kern: add (and use) generic KSystemControlBase

This commit is contained in:
Michael Scire 2021-10-25 15:07:24 -07:00 committed by SciresM
parent 1f8bf41f0b
commit 273f4a87ae
23 changed files with 704 additions and 988 deletions

View file

@ -0,0 +1,95 @@
/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <mesosphere/kern_common.hpp>
#include <mesosphere/kern_select_cpu.hpp>
#include <mesosphere/kern_select_interrupt_manager.hpp>
namespace ams::kern::arch::arm64::smc {
template<int SmcId, bool DisableInterrupt>
void SecureMonitorCall(u64 *buf) {
/* Load arguments into registers. */
register u64 x0 asm("x0") = buf[0];
register u64 x1 asm("x1") = buf[1];
register u64 x2 asm("x2") = buf[2];
register u64 x3 asm("x3") = buf[3];
register u64 x4 asm("x4") = buf[4];
register u64 x5 asm("x5") = buf[5];
register u64 x6 asm("x6") = buf[6];
register u64 x7 asm("x7") = buf[7];
/* Perform the call. */
if constexpr (DisableInterrupt) {
KScopedInterruptDisable di;
/* Backup the current thread pointer. */
const uintptr_t current_thread_pointer_value = cpu::GetCurrentThreadPointerValue();
__asm__ __volatile__("smc %c[smc_id]"
: "+r"(x0), "+r"(x1), "+r"(x2), "+r"(x3), "+r"(x4), "+r"(x5), "+r"(x6), "+r"(x7)
: [smc_id]"i"(SmcId)
: "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "x17", "x18", "cc", "memory"
);
/* Restore the current thread pointer into X18. */
cpu::SetCurrentThreadPointerValue(current_thread_pointer_value);
} else {
/* Backup the current thread pointer. */
const uintptr_t current_thread_pointer_value = cpu::GetCurrentThreadPointerValue();
__asm__ __volatile__("smc %c[smc_id]"
: "+r"(x0), "+r"(x1), "+r"(x2), "+r"(x3), "+r"(x4), "+r"(x5), "+r"(x6), "+r"(x7)
: [smc_id]"i"(SmcId)
: "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "x17", "x18", "cc", "memory"
);
/* Restore the current thread pointer into X18. */
cpu::SetCurrentThreadPointerValue(current_thread_pointer_value);
}
/* Store arguments to output. */
buf[0] = x0;
buf[1] = x1;
buf[2] = x2;
buf[3] = x3;
buf[4] = x4;
buf[5] = x5;
buf[6] = x6;
buf[7] = x7;
}
enum PsciFunction {
PsciFunction_CpuSuspend = 0xC4000001,
PsciFunction_CpuOff = 0x84000002,
PsciFunction_CpuOn = 0xC4000003,
};
template<int SmcId, bool DisableInterrupt>
u64 PsciCall(PsciFunction function, u64 x1 = 0, u64 x2 = 0, u64 x3 = 0, u64 x4 = 0, u64 x5 = 0, u64 x6 = 0, u64 x7 = 0) {
ams::svc::lp64::SecureMonitorArguments args = { { function, x1, x2, x3, x4, x5, x6, x7 } };
SecureMonitorCall<SmcId, DisableInterrupt>(args.r);
return args.r[0];
}
template<int SmcId, bool DisableInterrupt>
u64 CpuOn(u64 core_id, uintptr_t entrypoint, uintptr_t arg) {
return PsciCall<SmcId, DisableInterrupt>(PsciFunction_CpuOn, core_id, entrypoint, arg);
}
}

View file

@ -15,9 +15,12 @@
*/
#pragma once
#include <mesosphere/kern_common.hpp>
#include <mesosphere/kern_k_typed_address.hpp>
namespace ams::kern {
constexpr inline KPhysicalAddress MainMemoryAddress = 0x80000000;
constexpr inline size_t MainMemorySize = 4_GB;
constexpr inline size_t MainMemorySizeMax = 8_GB;

View file

@ -15,23 +15,17 @@
*/
#pragma once
#include <mesosphere/kern_common.hpp>
namespace ams::kern {
struct InitialProcessBinaryLayout;
}
#include <mesosphere/kern_k_system_control_base.hpp>
namespace ams::kern::board::nintendo::nx {
class KSystemControl {
class KSystemControl : public KSystemControlBase {
public:
class Init {
class Init : public KSystemControlBase::Init {
public:
/* Initialization. */
static size_t GetRealMemorySize();
static size_t GetIntendedMemorySize();
static KPhysicalAddress GetKernelPhysicalBaseAddress(uintptr_t base_address);
static void GetInitialProcessBinaryLayout(InitialProcessBinaryLayout *out);
static bool ShouldIncreaseThreadResourceLimit();
static void CpuOn(u64 core_id, uintptr_t entrypoint, uintptr_t arg);
static size_t GetApplicationPoolSize();
@ -40,7 +34,7 @@ namespace ams::kern::board::nintendo::nx {
static u8 GetDebugLogUartPort();
/* Randomness. */
static void GenerateRandomBytes(void *dst, size_t size);
static void GenerateRandom(u64 *dst, size_t count);
static u64 GenerateRandomRange(u64 min, u64 max);
};
public:
@ -50,7 +44,7 @@ namespace ams::kern::board::nintendo::nx {
static NOINLINE u32 GetCreateProcessMemoryPool();
/* Randomness. */
static void GenerateRandomBytes(void *dst, size_t size);
static void GenerateRandom(u64 *dst, size_t count);
static u64 GenerateRandomRange(u64 min, u64 max);
static u64 GenerateRandomU64();
@ -58,23 +52,12 @@ namespace ams::kern::board::nintendo::nx {
static void ReadWriteRegisterPrivileged(u32 *out, ams::svc::PhysicalAddress address, u32 mask, u32 value);
static Result ReadWriteRegister(u32 *out, ams::svc::PhysicalAddress address, u32 mask, u32 value);
static ALWAYS_INLINE u32 ReadRegisterPrivileged(ams::svc::PhysicalAddress address) {
u32 v;
ReadWriteRegisterPrivileged(std::addressof(v), address, 0x00000000u, 0);
return v;
}
static ALWAYS_INLINE void WriteRegisterPrivileged(ams::svc::PhysicalAddress address, u32 value) {
u32 v;
ReadWriteRegisterPrivileged(std::addressof(v), address, 0xFFFFFFFFu, value);
}
/* Power management. */
static void SleepSystem();
static NORETURN void StopSystem(void *arg = nullptr);
/* User access. */
static void CallSecureMonitorFromUser(ams::svc::lp64::SecureMonitorArguments *args);
static void CallSecureMonitorFromUserImpl(ams::svc::lp64::SecureMonitorArguments *args);
/* Secure Memory. */
static size_t CalculateRequiredSecureMemorySize(size_t size, u32 pool);

View file

@ -15,9 +15,12 @@
*/
#pragma once
#include <mesosphere/kern_common.hpp>
#include <mesosphere/kern_k_typed_address.hpp>
namespace ams::kern {
constexpr inline KPhysicalAddress MainMemoryAddress = 0x40000000;
constexpr inline size_t MainMemorySize = 4_GB;
constexpr inline size_t MainMemorySizeMax = 8_GB;

View file

@ -15,71 +15,14 @@
*/
#pragma once
#include <mesosphere/kern_common.hpp>
namespace ams::kern {
struct InitialProcessBinaryLayout;
}
#include <mesosphere/kern_k_system_control_base.hpp>
namespace ams::kern::board::qemu::virt {
class KSystemControl {
class KSystemControl : public KSystemControlBase {
public:
class Init {
public:
/* Initialization. */
static size_t GetIntendedMemorySize();
static KPhysicalAddress GetKernelPhysicalBaseAddress(uintptr_t base_address);
static void GetInitialProcessBinaryLayout(InitialProcessBinaryLayout *out);
static bool ShouldIncreaseThreadResourceLimit();
static void CpuOn(u64 core_id, uintptr_t entrypoint, uintptr_t arg);
static size_t GetApplicationPoolSize();
static size_t GetAppletPoolSize();
static size_t GetMinimumNonSecureSystemPoolSize();
static u8 GetDebugLogUartPort();
/* Randomness. */
static void GenerateRandomBytes(void *dst, size_t size);
static u64 GenerateRandomRange(u64 min, u64 max);
};
public:
/* Initialization. */
static NOINLINE void InitializePhase1();
static NOINLINE void InitializePhase2();
static NOINLINE u32 GetCreateProcessMemoryPool();
/* Randomness. */
static void GenerateRandomBytes(void *dst, size_t size);
static u64 GenerateRandomRange(u64 min, u64 max);
static u64 GenerateRandomU64();
/* Privileged Access. */
static void ReadWriteRegisterPrivileged(u32 *out, ams::svc::PhysicalAddress address, u32 mask, u32 value);
static Result ReadWriteRegister(u32 *out, ams::svc::PhysicalAddress address, u32 mask, u32 value);
static ALWAYS_INLINE u32 ReadRegisterPrivileged(ams::svc::PhysicalAddress address) {
u32 v;
ReadWriteRegisterPrivileged(std::addressof(v), address, 0x00000000u, 0);
return v;
}
static ALWAYS_INLINE void WriteRegisterPrivileged(ams::svc::PhysicalAddress address, u32 value) {
u32 v;
ReadWriteRegisterPrivileged(std::addressof(v), address, 0xFFFFFFFFu, value);
}
/* Power management. */
static void SleepSystem();
static NORETURN void StopSystem(void *arg = nullptr);
/* User access. */
static void CallSecureMonitorFromUser(ams::svc::lp64::SecureMonitorArguments *args);
/* Secure Memory. */
static size_t CalculateRequiredSecureMemorySize(size_t size, u32 pool);
static Result AllocateSecureMemory(KVirtualAddress *out, size_t size, u32 pool);
static void FreeSecureMemory(KVirtualAddress address, size_t size, u32 pool);
};
}

View file

@ -212,13 +212,17 @@ namespace ams::kern {
static NOINLINE auto GetKernelPageTableHeapRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramKernelPtHeap); }
static NOINLINE auto GetKernelInitPageTableRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramKernelInitPt); }
static NOINLINE auto GetKernelPoolManagementRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramPoolManagement); }
static NOINLINE auto GetKernelPoolPartitionRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramPoolPartition); }
static NOINLINE auto GetKernelPoolManagementRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramPoolManagement); }
static NOINLINE auto GetKernelSystemPoolRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramSystemPool); }
static NOINLINE auto GetKernelSystemNonSecurePoolRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramSystemNonSecurePool); }
static NOINLINE auto GetKernelAppletPoolRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramAppletPool); }
static NOINLINE auto GetKernelApplicationPoolRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramApplicationPool); }
static NOINLINE bool HasKernelSystemNonSecurePoolRegion() { return GetPhysicalMemoryRegionTree().FindFirstDerived(KMemoryRegionType_DramSystemNonSecurePool) != nullptr; }
static NOINLINE bool HasKernelAppletPoolRegion() { return GetPhysicalMemoryRegionTree().FindFirstDerived(KMemoryRegionType_DramAppletPool) != nullptr; }
static NOINLINE bool HasKernelApplicationPoolRegion() { return GetPhysicalMemoryRegionTree().FindFirstDerived(KMemoryRegionType_DramApplicationPool) != nullptr; }
static NOINLINE auto GetKernelTraceBufferRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_KernelTraceBuffer); }
};

