kPress a button to return to the menu.", colors[(color_idx++) % 6]); gfx_printf("\n%kPress a button to return to the menu.", colors[(color_idx++) % 6]);
minerva_change_freq(FREQ_800); minerva_change_freq(FREQ_800);