Atmosphere/fusee/fusee-secondary/src/loader.c
2018-05-13 23:49:50 +02:00

313 lines
12 KiB
C

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/stat.h>
#include "utils.h"
#include "loader.h"
#include "fs_utils.h"
#include "stage2.h"
#include "lib/ini.h"
static loader_ctx_t g_loader_ctx = {0};
loader_ctx_t *get_loader_ctx(void) {
return &g_loader_ctx;
}
static int loadlist_entry_ini_handler(void *user, const char *section, const char *name, const char *value) {
load_file_t *load_file_ctx = (load_file_t *)user;
uintptr_t x = 0;
const char *ext = NULL;
if (strcmp(section, "stage2") == 0) {
if (strstr(name, load_file_ctx->key) == name) {
ext = name + strlen(load_file_ctx->key);
if (strcmp(ext, "_path") == 0) {
/* Copy in the path. */
strncpy(load_file_ctx->path, value, sizeof(load_file_ctx->path));
} else if (strcmp(ext, "_addr") == 0) {
/* Read in load address as a hex string. */
sscanf(value, "%x", &x);
load_file_ctx->load_address = x;
} else {
return 0;
}
} else {
return 0;
}
} else {
return 0;
}
return 1;
}
bool validate_load_address(uintptr_t load_addr) {
/* TODO: Actually validate addresses. */
(void)(load_addr);
return true;
}
void load_list_entry(const char *key) {
load_file_t load_file_ctx = {0};
struct stat st;
size_t size;
size_t entry_num;
chainloader_entry_t *entry;
load_file_ctx.key = key;
if (ini_parse_string(get_loader_ctx()->bct0, loadlist_entry_ini_handler, &load_file_ctx) < 0) {
printf("Error: Failed to parse BCT.ini!\n");
generic_panic();
}
if (load_file_ctx.load_address == 0 || load_file_ctx.path[0] == '\x00') {
printf("Error: Failed to determine where to load %s!\n", key);
generic_panic();
}
if (!check_32bit_address_loadable(load_file_ctx.load_address)) {
printf("Error: Load address 0x%08x is invalid (%s)!\n", load_file_ctx.load_address, key);
generic_panic();
}
if (stat(load_file_ctx.path, &st) == -1) {
printf("Error: Failed to stat file %s: %s!\n", load_file_ctx.path, strerror(errno));
generic_panic();
}
size = (size_t)st.st_size;
if (!check_32bit_address_range_loadable(load_file_ctx.load_address, size)) {
printf("Error: %s has an invalid load address & size combination!\n", key);
generic_panic();
}
entry_num = g_chainloader_num_entries++;
entry = &g_chainloader_entries[entry_num];
entry->load_address = load_file_ctx.load_address;
entry->size = size;
entry->num = entry_num;
strcpy(get_loader_ctx()->file_paths[entry_num], load_file_ctx.path);
get_loader_ctx()->nb_files++;
/* Check for special keys. */
if (strcmp(key, LOADER_PACKAGE2_KEY) == 0) {
get_loader_ctx()->package2_loadfile = load_file_ctx;
} else if (strcmp(key, LOADER_EXOSPHERE_KEY) == 0) {
get_loader_ctx()->exosphere_loadfile = load_file_ctx;
} else if (strcmp(key, LOADER_TSECFW_KEY) == 0) {
get_loader_ctx()->tsecfw_loadfile = load_file_ctx;
} else if (strcmp(key, LOADER_WARMBOOT_KEY) == 0) {
get_loader_ctx()->warmboot_loadfile = load_file_ctx;
}
}
void parse_loadlist(const char *ll) {
printf("Parsing load list: %s\n", ll);
char load_list[0x200] = {0};
strncpy(load_list, ll, 0x200);
char *entry, *p;
/* entry will point to the start of the current entry. p will point to the current location in the list. */
entry = load_list;
p = load_list;
while (*p) {
if (*p == ' ' || *p == '\t') {
/* We're at the end of an entry. */
*p = '\x00';
/* Load the entry. */