View file

@ -0,0 +1,110 @@
/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <mesosphere/kern_common.hpp>
#include <mesosphere/kern_k_spin_lock.hpp>
namespace ams::kern {
struct InitialProcessBinaryLayout;
}
namespace ams::kern {
class KSystemControlBase {
protected:
/* Nintendo uses std::mt19937_t for randomness. */
/* To save space (and because mt19337_t isn't secure anyway), */
/* We will use TinyMT. */
static constinit inline bool s_initialized_random_generator;
static constinit inline util::TinyMT s_random_generator{util::ConstantInitialize};
static constinit inline KSpinLock s_random_lock;
public:
class Init {
public:
/* Initialization. */
static size_t GetRealMemorySize();
static size_t GetIntendedMemorySize();
static KPhysicalAddress GetKernelPhysicalBaseAddress(KPhysicalAddress base_address);
static void GetInitialProcessBinaryLayout(InitialProcessBinaryLayout *out);
static bool ShouldIncreaseThreadResourceLimit();
static void CpuOn(u64 core_id, uintptr_t entrypoint, uintptr_t arg);
static size_t GetApplicationPoolSize();
static size_t GetAppletPoolSize();
static size_t GetMinimumNonSecureSystemPoolSize();
static u8 GetDebugLogUartPort();
/* Randomness. */
static void GenerateRandom(u64 *dst, size_t count);
static u64 GenerateRandomRange(u64 min, u64 max);
};
public:
/* Initialization. */
static NOINLINE void InitializePhase1(bool skip_target_system = false);
static NOINLINE void InitializePhase2();
static NOINLINE u32 GetCreateProcessMemoryPool();
/* Randomness. */
static void GenerateRandom(u64 *dst, size_t count);
static u64 GenerateRandomRange(u64 min, u64 max);
static u64 GenerateRandomU64();
/* Register access Access. */
static Result ReadWriteRegister(u32 *out, ams::svc::PhysicalAddress address, u32 mask, u32 value);
static void ReadWriteRegisterPrivileged(u32 *out, ams::svc::PhysicalAddress address, u32 mask, u32 value);
static u32 ReadRegisterPrivileged(ams::svc::PhysicalAddress address);
static void WriteRegisterPrivileged(ams::svc::PhysicalAddress address, u32 value);
/* Power management. */
static void SleepSystem();
static NORETURN void StopSystem(void *arg = nullptr);
/* User access. */
#if defined(ATMOSPHERE_ARCH_ARM64)
static void CallSecureMonitorFromUser(ams::svc::lp64::SecureMonitorArguments *args);
#endif
/* Secure Memory. */
static size_t CalculateRequiredSecureMemorySize(size_t size, u32 pool);
static Result AllocateSecureMemory(KVirtualAddress *out, size_t size, u32 pool);
static void FreeSecureMemory(KVirtualAddress address, size_t size, u32 pool);
protected:
template<typename F>
static ALWAYS_INLINE u64 GenerateUniformRange(u64 min, u64 max, F f) {
/* Handle the case where the difference is too large to represent. */
if (max == std::numeric_limits<u64>::max() && min == std::numeric_limits<u64>::min()) {
return f();
}
/* Iterate until we get a value in range. */
const u64 range_size = ((max + 1) - min);
const u64 effective_max = (std::numeric_limits<u64>::max() / range_size) * range_size;
while (true) {
if (const u64 rnd = f(); rnd < effective_max) {
return min + (rnd % range_size);
}
}
}
/* User access. */
#if defined(ATMOSPHERE_ARCH_ARM64)
static void CallSecureMonitorFromUserImpl(ams::svc::lp64::SecureMonitorArguments *args);
#endif
};
}

View file

@ -21,6 +21,7 @@ namespace ams::kern {
class KTargetSystem {
private:
friend class KSystemControlBase;
friend class KSystemControl;
private:
static inline constinit bool s_is_debug_mode;

View file

@ -15,6 +15,7 @@
*/
#pragma once
#include <mesosphere/kern_common.hpp>
#include <mesosphere/kern_k_system_control_base.hpp>
#ifdef ATMOSPHERE_BOARD_NINTENDO_NX
#include <mesosphere/board/nintendo/nx/kern_k_system_control.hpp>
@ -33,3 +34,18 @@
#else
#error "Unknown board for KSystemControl"
#endif
namespace ams::kern {
ALWAYS_INLINE u32 KSystemControlBase::ReadRegisterPrivileged(ams::svc::PhysicalAddress address) {
u32 v;
KSystemControl::ReadWriteRegisterPrivileged(std::addressof(v), address, 0x00000000u, 0);
return v;
}
ALWAYS_INLINE void KSystemControlBase::WriteRegisterPrivileged(ams::svc::PhysicalAddress address, u32 value) {
u32 v;
KSystemControl::ReadWriteRegisterPrivileged(std::addressof(v), address, 0xFFFFFFFFu, value);
}
}

View file

@ -1130,7 +1130,7 @@ namespace ams::kern::board::nintendo::nx {
size_t cur_size;
{
/* Get the current contiguous range. */
KPageTableBase::MemoryRange contig_range = {};
KPageTableBase::MemoryRange contig_range = { .address = Null<KPhysicalAddress>, .size = 0 };
R_TRY(page_table->OpenMemoryRangeForMapDeviceAddressSpace(std::addressof(contig_range), process_address + mapped_size, size - mapped_size, ConvertToKMemoryPermission(device_perm), is_aligned));
/* Ensure we close the range when we're done. */
@ -1288,7 +1288,7 @@ namespace ams::kern::board::nintendo::nx {
MESOSPHERE_ASSERT(((device_address + size - 1) & ~DeviceVirtualAddressMask) == 0);
/* We need to traverse the ranges that make up our mapping, to make sure they're all good. Start by getting a contiguous range. */
KPageTableBase::MemoryRange contig_range = {};
KPageTableBase::MemoryRange contig_range = { .address = Null<KPhysicalAddress>, .size = 0 };
if (R_FAILED(page_table->OpenMemoryRangeForUnmapDeviceAddressSpace(std::addressof(contig_range), process_address, size))) {
return false;
}

View file

@ -73,7 +73,7 @@ namespace ams::kern::board::nintendo::nx {
void PowerOnCpu(int core_id, KPhysicalAddress entry_phys_addr, u64 context_id) {
/* Request the secure monitor power on the core. */
smc::CpuOn(cpu::MultiprocessorAffinityRegisterAccessor().GetCpuOnArgument() | core_id, GetInteger(entry_phys_addr), context_id);
::ams::kern::arch::arm64::smc::CpuOn<smc::SmcId_Supervisor, true>(cpu::MultiprocessorAffinityRegisterAccessor().GetCpuOnArgument() | core_id, GetInteger(entry_phys_addr), context_id);
}
void WaitOtherCpuPowerOff() {

View file

@ -21,8 +21,7 @@ namespace ams::kern::board::nintendo::nx {
namespace {
constexpr uintptr_t DramPhysicalAddress = 0x80000000;
constexpr size_t SecureAlignment = 128_KB;
constexpr size_t SecureAlignment = 128_KB;
/* Global variables for panic. */
constinit bool g_call_smc_on_panic;
@ -38,22 +37,6 @@ namespace ams::kern::board::nintendo::nx {
constinit KPhysicalAddress g_secure_region_phys_addr = Null<KPhysicalAddress>;
constinit size_t g_secure_region_size = 0;
/* Global variables for randomness. */
/* Nintendo uses std::mt19937_t for randomness. */
/* To save space (and because mt19337_t isn't secure anyway), */
/* We will use TinyMT. */
constinit bool g_initialized_random_generator;
constinit util::TinyMT g_random_generator{util::ConstantInitialize};
constinit KSpinLock g_random_lock;
ALWAYS_INLINE size_t GetRealMemorySizeForInit() {
/* TODO: Move this into a header for the MC in general. */
constexpr u32 MemoryControllerConfigurationRegister = 0x70019050;
u32 config_value;
MESOSPHERE_INIT_ABORT_UNLESS(smc::init::ReadWriteRegister(&config_value, MemoryControllerConfigurationRegister, 0, 0));
return static_cast<size_t>(config_value & 0x3FFF) << 20;
}
ALWAYS_INLINE util::BitPack32 GetKernelConfigurationForInit() {
u64 value = 0;
smc::init::GetConfig(&value, 1, smc::ConfigItem::KernelConfiguration);
@ -86,7 +69,7 @@ namespace ams::kern::board::nintendo::nx {
ALWAYS_INLINE u64 GenerateRandomU64ForInit() {
u64 value;
smc::init::GenerateRandomBytes(&value, sizeof(value));
smc::init::GenerateRandomBytes(std::addressof(value), sizeof(value));
return value;
}
@ -96,27 +79,6 @@ namespace ams::kern::board::nintendo::nx {
return value;
}
ALWAYS_INLINE u64 GenerateRandomU64FromGenerator() {
return g_random_generator.GenerateRandomU64();
}
template<typename F>
ALWAYS_INLINE u64 GenerateUniformRange(u64 min, u64 max, F f) {
/* Handle the case where the difference is too large to represent. */
if (max == std::numeric_limits<u64>::max() && min == std::numeric_limits<u64>::min()) {
return f();
}
/* Iterate until we get a value in range. */
const u64 range_size = ((max + 1) - min);
const u64 effective_max = (std::numeric_limits<u64>::max() / range_size) * range_size;
while (true) {
if (const u64 rnd = f(); rnd < effective_max) {
return min + (rnd % range_size);
}
}
}
ALWAYS_INLINE u64 GetConfigU64(smc::ConfigItem which) {
u64 value;
smc::GetConfig(&value, 1, which);
@ -324,6 +286,14 @@ namespace ams::kern::board::nintendo::nx {
}
/* Initialization. */
size_t KSystemControl::Init::GetRealMemorySize() {
/* TODO: Move this into a header for the MC in general. */
constexpr u32 MemoryControllerConfigurationRegister = 0x70019050;
u32 config_value;
MESOSPHERE_INIT_ABORT_UNLESS(smc::init::ReadWriteRegister(&config_value, MemoryControllerConfigurationRegister, 0, 0));
return static_cast<size_t>(config_value & 0x3FFF) << 20;
}
size_t KSystemControl::Init::GetIntendedMemorySize() {
switch (GetKernelConfigurationForInit().Get<smc::KernelConfiguration::MemorySize>()) {
case smc::MemorySize_4GB:
@ -336,23 +306,6 @@ namespace ams::kern::board::nintendo::nx {
}
}
KPhysicalAddress KSystemControl::Init::GetKernelPhysicalBaseAddress(uintptr_t base_address) {
const size_t real_dram_size = GetRealMemorySizeForInit();
const size_t intended_dram_size = KSystemControl::Init::GetIntendedMemorySize();
if (intended_dram_size * 2 < real_dram_size) {
return base_address;
} else {
return base_address + ((real_dram_size - intended_dram_size) / 2);
}
}
void KSystemControl::Init::GetInitialProcessBinaryLayout(InitialProcessBinaryLayout *out) {
*out = {
.address = GetInteger(GetKernelPhysicalBaseAddress(DramPhysicalAddress)) + GetIntendedMemorySize() - KTraceBufferSize - InitialProcessBinarySizeMax,
._08 = 0,
};
}
bool KSystemControl::Init::ShouldIncreaseThreadResourceLimit() {
return GetKernelConfigurationForInit().Get<smc::KernelConfiguration::IncreaseThreadResourceLimit>();
}
@ -424,17 +377,17 @@ namespace ams::kern::board::nintendo::nx {
}
void KSystemControl::Init::CpuOn(u64 core_id, uintptr_t entrypoint, uintptr_t arg) {
smc::init::CpuOn(core_id, entrypoint, arg);
MESOSPHERE_INIT_ABORT_UNLESS((::ams::kern::arch::arm64::smc::CpuOn<smc::SmcId_Supervisor, false>(core_id, entrypoint, arg)) == 0);
}
/* Randomness for Initialization. */
void KSystemControl::Init::GenerateRandomBytes(void *dst, size_t size) {
MESOSPHERE_INIT_ABORT_UNLESS(size <= 0x38);
smc::init::GenerateRandomBytes(dst, size);
void KSystemControl::Init::GenerateRandom(u64 *dst, size_t count) {
MESOSPHERE_INIT_ABORT_UNLESS(count <= 7);
smc::init::GenerateRandomBytes(dst, count * sizeof(u64));
}
u64 KSystemControl::Init::GenerateRandomRange(u64 min, u64 max) {
return GenerateUniformRange(min, max, GenerateRandomU64ForInit);
return KSystemControlBase::GenerateUniformRange(min, max, GenerateRandomU64ForInit);
}
/* System Initialization. */
@ -443,8 +396,8 @@ namespace ams::kern::board::nintendo::nx {
{
u64 seed;
smc::GenerateRandomBytes(std::addressof(seed), sizeof(seed));
g_random_generator.Initialize(reinterpret_cast<u32*>(std::addressof(seed)), sizeof(seed) / sizeof(u32));
g_initialized_random_generator = true;
s_random_generator.Initialize(reinterpret_cast<const u32*>(std::addressof(seed)), sizeof(seed) / sizeof(u32));
s_initialized_random_generator = true;
}
/* Set IsDebugMode. */
@ -483,25 +436,8 @@ namespace ams::kern::board::nintendo::nx {
smc::ConfigureCarveout(0, carveout.GetAddress(), carveout.GetSize());
}
/* System ResourceLimit initialization. */
{
/* Construct the resource limit object. */
KResourceLimit &sys_res_limit = Kernel::GetSystemResourceLimit();
KAutoObject::Create<KResourceLimit>(std::addressof(sys_res_limit));
sys_res_limit.Initialize();
/* Set the initial limits. */
const auto [total_memory_size, kernel_memory_size] = KMemoryLayout::GetTotalAndKernelMemorySizes();
const auto &slab_counts = init::GetSlabResourceCounts();
MESOSPHERE_R_ABORT_UNLESS(sys_res_limit.SetLimitValue(ams::svc::LimitableResource_PhysicalMemoryMax, total_memory_size));
MESOSPHERE_R_ABORT_UNLESS(sys_res_limit.SetLimitValue(ams::svc::LimitableResource_ThreadCountMax, slab_counts.num_KThread));
MESOSPHERE_R_ABORT_UNLESS(sys_res_limit.SetLimitValue(ams::svc::LimitableResource_EventCountMax, slab_counts.num_KEvent));
MESOSPHERE_R_ABORT_UNLESS(sys_res_limit.SetLimitValue(ams::svc::LimitableResource_TransferMemoryCountMax, slab_counts.num_KTransferMemory));
MESOSPHERE_R_ABORT_UNLESS(sys_res_limit.SetLimitValue(ams::svc::LimitableResource_SessionCountMax, slab_counts.num_KSession));
/* Reserve system memory. */
MESOSPHERE_ABORT_UNLESS(sys_res_limit.Reserve(ams::svc::LimitableResource_PhysicalMemoryMax, kernel_memory_size));
}
/* Initialize the system resource limit (and potentially other things). */
KSystemControlBase::InitializePhase1(true);
}
void KSystemControl::InitializePhase2() {
@ -520,11 +456,8 @@ namespace ams::kern::board::nintendo::nx {
g_secure_applet_memory_address = KMemoryLayout::GetLinearVirtualAddress(secure_applet_memory_phys_addr);
}
/* Initialize KTrace. */
if constexpr (IsKTraceEnabled) {
const auto &ktrace = KMemoryLayout::GetKernelTraceBufferRegion();
KTrace::Initialize(ktrace.GetAddress(), ktrace.GetSize());
}
/* Initialize KTrace (and potentially other init). */
KSystemControlBase::InitializePhase2();
}
u32 KSystemControl::GetCreateProcessMemoryPool() {
@ -546,29 +479,29 @@ namespace ams::kern::board::nintendo::nx {
}
/* Randomness. */
void KSystemControl::GenerateRandomBytes(void *dst, size_t size) {
MESOSPHERE_INIT_ABORT_UNLESS(size <= 0x38);
smc::GenerateRandomBytes(dst, size);
void KSystemControl::GenerateRandom(u64 *dst, size_t count) {
MESOSPHERE_INIT_ABORT_UNLESS(count <= 7);
smc::GenerateRandomBytes(dst, count * sizeof(u64));
}
u64 KSystemControl::GenerateRandomRange(u64 min, u64 max) {
KScopedInterruptDisable intr_disable;
KScopedSpinLock lk(g_random_lock);
KScopedSpinLock lk(s_random_lock);
if (AMS_LIKELY(g_initialized_random_generator)) {
return GenerateUniformRange(min, max, GenerateRandomU64FromGenerator);
if (AMS_LIKELY(s_initialized_random_generator)) {
return KSystemControlBase::GenerateUniformRange(min, max, [] ALWAYS_INLINE_LAMBDA () -> u64 { return s_random_generator.GenerateRandomU64(); });
} else {
return GenerateUniformRange(min, max, GenerateRandomU64FromSmc);
return KSystemControlBase::GenerateUniformRange(min, max, GenerateRandomU64FromSmc);
}
}
u64 KSystemControl::GenerateRandomU64() {
KScopedInterruptDisable intr_disable;
KScopedSpinLock lk(g_random_lock);
KScopedSpinLock lk(s_random_lock);
if (AMS_LIKELY(g_initialized_random_generator)) {
return GenerateRandomU64FromGenerator();
if (AMS_LIKELY(s_initialized_random_generator)) {
return s_random_generator.GenerateRandomU64();
} else {
return GenerateRandomU64FromSmc();
}
@ -672,52 +605,18 @@ namespace ams::kern::board::nintendo::nx {
}
/* User access. */
void KSystemControl::CallSecureMonitorFromUser(ams::svc::lp64::SecureMonitorArguments *args) {
/* Get the function id for the current call. */
u64 function_id = args->r[0];
/* We'll need to map in pages if arguments are pointers. Prepare page groups to do so. */
auto &page_table = GetCurrentProcess().GetPageTable();
auto *bim = page_table.GetBlockInfoManager();
constexpr size_t MaxMappedRegisters = 7;
std::array<KPageGroup, MaxMappedRegisters> page_groups = { KPageGroup(bim), KPageGroup(bim), KPageGroup(bim), KPageGroup(bim), KPageGroup(bim), KPageGroup(bim), KPageGroup(bim), };
for (size_t i = 0; i < MaxMappedRegisters; i++) {
const size_t reg_id = i + 1;
if (function_id & (1ul << (8 + reg_id))) {
/* Create and open a new page group for the address. */
KVirtualAddress virt_addr = args->r[reg_id];
if (R_SUCCEEDED(page_table.MakeAndOpenPageGroup(std::addressof(page_groups[i]), util::AlignDown(GetInteger(virt_addr), PageSize), 1, KMemoryState_None, KMemoryState_None, KMemoryPermission_UserReadWrite, KMemoryPermission_UserReadWrite, KMemoryAttribute_None, KMemoryAttribute_None))) {
/* Translate the virtual address to a physical address. */
const auto it = page_groups[i].begin();
MESOSPHERE_ASSERT(it != page_groups[i].end());
MESOSPHERE_ASSERT(it->GetNumPages() == 1);
args->r[reg_id] = GetInteger(it->GetAddress()) | (GetInteger(virt_addr) & (PageSize - 1));
} else {
/* If we couldn't map, we should clear the address. */
args->r[reg_id] = 0;
}
}
}
void KSystemControl::CallSecureMonitorFromUserImpl(ams::svc::lp64::SecureMonitorArguments *args) {
/* Invoke the secure monitor. */
smc::CallSecureMonitorFromUser(args);
/* Make sure that we close any pages that we opened. */
for (size_t i = 0; i < MaxMappedRegisters; i++) {
page_groups[i].Close();
}
return smc::CallSecureMonitorFromUser(args);
}
/* Secure Memory. */
size_t KSystemControl::CalculateRequiredSecureMemorySize(size_t size, u32 pool) {
if (pool == KMemoryManager::Pool_Applet) {
return 0;
} else {
return KSystemControlBase::CalculateRequiredSecureMemorySize(size, pool);
}
return size;
}
Result KSystemControl::AllocateSecureMemory(KVirtualAddress *out, size_t size, u32 pool) {