load_list_entry(entry);
/* Skip to the next delimiter. */
for (; *p == ' ' || *p == '\t' || *p == '\x00'; p++) { }
if (*p != '|') {
printf("Error: Load list is malformed!\n");
generic_panic();
} else {
/* Skip to the next entry. */
for (; *p == ' ' || *p == '\t' || *p == '|'; p++) { }
entry = p;
}
}
p++;
if (*p == '\x00') {
/* We're at the end of the line, load the last entry */
load_list_entry(entry);
}
}
}
static int loadlist_ini_handler(void *user, const char *section, const char *name, const char *value) {
loader_ctx_t *loader_ctx = (loader_ctx_t *)user;
uintptr_t x = 0;
if (strcmp(section, "stage2") == 0) {
if (strcmp(name, LOADER_LOADLIST_KEY) == 0) {
parse_loadlist(value);
} else if (strcmp(name, LOADER_ENTRYPOINT_KEY) == 0) {
/* Read in entrypoint as a hex string. */
sscanf(value, "%x", &x);
loader_ctx->chainload_entrypoint = x;
} else if (strcmp(name, LOADER_CUSTOMSPLASH_KEY) == 0) {
strncpy(loader_ctx->custom_splash_path, value, sizeof(loader_ctx->custom_splash_path));
} else {
return 0;
}
} else {
return 0;
}
return 1;
}
static int chainloader_entry_comparator(const void *a, const void *b) {
const chainloader_entry_t *e1 = (const chainloader_entry_t *)a;
const chainloader_entry_t *e2 = (const chainloader_entry_t *)b;
return (int)(e1->load_address - e2->load_address);
}
static uintptr_t find_carveout(chainloader_entry_t *entries, size_t num_entries, size_t requested) {
for(size_t i = 0; i < num_entries; i++) {
uintptr_t lbound = entries[i].load_address + entries[i].size;
if (check_32bit_address_range_loadable(lbound, requested)) {
if (i == num_entries - 1 || lbound + requested <= entries[i + 1].load_address)
return lbound;
}
}
return 0;
}
void load_payload(const char *bct0) {
loader_ctx_t *ctx = get_loader_ctx();
bool can_load_in_place = true;
extern uint8_t __chainloader_start__[], __chainloader_end__[];
extern uint8_t __stack_bottom__[], __stack_top__[];
extern uint8_t __heap_start__[], __heap_end__[];
extern uint8_t __start__[], __end__[];
static chainloader_entry_t nonallocatable_entries[] = {
{.load_address = 0x00000000, .size = 0x40010000}, /* Unknown/Invalid + Low IRAM */
{.load_address = 0x40040000, .size = 0x80000000 - 0x40040000}, /* Invalid/MMIO */
{.load_address = (uintptr_t)__chainloader_start__, .size = 0},
{.load_address = (uintptr_t)__stack_bottom__, .size = 0},
{.load_address = (uintptr_t)__heap_start__, .size = 0},
{.load_address = (uintptr_t)__start__, .size = 0},
{.load_address = 0, .size = 0}, /* Min to max loaded address */
};
static const size_t num_nonallocatable_entries = sizeof(nonallocatable_entries) / sizeof(nonallocatable_entries[0]);
if (nonallocatable_entries[2].size == 0) {
/* Initializers aren't computable at load time */
nonallocatable_entries[2].size = __chainloader_end__ - __chainloader_start__;
nonallocatable_entries[3].size = __stack_top__ - __stack_bottom__;
nonallocatable_entries[4].size = __heap_end__ - __heap_start__;
nonallocatable_entries[5].size = __end__ - __start__;
}
/* Set BCT0 global. */
ctx->bct0 = bct0;
if (ini_parse_string(ctx->bct0, loadlist_ini_handler, ctx) < 0) {
printf("Error: Failed to parse BCT.ini!\n");
generic_panic();
}
/* Sort the entries by ascending load addresses */
qsort(g_chainloader_entries, g_chainloader_num_entries, sizeof(chainloader_entry_t), chainloader_entry_comparator);