View file

@ -20,10 +20,6 @@ namespace ams::kern::board::nintendo::nx::smc {
namespace {
struct SecureMonitorArguments {
u64 x[8];
};
enum UserFunctionId : u32 {
UserFunctionId_SetConfig = 0xC3000401,
UserFunctionId_GetConfigUser = 0xC3000002,
@ -45,9 +41,6 @@ namespace ams::kern::board::nintendo::nx::smc {
};
enum FunctionId : u32 {
FunctionId_CpuSuspend = 0xC4000001,
FunctionId_CpuOff = 0x84000002,
FunctionId_CpuOn = 0xC4000003,
FunctionId_GetConfig = 0xC3000004,
FunctionId_GenerateRandomBytes = 0xC3000005,
FunctionId_Panic = 0xC3000006,
@ -58,171 +51,60 @@ namespace ams::kern::board::nintendo::nx::smc {
FunctionId_SetConfig = 0xC3000409,
};
void CallPrivilegedSecureMonitorFunction(SecureMonitorArguments &args) {
/* Load arguments into registers. */
register u64 x0 asm("x0") = args.x[0];
register u64 x1 asm("x1") = args.x[1];
register u64 x2 asm("x2") = args.x[2];
register u64 x3 asm("x3") = args.x[3];
register u64 x4 asm("x4") = args.x[4];
register u64 x5 asm("x5") = args.x[5];
register u64 x6 asm("x6") = args.x[6];
register u64 x7 asm("x7") = args.x[7];
/* Actually make the call. */
{
/* Disable interrupts while making the call. */
KScopedInterruptDisable intr_disable;
{
/* Backup the current thread pointer. */
const uintptr_t current_thread_pointer_value = cpu::GetCurrentThreadPointerValue();
__asm__ __volatile__("smc #1"
: "+r"(x0), "+r"(x1), "+r"(x2), "+r"(x3), "+r"(x4), "+r"(x5), "+r"(x6), "+r"(x7)
:
: "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "x17", "x18", "cc", "memory"
);
/* Restore the current thread pointer into X18. */
cpu::SetCurrentThreadPointerValue(current_thread_pointer_value);
/* Store arguments to output. */
args.x[0] = x0;
args.x[1] = x1;
args.x[2] = x2;
args.x[3] = x3;
args.x[4] = x4;
args.x[5] = x5;
args.x[6] = x6;
args.x[7] = x7;
}
}
}
void CallUserSecureMonitorFunction(ams::svc::lp64::SecureMonitorArguments *args) {
/* Load arguments into registers. */
register u64 x0 asm("x0") = args->r[0];
register u64 x1 asm("x1") = args->r[1];
register u64 x2 asm("x2") = args->r[2];
register u64 x3 asm("x3") = args->r[3];
register u64 x4 asm("x4") = args->r[4];
register u64 x5 asm("x5") = args->r[5];
register u64 x6 asm("x6") = args->r[6];
register u64 x7 asm("x7") = args->r[7];
/* Actually make the call. */
{
/* Disable interrupts while making the call. */
KScopedInterruptDisable intr_disable;
{
/* Backup the current thread pointer. */
const uintptr_t current_thread_pointer_value = cpu::GetCurrentThreadPointerValue();
__asm__ __volatile__("smc #0"
: "+r"(x0), "+r"(x1), "+r"(x2), "+r"(x3), "+r"(x4), "+r"(x5), "+r"(x6), "+r"(x7)
:
: "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "x17", "x18", "cc", "memory"
);
/* Restore the current thread pointer into X18. */
cpu::SetCurrentThreadPointerValue(current_thread_pointer_value);
/* Store arguments to output. */
args->r[0] = x0;
args->r[1] = x1;
args->r[2] = x2;
args->r[3] = x3;
args->r[4] = x4;
args->r[5] = x5;
args->r[6] = x6;
args->r[7] = x7;
}
}
}
void CallPrivilegedSecureMonitorFunctionForInit(SecureMonitorArguments &args) {
/* Load arguments into registers. */
register u64 x0 asm("x0") = args.x[0];
register u64 x1 asm("x1") = args.x[1];
register u64 x2 asm("x2") = args.x[2];
register u64 x3 asm("x3") = args.x[3];
register u64 x4 asm("x4") = args.x[4];
register u64 x5 asm("x5") = args.x[5];
register u64 x6 asm("x6") = args.x[6];
register u64 x7 asm("x7") = args.x[7];
/* Actually make the call. */
__asm__ __volatile__("smc #1"
: "+r"(x0), "+r"(x1), "+r"(x2), "+r"(x3), "+r"(x4), "+r"(x5), "+r"(x6), "+r"(x7)
:
: "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "x17", "x18", "cc", "memory"
);
/* Store arguments to output. */
args.x[0] = x0;
args.x[1] = x1;
args.x[2] = x2;
args.x[3] = x3;
args.x[4] = x4;
args.x[5] = x5;
args.x[6] = x6;
args.x[7] = x7;
}
/* Global lock for generate random bytes. */
KSpinLock g_generate_random_lock;
constinit KSpinLock g_generate_random_lock;
}
/* SMC functionality needed for init. */
namespace init {
void CpuOn(u64 core_id, uintptr_t entrypoint, uintptr_t arg) {
SecureMonitorArguments args = { FunctionId_CpuOn, core_id, entrypoint, arg };
CallPrivilegedSecureMonitorFunctionForInit(args);
}
void GetConfig(u64 *out, size_t num_qwords, ConfigItem config_item) {
SecureMonitorArguments args = { FunctionId_GetConfig, static_cast<u32>(config_item) };
CallPrivilegedSecureMonitorFunctionForInit(args);
MESOSPHERE_INIT_ABORT_UNLESS((static_cast<SmcResult>(args.x[0]) == SmcResult::Success));
ams::svc::lp64::SecureMonitorArguments args = { { FunctionId_GetConfig, static_cast<u32>(config_item) } };
::ams::kern::arch::arm64::smc::SecureMonitorCall<SmcId_Supervisor, false>(args.r);
MESOSPHERE_INIT_ABORT_UNLESS((static_cast<SmcResult>(args.r[0]) == SmcResult::Success));
for (size_t i = 0; i < num_qwords && i < 7; i++) {
out[i] = args.x[1 + i];
out[i] = args.r[1 + i];
}
}
void GenerateRandomBytes(void *dst, size_t size) {
/* Call SmcGenerateRandomBytes() */
SecureMonitorArguments args = { FunctionId_GenerateRandomBytes, size };
MESOSPHERE_INIT_ABORT_UNLESS(size <= sizeof(args) - sizeof(args.x[0]));
ams::svc::lp64::SecureMonitorArguments args = { { FunctionId_GenerateRandomBytes, size } };
MESOSPHERE_INIT_ABORT_UNLESS(size <= sizeof(args) - sizeof(args.r[0]));
CallPrivilegedSecureMonitorFunctionForInit(args);
MESOSPHERE_INIT_ABORT_UNLESS((static_cast<SmcResult>(args.x[0]) == SmcResult::Success));
::ams::kern::arch::arm64::smc::SecureMonitorCall<SmcId_Supervisor, false>(args.r);
MESOSPHERE_INIT_ABORT_UNLESS((static_cast<SmcResult>(args.r[0]) == SmcResult::Success));
/* Copy output. */
std::memcpy(dst, std::addressof(args.x[1]), size);
std::memcpy(dst, std::addressof(args.r[1]), size);
}
bool ReadWriteRegister(u32 *out, u64 address, u32 mask, u32 value) {
SecureMonitorArguments args = { FunctionId_ReadWriteRegister, address, mask, value };
CallPrivilegedSecureMonitorFunctionForInit(args);
*out = args.x[1];
return static_cast<SmcResult>(args.x[0]) == SmcResult::Success;
ams::svc::lp64::SecureMonitorArguments args = { { FunctionId_ReadWriteRegister, address, mask, value } };
::ams::kern::arch::arm64::smc::SecureMonitorCall<SmcId_Supervisor, false>(args.r);
MESOSPHERE_INIT_ABORT_UNLESS((static_cast<SmcResult>(args.r[0]) == SmcResult::Success));
*out = args.r[1];
return static_cast<SmcResult>(args.r[0]) == SmcResult::Success;
}
}
bool TryGetConfig(u64 *out, size_t num_qwords, ConfigItem config_item) {
SecureMonitorArguments args = { FunctionId_GetConfig, static_cast<u32>(config_item) };
CallPrivilegedSecureMonitorFunction(args);
if (static_cast<SmcResult>(args.x[0]) != SmcResult::Success) {
ams::svc::lp64::SecureMonitorArguments args = { { FunctionId_GetConfig, static_cast<u32>(config_item) } };
::ams::kern::arch::arm64::smc::SecureMonitorCall<SmcId_Supervisor, true>(args.r);
if (AMS_UNLIKELY(static_cast<SmcResult>(args.r[0]) != SmcResult::Success)) {
return false;
}
for (size_t i = 0; i < num_qwords && i < 7; i++) {
out[i] = args.x[1 + i];
out[i] = args.r[1 + i];
}
return true;
@ -233,55 +115,58 @@ namespace ams::kern::board::nintendo::nx::smc {
}
bool SetConfig(ConfigItem config_item, u64 value) {
SecureMonitorArguments args = { FunctionId_SetConfig, static_cast<u32>(config_item), 0, value };
CallPrivilegedSecureMonitorFunction(args);
return static_cast<SmcResult>(args.x[0]) == SmcResult::Success;
ams::svc::lp64::SecureMonitorArguments args = { { FunctionId_SetConfig, static_cast<u32>(config_item), 0, value } };
::ams::kern::arch::arm64::smc::SecureMonitorCall<SmcId_Supervisor, true>(args.r);
return static_cast<SmcResult>(args.r[0]) == SmcResult::Success;
}
bool ReadWriteRegister(u32 *out, ams::svc::PhysicalAddress address, u32 mask, u32 value) {
SecureMonitorArguments args = { FunctionId_ReadWriteRegister, address, mask, value };
CallPrivilegedSecureMonitorFunction(args);
*out = static_cast<u32>(args.x[1]);
return static_cast<SmcResult>(args.x[0]) == SmcResult::Success;
ams::svc::lp64::SecureMonitorArguments args = { { FunctionId_ReadWriteRegister, address, mask, value } };
::ams::kern::arch::arm64::smc::SecureMonitorCall<SmcId_Supervisor, true>(args.r);
*out = static_cast<u32>(args.r[1]);
return static_cast<SmcResult>(args.r[0]) == SmcResult::Success;
}
void ConfigureCarveout(size_t which, uintptr_t address, size_t size) {
SecureMonitorArguments args = { FunctionId_ConfigureCarveout, static_cast<u64>(which), static_cast<u64>(address), static_cast<u64>(size) };
CallPrivilegedSecureMonitorFunction(args);
MESOSPHERE_ABORT_UNLESS((static_cast<SmcResult>(args.x[0]) == SmcResult::Success));
}
ams::svc::lp64::SecureMonitorArguments args = { { FunctionId_ConfigureCarveout, static_cast<u64>(which), static_cast<u64>(address), static_cast<u64>(size) } };
void CpuOn(u64 core_id, uintptr_t entrypoint, uintptr_t arg) {
SecureMonitorArguments args = { FunctionId_CpuOn, core_id, static_cast<u64>(entrypoint), static_cast<u64>(arg) };
CallPrivilegedSecureMonitorFunction(args);
MESOSPHERE_ABORT_UNLESS((static_cast<SmcResult>(args.x[0]) == SmcResult::Success));
::ams::kern::arch::arm64::smc::SecureMonitorCall<SmcId_Supervisor, true>(args.r);
MESOSPHERE_ABORT_UNLESS((static_cast<SmcResult>(args.r[0]) == SmcResult::Success));
}
void GenerateRandomBytes(void *dst, size_t size) {
/* Setup for call. */
SecureMonitorArguments args = { FunctionId_GenerateRandomBytes, size };
MESOSPHERE_ABORT_UNLESS(size <= sizeof(args) - sizeof(args.x[0]));
ams::svc::lp64::SecureMonitorArguments args = { { FunctionId_GenerateRandomBytes, size } };
MESOSPHERE_ABORT_UNLESS(size <= sizeof(args) - sizeof(args.r[0]));
/* Make call. */
{
KScopedInterruptDisable intr_disable;
KScopedSpinLock lk(g_generate_random_lock);
CallPrivilegedSecureMonitorFunction(args);
::ams::kern::arch::arm64::smc::SecureMonitorCall<SmcId_Supervisor, true>(args.r);
}
MESOSPHERE_ABORT_UNLESS((static_cast<SmcResult>(args.x[0]) == SmcResult::Success));
MESOSPHERE_ABORT_UNLESS((static_cast<SmcResult>(args.r[0]) == SmcResult::Success));
/* Copy output. */
std::memcpy(dst, std::addressof(args.x[1]), size);
std::memcpy(dst, std::addressof(args.r[1]), size);
}
void NORETURN Panic(u32 color) {
SecureMonitorArguments args = { FunctionId_Panic, color };
CallPrivilegedSecureMonitorFunction(args);
ams::svc::lp64::SecureMonitorArguments args = { { FunctionId_Panic, color } };
::ams::kern::arch::arm64::smc::SecureMonitorCall<SmcId_Supervisor, true>(args.r);
AMS_INFINITE_LOOP();
}
void CallSecureMonitorFromUser(ams::svc::lp64::SecureMonitorArguments *args) {
CallUserSecureMonitorFunction(args);
::ams::kern::arch::arm64::smc::SecureMonitorCall<SmcId_User, true>(args->r);
}
}

View file

@ -15,10 +15,16 @@
*/
#pragma once
#include <mesosphere.hpp>
#include <mesosphere/arch/arm64/kern_secure_monitor_base.hpp>
namespace ams::kern::board::nintendo::nx::smc {
/* Types. */
enum SmcId {
SmcId_User = 0,
SmcId_Supervisor = 1,
};
enum MemorySize {
MemorySize_4GB = 0,
MemorySize_6GB = 1,
@ -105,15 +111,12 @@ namespace ams::kern::board::nintendo::nx::smc {
bool SetConfig(ConfigItem config_item, u64 value);
void CpuOn(u64 core_id, uintptr_t entrypoint, uintptr_t arg);
void NORETURN Panic(u32 color);
void CallSecureMonitorFromUser(ams::svc::lp64::SecureMonitorArguments *args);
namespace init {
void CpuOn(u64 core_id, uintptr_t entrypoint, uintptr_t arg);
void GetConfig(u64 *out, size_t num_qwords, ConfigItem config_item);
void GenerateRandomBytes(void *dst, size_t size);
bool ReadWriteRegister(u32 *out, u64 address, u32 mask, u32 value);