/* Check for possible overlap and find the entrypoint, also determine whether we can load in-place */
ctx->file_id_of_entrypoint = ctx->nb_files;
for (size_t i = 0; i < ctx->nb_files; i++) {
if (i != ctx->nb_files - 1 &&
overlaps(
g_chainloader_entries[i].load_address,
g_chainloader_entries[i].load_address + g_chainloader_entries[i].size,
g_chainloader_entries[i + 1].load_address,
g_chainloader_entries[i + 1].load_address + g_chainloader_entries[i + 1].size
)
) {
printf(
"Error: Loading ranges for files %s and %s overlap!\n",
ctx->file_paths[g_chainloader_entries[i].num],
ctx->file_paths[g_chainloader_entries[i + 1].num]
);
generic_panic();
}
if(ctx->chainload_entrypoint >= g_chainloader_entries[i].load_address &&
ctx->chainload_entrypoint < g_chainloader_entries[i].load_address + g_chainloader_entries[i].size) {
ctx->file_id_of_entrypoint = g_chainloader_entries[i].num;
}
can_load_in_place = can_load_in_place &&
check_32bit_address_range_in_program(
g_chainloader_entries[i].load_address,
g_chainloader_entries[i].load_address + g_chainloader_entries[i].size
);
}
if (ctx->chainload_entrypoint != 0 && ctx->file_id_of_entrypoint >= ctx->nb_files) {
printf("Error: Entrypoint not in range of any of the files!\n");
generic_panic();
}
if (ctx->chainload_entrypoint == 0 && !can_load_in_place) {
printf("Error: Files have to be loaded in place when booting Horizon!\n");
generic_panic();
}
if (can_load_in_place) {
for (size_t i = 0; i < ctx->nb_files; i++) {
chainloader_entry_t *entry = &g_chainloader_entries[i];
entry->src_address = entry->load_address;
if (read_from_file((void *)entry->src_address, entry->size, ctx->file_paths[entry->num]) != entry->size) {
printf("Error: Failed to read file %s: %s!\n", ctx->file_paths[entry->num], strerror(errno));
generic_panic();
}
}
} else {
size_t total_size = 0;
uintptr_t carveout, min_addr, max_addr, pos;
for (size_t i = 0; i < ctx->nb_files; i++) {
total_size += g_chainloader_entries[i].size;
}
min_addr = g_chainloader_entries[g_chainloader_num_entries - 1].load_address;
max_addr = g_chainloader_entries[g_chainloader_num_entries - 1].load_address +
g_chainloader_entries[g_chainloader_num_entries - 1].size;
nonallocatable_entries[num_nonallocatable_entries - 1].load_address = min_addr;
nonallocatable_entries[num_nonallocatable_entries - 1].size = max_addr - min_addr;
/* We need to find a carveout, first outside the loaded range, then inside */
qsort(nonallocatable_entries, num_nonallocatable_entries, sizeof(chainloader_entry_t), chainloader_entry_comparator);
carveout = find_carveout(nonallocatable_entries, num_nonallocatable_entries, total_size);
if (carveout == 0) {
carveout = find_carveout(g_chainloader_entries, g_chainloader_num_entries, total_size);
}
if (carveout == 0) {
printf("Error: Failed to find a carveout!\n");
generic_panic();
}
/* Finally, read the files into the carveout */
pos = carveout;
for (size_t i = 0; i < ctx->nb_files; i++) {
chainloader_entry_t *entry = &g_chainloader_entries[i];
entry->src_address = pos;
if (read_from_file((void *)entry->src_address, entry->size, ctx->file_paths[entry->num]) != entry->size) {
printf("Error: Failed to read file %s: %s!\n", ctx->file_paths[entry->num], strerror(errno));
generic_panic();
}
pos += entry->size;
}
}
}