View file

@ -18,447 +18,10 @@
namespace ams::kern::board::qemu::virt {
namespace {
constexpr uintptr_t DramPhysicalAddress = 0x40000000;
constexpr size_t SecureAlignment = 128_KB;
/* Global variables for secure memory. */
constexpr size_t SecureAppletMemorySize = 4_MB;
constinit KSpinLock g_secure_applet_lock;
constinit bool g_secure_applet_memory_used = false;
constinit KVirtualAddress g_secure_applet_memory_address = Null<KVirtualAddress>;
constinit KSpinLock g_secure_region_lock;
constinit bool g_secure_region_used = false;
constinit KPhysicalAddress g_secure_region_phys_addr = Null<KPhysicalAddress>;
constinit size_t g_secure_region_size = 0;
/* Global variables for randomness. */
constinit bool g_initialized_random_generator;
constinit util::TinyMT g_random_generator;
constinit KSpinLock g_random_lock;
ALWAYS_INLINE u64 GenerateRandomU64FromGenerator() {
return g_random_generator.GenerateRandomU64();
}
template<typename F>
ALWAYS_INLINE u64 GenerateUniformRange(u64 min, u64 max, F f) {
/* Handle the case where the difference is too large to represent. */
if (max == std::numeric_limits<u64>::max() && min == std::numeric_limits<u64>::min()) {
return f();
}
/* Iterate until we get a value in range. */
const u64 range_size = ((max + 1) - min);
const u64 effective_max = (std::numeric_limits<u64>::max() / range_size) * range_size;
while (true) {
if (const u64 rnd = f(); rnd < effective_max) {
return min + (rnd % range_size);
}
}
}
/* TODO */
ALWAYS_INLINE size_t GetRealMemorySizeForInit() {
return 4_GB;
}
bool SetSecureRegion(KPhysicalAddress phys_addr, size_t size) {
/* Ensure address and size are aligned. */
if (!util::IsAligned(GetInteger(phys_addr), SecureAlignment)) {
return false;
}
if (!util::IsAligned(size, SecureAlignment)) {
return false;
}
/* Disable interrupts and acquire the secure region lock. */
KScopedInterruptDisable di;
KScopedSpinLock lk(g_secure_region_lock);
/* If size is non-zero, we're allocating the secure region. Otherwise, we're freeing it. */
if (size != 0) {
/* Verify that the secure region is free. */
if (g_secure_region_used) {
return false;
}
/* Set the secure region. */
g_secure_region_used = true;
g_secure_region_phys_addr = phys_addr;
g_secure_region_size = size;
} else {
/* Verify that the secure region is in use. */
if (!g_secure_region_used) {
return false;
}
/* Verify that the address being freed is the secure region. */
if (phys_addr != g_secure_region_phys_addr) {
return false;
}
/* Clear the secure region. */
g_secure_region_used = false;
g_secure_region_phys_addr = Null<KPhysicalAddress>;
g_secure_region_size = 0;
}
// /* Configure the carveout with the secure monitor. */
// smc::ConfigureCarveout(1, GetInteger(phys_addr), size);
return true;
}
Result AllocateSecureMemoryForApplet(KVirtualAddress *out, size_t size) {
/* Verify that the size is valid. */
R_UNLESS(util::IsAligned(size, PageSize), svc::ResultInvalidSize());
R_UNLESS(size <= SecureAppletMemorySize, svc::ResultOutOfMemory());
/* Disable interrupts and acquire the secure applet lock. */
KScopedInterruptDisable di;
KScopedSpinLock lk(g_secure_applet_lock);
/* Check that memory is reserved for secure applet use. */
MESOSPHERE_ABORT_UNLESS(g_secure_applet_memory_address != Null<KVirtualAddress>);
/* Verify that the secure applet memory isn't already being used. */
R_UNLESS(!g_secure_applet_memory_used, svc::ResultOutOfMemory());
/* Return the secure applet memory. */
g_secure_applet_memory_used = true;
*out = g_secure_applet_memory_address;
return ResultSuccess();
}
void FreeSecureMemoryForApplet(KVirtualAddress address, size_t size) {
/* Disable interrupts and acquire the secure applet lock. */
KScopedInterruptDisable di;
KScopedSpinLock lk(g_secure_applet_lock);
/* Verify that the memory being freed is correct. */
MESOSPHERE_ABORT_UNLESS(address == g_secure_applet_memory_address);
MESOSPHERE_ABORT_UNLESS(size <= SecureAppletMemorySize);
MESOSPHERE_ABORT_UNLESS(util::IsAligned(size, PageSize));
MESOSPHERE_ABORT_UNLESS(g_secure_applet_memory_used);
/* Release the secure applet memory. */
g_secure_applet_memory_used = false;
}
void EnsureRandomGeneratorSeeded() {
if (AMS_UNLIKELY(!g_initialized_random_generator)) {
u64 seed = UINT64_C(0xF5F5F5F5F5F5F5F5);
g_random_generator.Initialize(reinterpret_cast<u32*>(std::addressof(seed)), sizeof(seed) / sizeof(u32));
g_initialized_random_generator = true;
}
}
}
/* Initialization. */
size_t KSystemControl::Init::GetIntendedMemorySize() {
return 4_GB;
}
KPhysicalAddress KSystemControl::Init::GetKernelPhysicalBaseAddress(uintptr_t base_address) {
const size_t real_dram_size = GetRealMemorySizeForInit();
const size_t intended_dram_size = KSystemControl::Init::GetIntendedMemorySize();
if (intended_dram_size * 2 < real_dram_size) {
return base_address;
} else {
return base_address + ((real_dram_size - intended_dram_size) / 2);
}
}
void KSystemControl::Init::GetInitialProcessBinaryLayout(InitialProcessBinaryLayout *out) {
*out = {
.address = GetInteger(GetKernelPhysicalBaseAddress(DramPhysicalAddress)) + GetIntendedMemorySize() - KTraceBufferSize - InitialProcessBinarySizeMax,
._08 = 0,
};
}
bool KSystemControl::Init::ShouldIncreaseThreadResourceLimit() {
return true;
}
size_t KSystemControl::Init::GetApplicationPoolSize() {
/* Get the base pool size. */
const size_t base_pool_size = 3285_MB;
/* Return (possibly) adjusted size. */
return base_pool_size;
}
size_t KSystemControl::Init::GetAppletPoolSize() {
/* Get the base pool size. */
const size_t base_pool_size = 507_MB;
/* Return (possibly) adjusted size. */
constexpr size_t ExtraSystemMemoryForAtmosphere = 40_MB;
return base_pool_size - ExtraSystemMemoryForAtmosphere - KTraceBufferSize;
}
size_t KSystemControl::Init::GetMinimumNonSecureSystemPoolSize() {
return 0x29C8000;
}
void KSystemControl::Init::CpuOn(u64 core_id, uintptr_t entrypoint, uintptr_t arg) {
smc::init::CpuOn(core_id, entrypoint, arg);
}
/* Randomness for Initialization. */
void KSystemControl::Init::GenerateRandomBytes(void *dst, size_t size) {
EnsureRandomGeneratorSeeded();
u8 *dst_8 = static_cast<u8 *>(dst);
while (size > 0) {
const u64 random = GenerateRandomU64FromGenerator();
std::memcpy(dst_8, std::addressof(random), std::min(size, sizeof(u64)));
size -= std::min(size, sizeof(u64));
}
}
u64 KSystemControl::Init::GenerateRandomRange(u64 min, u64 max) {
EnsureRandomGeneratorSeeded();
return GenerateUniformRange(min, max, GenerateRandomU64FromGenerator);
}
/* System Initialization. */
void KSystemControl::InitializePhase1() {
/* Set IsDebugMode. */
{
KTargetSystem::SetIsDebugMode(true);
/* If debug mode, we want to initialize uart logging. */
KTargetSystem::EnableDebugLogging(true);
KDebugLog::Initialize();
}
/* Set Kernel Configuration. */
{
KTargetSystem::EnableDebugMemoryFill(false);
KTargetSystem::EnableUserExceptionHandlers(true);
KTargetSystem::EnableDynamicResourceLimits(true);
KTargetSystem::EnableUserPmuAccess(false);
}
/* Set Kernel Debugging. */
{
/* NOTE: This is used to restrict access to SvcKernelDebug/SvcChangeKernelTraceState. */
/* Mesosphere may wish to not require this, as we'd ideally keep ProgramVerification enabled for userland. */
KTargetSystem::EnableKernelDebugging(true);
}
/* System ResourceLimit initialization. */
{
/* Construct the resource limit object. */
KResourceLimit &sys_res_limit = Kernel::GetSystemResourceLimit();
KAutoObject::Create(std::addressof(sys_res_limit));
sys_res_limit.Initialize();
/* Set the initial limits. */
const auto [total_memory_size, kernel_memory_size] = KMemoryLayout::GetTotalAndKernelMemorySizes();
const auto &slab_counts = init::GetSlabResourceCounts();
MESOSPHERE_R_ABORT_UNLESS(sys_res_limit.SetLimitValue(ams::svc::LimitableResource_PhysicalMemoryMax, total_memory_size));
MESOSPHERE_R_ABORT_UNLESS(sys_res_limit.SetLimitValue(ams::svc::LimitableResource_ThreadCountMax, slab_counts.num_KThread));
MESOSPHERE_R_ABORT_UNLESS(sys_res_limit.SetLimitValue(ams::svc::LimitableResource_EventCountMax, slab_counts.num_KEvent));
MESOSPHERE_R_ABORT_UNLESS(sys_res_limit.SetLimitValue(ams::svc::LimitableResource_TransferMemoryCountMax, slab_counts.num_KTransferMemory));
MESOSPHERE_R_ABORT_UNLESS(sys_res_limit.SetLimitValue(ams::svc::LimitableResource_SessionCountMax, slab_counts.num_KSession));
/* Reserve system memory. */
MESOSPHERE_ABORT_UNLESS(sys_res_limit.Reserve(ams::svc::LimitableResource_PhysicalMemoryMax, kernel_memory_size));
}
}
void KSystemControl::InitializePhase2() {
/* Reserve secure applet memory. */
if (GetTargetFirmware() >= TargetFirmware_5_0_0) {
MESOSPHERE_ABORT_UNLESS(g_secure_applet_memory_address == Null<KVirtualAddress>);
MESOSPHERE_ABORT_UNLESS(Kernel::GetSystemResourceLimit().Reserve(ams::svc::LimitableResource_PhysicalMemoryMax, SecureAppletMemorySize));
constexpr auto SecureAppletAllocateOption = KMemoryManager::EncodeOption(KMemoryManager::Pool_System, KMemoryManager::Direction_FromFront);
const KPhysicalAddress secure_applet_memory_phys_addr = Kernel::GetMemoryManager().AllocateAndOpenContinuous(SecureAppletMemorySize / PageSize, 1, SecureAppletAllocateOption);
MESOSPHERE_ABORT_UNLESS(secure_applet_memory_phys_addr != Null<KPhysicalAddress>);
g_secure_applet_memory_address = KMemoryLayout::GetLinearVirtualAddress(secure_applet_memory_phys_addr);
}
/* Initialize KTrace. */
if constexpr (IsKTraceEnabled) {
const auto &ktrace = KMemoryLayout::GetKernelTraceBufferRegion();
KTrace::Initialize(ktrace.GetAddress(), ktrace.GetSize());
}
}
u32 KSystemControl::GetCreateProcessMemoryPool() {
return KMemoryManager::Pool_Unsafe;
}
/* Privileged Access. */
void KSystemControl::ReadWriteRegisterPrivileged(u32 *out, ams::svc::PhysicalAddress address, u32 mask, u32 value) {
MESOSPHERE_UNUSED(out, address, mask, value);
MESOSPHERE_UNIMPLEMENTED();
}
Result KSystemControl::ReadWriteRegister(u32 *out, ams::svc::PhysicalAddress address, u32 mask, u32 value) {
MESOSPHERE_UNUSED(out, address, mask, value);
MESOSPHERE_UNIMPLEMENTED();
}
/* Randomness. */
void KSystemControl::GenerateRandomBytes(void *dst, size_t size) {
KScopedInterruptDisable intr_disable;
KScopedSpinLock lk(g_random_lock);
u8 *dst_8 = static_cast<u8 *>(dst);
while (size > 0) {
const u64 random = GenerateRandomU64FromGenerator();
std::memcpy(dst_8, std::addressof(random), std::min(size, sizeof(u64)));
size -= std::min(size, sizeof(u64));
}
}
u64 KSystemControl::GenerateRandomRange(u64 min, u64 max) {
KScopedInterruptDisable intr_disable;
KScopedSpinLock lk(g_random_lock);
return GenerateUniformRange(min, max, GenerateRandomU64FromGenerator);
}
u64 KSystemControl::GenerateRandomU64() {
KScopedInterruptDisable intr_disable;
KScopedSpinLock lk(g_random_lock);
return GenerateRandomU64FromGenerator();
}
void KSystemControl::SleepSystem() {
MESOSPHERE_LOG("SleepSystem() was called\n");
MESOSPHERE_UNIMPLEMENTED();
}
void KSystemControl::StopSystem(void *arg) {
MESOSPHERE_UNUSED(arg);
AMS_INFINITE_LOOP();
}
/* User access. */
void KSystemControl::CallSecureMonitorFromUser(ams::svc::lp64::SecureMonitorArguments *args) {
/* Get the function id for the current call. */
u64 function_id = args->r[0];
/* We'll need to map in pages if arguments are pointers. Prepare page groups to do so. */
auto &page_table = GetCurrentProcess().GetPageTable();
auto *bim = page_table.GetBlockInfoManager();
constexpr size_t MaxMappedRegisters = 7;
std::array<KPageGroup, MaxMappedRegisters> page_groups = { KPageGroup(bim), KPageGroup(bim), KPageGroup(bim), KPageGroup(bim), KPageGroup(bim), KPageGroup(bim), KPageGroup(bim), };
for (size_t i = 0; i < MaxMappedRegisters; i++) {
const size_t reg_id = i + 1;
if (function_id & (1ul << (8 + reg_id))) {
/* Create and open a new page group for the address. */
KVirtualAddress virt_addr = args->r[reg_id];
if (R_SUCCEEDED(page_table.MakeAndOpenPageGroup(std::addressof(page_groups[i]), util::AlignDown(GetInteger(virt_addr), PageSize), 1, KMemoryState_None, KMemoryState_None, KMemoryPermission_UserReadWrite, KMemoryPermission_UserReadWrite, KMemoryAttribute_None, KMemoryAttribute_None))) {
/* Translate the virtual address to a physical address. */
const auto it = page_groups[i].begin();
MESOSPHERE_ASSERT(it != page_groups[i].end());
MESOSPHERE_ASSERT(it->GetNumPages() == 1);
args->r[reg_id] = GetInteger(it->GetAddress()) | (GetInteger(virt_addr) & (PageSize - 1));
} else {
/* If we couldn't map, we should clear the address. */
args->r[reg_id] = 0;
}
}
}
/* Invoke the secure monitor. */
smc::CallSecureMonitorFromUser(args);
/* Make sure that we close any pages that we opened. */
for (size_t i = 0; i < MaxMappedRegisters; i++) {
page_groups[i].Close();
}
}
/* Secure Memory. */
size_t KSystemControl::CalculateRequiredSecureMemorySize(size_t size, u32 pool) {
if (pool == KMemoryManager::Pool_Applet) {
return 0;
}
return size;
}
Result KSystemControl::AllocateSecureMemory(KVirtualAddress *out, size_t size, u32 pool) {
/* Applet secure memory is handled separately. */
if (pool == KMemoryManager::Pool_Applet) {
return AllocateSecureMemoryForApplet(out, size);
}
/* Ensure the size is aligned. */
const size_t alignment = (pool == KMemoryManager::Pool_System ? PageSize : SecureAlignment);
R_UNLESS(util::IsAligned(size, alignment), svc::ResultInvalidSize());
/* Allocate the memory. */
const size_t num_pages = size / PageSize;
const KPhysicalAddress paddr = Kernel::GetMemoryManager().AllocateAndOpenContinuous(num_pages, alignment / PageSize, KMemoryManager::EncodeOption(static_cast<KMemoryManager::Pool>(pool), KMemoryManager::Direction_FromFront));
R_UNLESS(paddr != Null<KPhysicalAddress>, svc::ResultOutOfMemory());
/* Ensure we don't leak references to the memory on error. */
auto mem_guard = SCOPE_GUARD { Kernel::GetMemoryManager().Close(paddr, num_pages); };
/* If the memory isn't already secure, set it as secure. */
if (pool != KMemoryManager::Pool_System) {
/* Set the secure region. */
R_UNLESS(SetSecureRegion(paddr, size), svc::ResultOutOfMemory());
}
/* We succeeded. */
mem_guard.Cancel();
*out = KPageTable::GetHeapVirtualAddress(paddr);
return ResultSuccess();
}
void KSystemControl::FreeSecureMemory(KVirtualAddress address, size_t size, u32 pool) {
/* Applet secure memory is handled separately. */
if (pool == KMemoryManager::Pool_Applet) {
return FreeSecureMemoryForApplet(address, size);
}
/* Ensure the size is aligned. */
const size_t alignment = (pool == KMemoryManager::Pool_System ? PageSize : SecureAlignment);
MESOSPHERE_ABORT_UNLESS(util::IsAligned(GetInteger(address), alignment));
MESOSPHERE_ABORT_UNLESS(util::IsAligned(size, alignment));
/* If the memory isn't secure system, reset the secure region. */
if (pool != KMemoryManager::Pool_System) {
/* Check that the size being freed is the current secure region size. */
MESOSPHERE_ABORT_UNLESS(g_secure_region_size == size);
/* Get the physical address. */
const KPhysicalAddress paddr = KPageTable::GetHeapPhysicalAddress(address);
MESOSPHERE_ABORT_UNLESS(paddr != Null<KPhysicalAddress>);
/* Check that the memory being freed is the current secure region. */
MESOSPHERE_ABORT_UNLESS(paddr == g_secure_region_phys_addr);
/* Free the secure region. */
MESOSPHERE_ABORT_UNLESS(SetSecureRegion(paddr, 0));
}
/* Close the secure region's pages. */
Kernel::GetMemoryManager().Close(KPageTable::GetHeapPhysicalAddress(address), size / PageSize);
return smc::CallSecureMonitorFromUser(args);
}
}

View file

@ -20,10 +20,6 @@ namespace ams::kern::board::qemu::virt::smc {
namespace {
struct SecureMonitorArguments {
u64 x[8];
};
enum UserFunctionId : u32 {
UserFunctionId_SetConfig = 0xC3000401,
UserFunctionId_GetConfig = 0xC3000002,
@ -44,102 +40,6 @@ namespace ams::kern::board::qemu::virt::smc {
UserFunctionId_PrepareEsCommonTitleKey = 0xC3000012,
};
enum FunctionId : u32 {
FunctionId_CpuSuspend = 0xC4000001,
FunctionId_CpuOff = 0x84000002,
FunctionId_CpuOn = 0xC4000003,
};
void CallPrivilegedSecureMonitorFunction(SecureMonitorArguments &args) {
/* Load arguments into registers. */
register u64 x0 asm("x0") = args.x[0];
register u64 x1 asm("x1") = args.x[1];
register u64 x2 asm("x2") = args.x[2];
register u64 x3 asm("x3") = args.x[3];
register u64 x4 asm("x4") = args.x[4];
register u64 x5 asm("x5") = args.x[5];
register u64 x6 asm("x6") = args.x[6];
register u64 x7 asm("x7") = args.x[7];
/* Actually make the call. */
{
/* Disable interrupts while making the call. */
KScopedInterruptDisable intr_disable;
{
/* Backup the current thread pointer. */
const uintptr_t current_thread_pointer_value = cpu::GetCurrentThreadPointerValue();
__asm__ __volatile__("smc #0"
: "+r"(x0), "+r"(x1), "+r"(x2), "+r"(x3), "+r"(x4), "+r"(x5), "+r"(x6), "+r"(x7)
:
: "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "x17", "x18", "cc", "memory"
);
/* Restore the current thread pointer into X18. */
cpu::SetCurrentThreadPointerValue(current_thread_pointer_value);
/* Store arguments to output. */
args.x[0] = x0;
args.x[1] = x1;
args.x[2] = x2;
args.x[3] = x3;
args.x[4] = x4;
args.x[5] = x5;
args.x[6] = x6;
args.x[7] = x7;
}
}
}
void CallPrivilegedSecureMonitorFunctionForInit(SecureMonitorArguments &args) {
/* Load arguments into registers. */
register u64 x0 asm("x0") = args.x[0];
register u64 x1 asm("x1") = args.x[1];
register u64 x2 asm("x2") = args.x[2];
register u64 x3 asm("x3") = args.x[3];
register u64 x4 asm("x4") = args.x[4];
register u64 x5 asm("x5") = args.x[5];
register u64 x6 asm("x6") = args.x[6];
register u64 x7 asm("x7") = args.x[7];
/* Actually make the call. */
__asm__ __volatile__("smc #0"
: "+r"(x0), "+r"(x1), "+r"(x2), "+r"(x3), "+r"(x4), "+r"(x5), "+r"(x6), "+r"(x7)
:
: "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "x17", "x18", "cc", "memory"
);
/* Store arguments to output. */
args.x[0] = x0;
args.x[1] = x1;
args.x[2] = x2;
args.x[3] = x3;
args.x[4] = x4;
args.x[5] = x5;
args.x[6] = x6;
args.x[7] = x7;
}
/* Global lock for generate random bytes. */
KSpinLock g_generate_random_lock;
}
/* SMC functionality needed for init. */
namespace init {
void CpuOn(u64 core_id, uintptr_t entrypoint, uintptr_t arg) {
SecureMonitorArguments args = { FunctionId_CpuOn, core_id, entrypoint, arg };
CallPrivilegedSecureMonitorFunctionForInit(args);
}
}
void CpuOn(u64 core_id, uintptr_t entrypoint, uintptr_t arg) {
SecureMonitorArguments args = { FunctionId_CpuOn, core_id, static_cast<u64>(entrypoint), static_cast<u64>(arg) };
CallPrivilegedSecureMonitorFunction(args);
MESOSPHERE_ABORT_UNLESS((static_cast<SmcResult>(args.x[0]) == SmcResult::Success));
}
void CallSecureMonitorFromUser(ams::svc::lp64::SecureMonitorArguments *args) {

View file

@ -63,14 +63,6 @@ namespace ams::kern::board::qemu::virt::smc {
NotPermitted = 6,
};
void CpuOn(u64 core_id, uintptr_t entrypoint, uintptr_t arg);
void CallSecureMonitorFromUser(ams::svc::lp64::SecureMonitorArguments *args);
namespace init {
void CpuOn(u64 core_id, uintptr_t entrypoint, uintptr_t arg);
}
}

View file

@ -19,7 +19,6 @@ namespace ams::kern {
namespace {
constexpr uintptr_t DramPhysicalAddress = 0x80000000;
constexpr size_t ReservedEarlyDramSize = 0x60000;
constexpr size_t CarveoutAlignment = 0x20000;
@ -100,7 +99,7 @@ namespace ams::kern {
void SetupDramPhysicalMemoryRegions() {
const size_t intended_memory_size = KSystemControl::Init::GetIntendedMemorySize();
const KPhysicalAddress physical_memory_base_address = KSystemControl::Init::GetKernelPhysicalBaseAddress(DramPhysicalAddress);
const KPhysicalAddress physical_memory_base_address = KSystemControl::Init::GetKernelPhysicalBaseAddress(ams::kern::MainMemoryAddress);
/* Insert blocks into the tree. */
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(GetInteger(physical_memory_base_address), intended_memory_size, KMemoryRegionType_Dram));
@ -173,16 +172,21 @@ namespace ams::kern {
InsertPoolPartitionRegionIntoBothTrees(unsafe_system_pool_start, unsafe_system_pool_size, KMemoryRegionType_DramSystemNonSecurePool, KMemoryRegionType_VirtualDramSystemNonSecurePool, cur_pool_attr);
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(unsafe_system_pool_size);
/* Insert the pool management region. */
/* Determine final total overhead size. */
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize((unsafe_system_pool_start - pool_partitions_start) - total_overhead_size);
const uintptr_t pool_management_start = unsafe_system_pool_start - total_overhead_size;
/* NOTE: Nintendo's kernel has layout [System, Management] but we have [Management, System]. This ensures the four UserPool regions are contiguous. */
/* Insert the system pool. */
const uintptr_t system_pool_start = pool_partitions_start + total_overhead_size;
const size_t system_pool_size = unsafe_system_pool_start - system_pool_start;
InsertPoolPartitionRegionIntoBothTrees(system_pool_start, system_pool_size, KMemoryRegionType_DramSystemPool, KMemoryRegionType_VirtualDramSystemPool, cur_pool_attr);
/* Insert the pool management region. */
const uintptr_t pool_management_start = pool_partitions_start;
const size_t pool_management_size = total_overhead_size;
u32 pool_management_attr = 0;
InsertPoolPartitionRegionIntoBothTrees(pool_management_start, pool_management_size, KMemoryRegionType_DramPoolManagement, KMemoryRegionType_VirtualDramPoolManagement, pool_management_attr);
/* Insert the system pool. */
const uintptr_t system_pool_size = pool_management_start - pool_partitions_start;
InsertPoolPartitionRegionIntoBothTrees(pool_partitions_start, system_pool_size, KMemoryRegionType_DramSystemPool, KMemoryRegionType_VirtualDramSystemPool, cur_pool_attr);
} else {
/* On < 5.0.0, setup a legacy 2-pool layout for backwards compatibility. */
@ -249,14 +253,18 @@ namespace ams::kern {
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(second_application_pool_size);
}
/* Insert the secure pool. */
InsertPoolPartitionRegionIntoBothTrees(pool_partitions_start, secure_pool_size, KMemoryRegionType_DramSystemPool, KMemoryRegionType_VirtualDramSystemPool, cur_pool_attr);
/* Insert the pool management region. */
/* Validate the true overhead size. */
MESOSPHERE_INIT_ABORT_UNLESS(total_overhead_size <= approximate_total_overhead_size);
const uintptr_t pool_management_start = pool_partitions_start + secure_pool_size;
const size_t pool_management_size = unsafe_memory_start - pool_management_start;
/* NOTE: Nintendo's kernel has layout [System, Management] but we have [Management, System]. This ensures the UserPool regions are contiguous. */
/* Insert the secure pool. */
const uintptr_t secure_pool_start = unsafe_memory_start - secure_pool_size;
InsertPoolPartitionRegionIntoBothTrees(secure_pool_start, secure_pool_size, KMemoryRegionType_DramSystemPool, KMemoryRegionType_VirtualDramSystemPool, cur_pool_attr);
/* Insert the pool management region. */
const uintptr_t pool_management_start = pool_partitions_start;
const size_t pool_management_size = secure_pool_start - pool_management_start;
MESOSPHERE_INIT_ABORT_UNLESS(total_overhead_size <= pool_management_size);
u32 pool_management_attr = 0;

View file

@ -19,12 +19,8 @@ namespace ams::kern {
namespace {
constexpr uintptr_t DramPhysicalAddress = 0x40000000;
constexpr size_t ReservedEarlyDramSize = 0x00080000;
constexpr size_t CarveoutAlignment = 0x20000;
constexpr size_t CarveoutSizeMax = 512_MB - CarveoutAlignment;
template<typename... T> requires (std::same_as<T, KMemoryRegionAttr> && ...)
constexpr ALWAYS_INLINE KMemoryRegionType GetMemoryRegionType(KMemoryRegionType base, T... attr) {
return util::FromUnderlying<KMemoryRegionType>(util::ToUnderlying(base) | (util::ToUnderlying<T>(attr) | ...));
@ -32,6 +28,7 @@ namespace ams::kern {
void InsertPoolPartitionRegionIntoBothTrees(size_t start, size_t size, KMemoryRegionType phys_type, KMemoryRegionType virt_type, u32 &cur_attr) {
const u32 attr = cur_attr++;
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(start, size, phys_type, attr));
const KMemoryRegion *phys = KMemoryLayout::GetPhysicalMemoryRegionTree().FindByTypeAndAttribute(phys_type, attr);
MESOSPHERE_INIT_ABORT_UNLESS(phys != nullptr);
@ -50,7 +47,7 @@ namespace ams::kern {
void SetupDramPhysicalMemoryRegions() {
const size_t intended_memory_size = KSystemControl::Init::GetIntendedMemorySize();
const KPhysicalAddress physical_memory_base_address = KSystemControl::Init::GetKernelPhysicalBaseAddress(DramPhysicalAddress);
const KPhysicalAddress physical_memory_base_address = KSystemControl::Init::GetKernelPhysicalBaseAddress(ams::kern::MainMemoryAddress);
/* Insert blocks into the tree. */
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(GetInteger(physical_memory_base_address), intended_memory_size, KMemoryRegionType_Dram));
@ -76,9 +73,6 @@ namespace ams::kern {
const KMemoryRegion *kernel_dram_region = KMemoryLayout::GetPhysicalMemoryRegionTree().FindFirstDerived(KMemoryRegionType_DramKernelBase);
MESOSPHERE_INIT_ABORT_UNLESS(kernel_dram_region != nullptr);
const uintptr_t kernel_dram_start = kernel_dram_region->GetAddress();
MESOSPHERE_INIT_ABORT_UNLESS(util::IsAligned(kernel_dram_start, CarveoutAlignment));
/* Find the start of the pool partitions region. */
const KMemoryRegion *pool_partitions_region = KMemoryLayout::GetPhysicalMemoryRegionTree().FindByTypeAndAttribute(KMemoryRegionType_DramPoolPartition, 0);
MESOSPHERE_INIT_ABORT_UNLESS(pool_partitions_region != nullptr);
@ -93,43 +87,56 @@ namespace ams::kern {
/* Decide on starting addresses for our pools. */
const uintptr_t application_pool_start = pool_end - application_pool_size;
const uintptr_t applet_pool_start = application_pool_start - applet_pool_size;
const uintptr_t unsafe_system_pool_start = std::min(kernel_dram_start + CarveoutSizeMax, util::AlignDown(applet_pool_start - unsafe_system_pool_min_size, CarveoutAlignment));
const uintptr_t unsafe_system_pool_start = util::AlignDown(applet_pool_start - unsafe_system_pool_min_size, PageSize);
const size_t unsafe_system_pool_size = applet_pool_start - unsafe_system_pool_start;
/* We want to arrange application pool depending on where the middle of dram is. */
const uintptr_t dram_midpoint = (dram_extents.GetAddress() + dram_extents.GetEndAddress()) / 2;
u32 cur_pool_attr = 0;
size_t total_overhead_size = 0;
if (dram_extents.GetEndAddress() <= dram_midpoint || dram_midpoint <= application_pool_start) {
InsertPoolPartitionRegionIntoBothTrees(application_pool_start, application_pool_size, KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool, cur_pool_attr);
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(application_pool_size);
} else {
const size_t first_application_pool_size = dram_midpoint - application_pool_start;
const size_t second_application_pool_size = application_pool_start + application_pool_size - dram_midpoint;
InsertPoolPartitionRegionIntoBothTrees(application_pool_start, first_application_pool_size, KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool, cur_pool_attr);
InsertPoolPartitionRegionIntoBothTrees(dram_midpoint, second_application_pool_size, KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool, cur_pool_attr);
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(first_application_pool_size);
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(second_application_pool_size);
/* Insert the application pool. */
if (application_pool_size > 0) {
if (dram_extents.GetEndAddress() <= dram_midpoint || dram_midpoint <= application_pool_start) {
InsertPoolPartitionRegionIntoBothTrees(application_pool_start, application_pool_size, KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool, cur_pool_attr);
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(application_pool_size);
} else {
const size_t first_application_pool_size = dram_midpoint - application_pool_start;
const size_t second_application_pool_size = application_pool_start + application_pool_size - dram_midpoint;
InsertPoolPartitionRegionIntoBothTrees(application_pool_start, first_application_pool_size, KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool, cur_pool_attr);
InsertPoolPartitionRegionIntoBothTrees(dram_midpoint, second_application_pool_size, KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool, cur_pool_attr);
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(first_application_pool_size);
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(second_application_pool_size);
}
}
/* Insert the applet pool. */
InsertPoolPartitionRegionIntoBothTrees(applet_pool_start, applet_pool_size, KMemoryRegionType_DramAppletPool, KMemoryRegionType_VirtualDramAppletPool, cur_pool_attr);
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(applet_pool_size);
if (applet_pool_size > 0) {
InsertPoolPartitionRegionIntoBothTrees(applet_pool_start, applet_pool_size, KMemoryRegionType_DramAppletPool, KMemoryRegionType_VirtualDramAppletPool, cur_pool_attr);
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(applet_pool_size);
}
/* Insert the nonsecure system pool. */
InsertPoolPartitionRegionIntoBothTrees(unsafe_system_pool_start, unsafe_system_pool_size, KMemoryRegionType_DramSystemNonSecurePool, KMemoryRegionType_VirtualDramSystemNonSecurePool, cur_pool_attr);
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(unsafe_system_pool_size);
if (unsafe_system_pool_size > 0) {
InsertPoolPartitionRegionIntoBothTrees(unsafe_system_pool_start, unsafe_system_pool_size, KMemoryRegionType_DramSystemNonSecurePool, KMemoryRegionType_VirtualDramSystemNonSecurePool, cur_pool_attr);
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(unsafe_system_pool_size);
}
/* Determine final total overhead size. */
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize((unsafe_system_pool_start - pool_partitions_start) - total_overhead_size);
/* NOTE: Nintendo's kernel has layout [System, Management] but we have [Management, System]. This ensures the four UserPool regions are contiguous. */
/* Insert the system pool. */
const uintptr_t system_pool_start = pool_partitions_start + total_overhead_size;
const size_t system_pool_size = unsafe_system_pool_start - system_pool_start;
InsertPoolPartitionRegionIntoBothTrees(system_pool_start, system_pool_size, KMemoryRegionType_DramSystemPool, KMemoryRegionType_VirtualDramSystemPool, cur_pool_attr);
/* Insert the pool management region. */
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize((unsafe_system_pool_start - pool_partitions_start) - total_overhead_size);
const uintptr_t pool_management_start = unsafe_system_pool_start - total_overhead_size;
const uintptr_t pool_management_start = pool_partitions_start;
const size_t pool_management_size = total_overhead_size;
u32 pool_management_attr = 0;
InsertPoolPartitionRegionIntoBothTrees(pool_management_start, pool_management_size, KMemoryRegionType_DramPoolManagement, KMemoryRegionType_VirtualDramPoolManagement, pool_management_attr);
/* Insert the system pool. */
const uintptr_t system_pool_size = pool_management_start - pool_partitions_start;
InsertPoolPartitionRegionIntoBothTrees(pool_partitions_start, system_pool_size, KMemoryRegionType_DramSystemPool, KMemoryRegionType_VirtualDramSystemPool, cur_pool_attr);
}
}

View file

@ -238,7 +238,7 @@ namespace ams::kern {
}
/* Generate random entropy. */
KSystemControl::GenerateRandomBytes(m_entropy, sizeof(m_entropy));
KSystemControl::GenerateRandom(m_entropy, util::size(m_entropy));
/* Clear remaining fields. */
m_num_running_threads = 0;

View file

@ -0,0 +1,295 @@
/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mesosphere.hpp>
#if defined(ATMOSPHERE_ARCH_ARM64)
#include <mesosphere/arch/arm64/kern_secure_monitor_base.hpp>
#endif
namespace ams::kern {
/* Initialization. */
size_t KSystemControlBase::Init::GetRealMemorySize() {
return ams::kern::MainMemorySize;
}
size_t KSystemControlBase::Init::GetIntendedMemorySize() {
return ams::kern::MainMemorySize;
}
KPhysicalAddress KSystemControlBase::Init::GetKernelPhysicalBaseAddress(KPhysicalAddress base_address) {
const size_t real_dram_size = KSystemControl::Init::GetRealMemorySize();
const size_t intended_dram_size = KSystemControl::Init::GetIntendedMemorySize();
if (intended_dram_size * 2 < real_dram_size) {
return base_address;
} else {
return base_address + ((real_dram_size - intended_dram_size) / 2);
}
}
void KSystemControlBase::Init::GetInitialProcessBinaryLayout(InitialProcessBinaryLayout *out) {
*out = {
.address = GetInteger(KSystemControl::Init::GetKernelPhysicalBaseAddress(ams::kern::MainMemoryAddress)) + KSystemControl::Init::GetIntendedMemorySize() - KTraceBufferSize - InitialProcessBinarySizeMax,
._08 = 0,
};
}
bool KSystemControlBase::Init::ShouldIncreaseThreadResourceLimit() {
return true;
}
size_t KSystemControlBase::Init::GetApplicationPoolSize() {
return 0;
}
size_t KSystemControlBase::Init::GetAppletPoolSize() {
return 0;
}
size_t KSystemControlBase::Init::GetMinimumNonSecureSystemPoolSize() {
return 0;
}
u8 KSystemControlBase::Init::GetDebugLogUartPort() {
return 0;
}
void KSystemControlBase::Init::CpuOn(u64 core_id, uintptr_t entrypoint, uintptr_t arg) {
#if defined(ATMOSPHERE_ARCH_ARM64)
MESOSPHERE_INIT_ABORT_UNLESS((::ams::kern::arch::arm64::smc::CpuOn<0, false>(core_id, entrypoint, arg)) == 0);
#else
AMS_INFINITE_LOOP();
#endif
}
/* Randomness for Initialization. */
void KSystemControlBase::Init::GenerateRandom(u64 *dst, size_t count) {
if (AMS_UNLIKELY(!s_initialized_random_generator)) {
const u64 seed = KHardwareTimer::GetTick();
s_random_generator.Initialize(reinterpret_cast<const u32*>(std::addressof(seed)), sizeof(seed) / sizeof(u32));
s_initialized_random_generator = true;
}
for (size_t i = 0; i < count; ++i) {
dst[i] = s_random_generator.GenerateRandomU64();
}
}
u64 KSystemControlBase::Init::GenerateRandomRange(u64 min, u64 max) {
if (AMS_UNLIKELY(!s_initialized_random_generator)) {
const u64 seed = KHardwareTimer::GetTick();
s_random_generator.Initialize(reinterpret_cast<const u32*>(std::addressof(seed)), sizeof(seed) / sizeof(u32));
s_initialized_random_generator = true;
}
return KSystemControlBase::GenerateUniformRange(min, max, [] ALWAYS_INLINE_LAMBDA () -> u64 { return s_random_generator.GenerateRandomU64(); });
}
/* System Initialization. */
void KSystemControlBase::InitializePhase1(bool skip_target_system) {
/* Initialize the rng, if we somehow haven't already. */
if (AMS_UNLIKELY(!s_initialized_random_generator)) {
const u64 seed = KHardwareTimer::GetTick();
s_random_generator.Initialize(reinterpret_cast<const u32*>(std::addressof(seed)), sizeof(seed) / sizeof(u32));
s_initialized_random_generator = true;
}
/* Configure KTargetSystem, if we haven't already by an implementation SystemControl. */
if (!skip_target_system) {
/* Set IsDebugMode. */
{
KTargetSystem::SetIsDebugMode(true);
/* If debug mode, we want to initialize uart logging. */
KTargetSystem::EnableDebugLogging(true);
KDebugLog::Initialize();
}
/* Set Kernel Configuration. */
{
KTargetSystem::EnableDebugMemoryFill(false);
KTargetSystem::EnableUserExceptionHandlers(true);
KTargetSystem::EnableDynamicResourceLimits(true);
KTargetSystem::EnableUserPmuAccess(false);
}
/* Set Kernel Debugging. */
{
/* NOTE: This is used to restrict access to SvcKernelDebug/SvcChangeKernelTraceState. */
/* Mesosphere may wish to not require this, as we'd ideally keep ProgramVerification enabled for userland. */
KTargetSystem::EnableKernelDebugging(true);
}
}
/* System ResourceLimit initialization. */
{
/* Construct the resource limit object. */
KResourceLimit &sys_res_limit = Kernel::GetSystemResourceLimit();
KAutoObject::Create<KResourceLimit>(std::addressof(sys_res_limit));
sys_res_limit.Initialize();
/* Set the initial limits. */
const auto [total_memory_size, kernel_memory_size] = KMemoryLayout::GetTotalAndKernelMemorySizes();
const auto &slab_counts = init::GetSlabResourceCounts();
MESOSPHERE_R_ABORT_UNLESS(sys_res_limit.SetLimitValue(ams::svc::LimitableResource_PhysicalMemoryMax, total_memory_size));
MESOSPHERE_R_ABORT_UNLESS(sys_res_limit.SetLimitValue(ams::svc::LimitableResource_ThreadCountMax, slab_counts.num_KThread));
MESOSPHERE_R_ABORT_UNLESS(sys_res_limit.SetLimitValue(ams::svc::LimitableResource_EventCountMax, slab_counts.num_KEvent));
MESOSPHERE_R_ABORT_UNLESS(sys_res_limit.SetLimitValue(ams::svc::LimitableResource_TransferMemoryCountMax, slab_counts.num_KTransferMemory));
MESOSPHERE_R_ABORT_UNLESS(sys_res_limit.SetLimitValue(ams::svc::LimitableResource_SessionCountMax, slab_counts.num_KSession));
/* Reserve system memory. */
MESOSPHERE_ABORT_UNLESS(sys_res_limit.Reserve(ams::svc::LimitableResource_PhysicalMemoryMax, kernel_memory_size));
}
}
void KSystemControlBase::InitializePhase2() {
/* Initialize KTrace. */
if constexpr (IsKTraceEnabled) {
const auto &ktrace = KMemoryLayout::GetKernelTraceBufferRegion();
KTrace::Initialize(ktrace.GetAddress(), ktrace.GetSize());
}
}
u32 KSystemControlBase::GetCreateProcessMemoryPool() {
return KMemoryManager::Pool_System;
}
/* Privileged Access. */
void KSystemControlBase::ReadWriteRegisterPrivileged(u32 *out, ams::svc::PhysicalAddress address, u32 mask, u32 value) {
/* TODO */
MESOSPHERE_UNUSED(out, address, mask, value);
MESOSPHERE_UNIMPLEMENTED();
}
Result KSystemControlBase::ReadWriteRegister(u32 *out, ams::svc::PhysicalAddress address, u32 mask, u32 value) {
MESOSPHERE_UNUSED(out, address, mask, value);
return svc::ResultNotImplemented();
}
/* Randomness. */
void KSystemControlBase::GenerateRandom(u64 *dst, size_t count) {
KScopedInterruptDisable intr_disable;
KScopedSpinLock lk(s_random_lock);
for (size_t i = 0; i < count; ++i) {
dst[i] = s_random_generator.GenerateRandomU64();
}
}
u64 KSystemControlBase::GenerateRandomRange(u64 min, u64 max) {
KScopedInterruptDisable intr_disable;
KScopedSpinLock lk(s_random_lock);
return KSystemControlBase::GenerateUniformRange(min, max, [] ALWAYS_INLINE_LAMBDA () -> u64 { return s_random_generator.GenerateRandomU64(); });
}
u64 KSystemControlBase::GenerateRandomU64() {
KScopedInterruptDisable intr_disable;
KScopedSpinLock lk(s_random_lock);
return s_random_generator.GenerateRandomU64();
}
void KSystemControlBase::SleepSystem() {
MESOSPHERE_LOG("SleepSystem() was called\n");
}
void KSystemControlBase::StopSystem(void *) {
MESOSPHERE_LOG("KSystemControlBase::StopSystem\n");
AMS_INFINITE_LOOP();
}
/* User access. */
#if defined(ATMOSPHERE_ARCH_ARM64)
void KSystemControlBase::CallSecureMonitorFromUser(ams::svc::lp64::SecureMonitorArguments *args) {
/* Get the function id for the current call. */
u64 function_id = args->r[0];
/* We'll need to map in pages if arguments are pointers. Prepare page groups to do so. */
auto &page_table = GetCurrentProcess().GetPageTable();
auto *bim = page_table.GetBlockInfoManager();
constexpr size_t MaxMappedRegisters = 7;
std::array<KPageGroup, MaxMappedRegisters> page_groups = { KPageGroup(bim), KPageGroup(bim), KPageGroup(bim), KPageGroup(bim), KPageGroup(bim), KPageGroup(bim), KPageGroup(bim), };
for (size_t i = 0; i < MaxMappedRegisters; i++) {
const size_t reg_id = i + 1;
if (function_id & (1ul << (8 + reg_id))) {
/* Create and open a new page group for the address. */
KVirtualAddress virt_addr = args->r[reg_id];
if (R_SUCCEEDED(page_table.MakeAndOpenPageGroup(std::addressof(page_groups[i]), util::AlignDown(GetInteger(virt_addr), PageSize), 1, KMemoryState_None, KMemoryState_None, KMemoryPermission_UserReadWrite, KMemoryPermission_UserReadWrite, KMemoryAttribute_None, KMemoryAttribute_None))) {
/* Translate the virtual address to a physical address. */
const auto it = page_groups[i].begin();
MESOSPHERE_ASSERT(it != page_groups[i].end());
MESOSPHERE_ASSERT(it->GetNumPages() == 1);
args->r[reg_id] = GetInteger(it->GetAddress()) | (GetInteger(virt_addr) & (PageSize - 1));
} else {
/* If we couldn't map, we should clear the address. */
args->r[reg_id] = 0;
}
}
}
/* Invoke the secure monitor. */
KSystemControl::CallSecureMonitorFromUserImpl(args);
/* Make sure that we close any pages that we opened. */
for (size_t i = 0; i < MaxMappedRegisters; i++) {
page_groups[i].Close();
}
}
void KSystemControlBase::CallSecureMonitorFromUserImpl(ams::svc::lp64::SecureMonitorArguments *args) {
/* By default, we don't actually support secure monitor, so just set args to a failure code. */
args->r[0] = 1;
}
#endif
/* Secure Memory. */
size_t KSystemControlBase::CalculateRequiredSecureMemorySize(size_t size, u32 pool) {
MESOSPHERE_UNUSED(pool);
return size;
}
Result KSystemControlBase::AllocateSecureMemory(KVirtualAddress *out, size_t size, u32 pool) {
/* Ensure the size is aligned. */
constexpr size_t Alignment = PageSize;
R_UNLESS(util::IsAligned(size, Alignment), svc::ResultInvalidSize());
/* Allocate the memory. */
const size_t num_pages = size / PageSize;
const KPhysicalAddress paddr = Kernel::GetMemoryManager().AllocateAndOpenContinuous(num_pages, Alignment / PageSize, KMemoryManager::EncodeOption(static_cast<KMemoryManager::Pool>(pool), KMemoryManager::Direction_FromFront));
R_UNLESS(paddr != Null<KPhysicalAddress>, svc::ResultOutOfMemory());
*out = KPageTable::GetHeapVirtualAddress(paddr);
return ResultSuccess();
}
void KSystemControlBase::FreeSecureMemory(KVirtualAddress address, size_t size, u32 pool) {
/* Ensure the size is aligned. */
constexpr size_t Alignment = PageSize;
MESOSPHERE_UNUSED(pool);
MESOSPHERE_ABORT_UNLESS(util::IsAligned(GetInteger(address), Alignment));
MESOSPHERE_ABORT_UNLESS(util::IsAligned(size, Alignment));
/* Close the secure region's pages. */
Kernel::GetMemoryManager().Close(KPageTable::GetHeapPhysicalAddress(address), size / PageSize);
}
}

View file

@ -139,14 +139,20 @@ namespace ams::kern {
PrintMemoryRegion(" InitPageTable", KMemoryLayout::GetKernelInitPageTableRegionPhysicalExtents());
PrintMemoryRegion(" MemoryPoolRegion", KMemoryLayout::GetKernelPoolPartitionRegionPhysicalExtents());
if (GetTargetFirmware() >= TargetFirmware_5_0_0) {
PrintMemoryRegion(" System", KMemoryLayout::GetKernelSystemPoolRegionPhysicalExtents());
PrintMemoryRegion(" Management", KMemoryLayout::GetKernelPoolManagementRegionPhysicalExtents());
PrintMemoryRegion(" SystemUnsafe", KMemoryLayout::GetKernelSystemNonSecurePoolRegionPhysicalExtents());
PrintMemoryRegion(" Applet", KMemoryLayout::GetKernelAppletPoolRegionPhysicalExtents());
PrintMemoryRegion(" Application", KMemoryLayout::GetKernelApplicationPoolRegionPhysicalExtents());
PrintMemoryRegion(" System", KMemoryLayout::GetKernelSystemPoolRegionPhysicalExtents());
if (KMemoryLayout::HasKernelSystemNonSecurePoolRegion()) {
PrintMemoryRegion(" SystemUnsafe", KMemoryLayout::GetKernelSystemNonSecurePoolRegionPhysicalExtents());
}
if (KMemoryLayout::HasKernelAppletPoolRegion()) {
PrintMemoryRegion(" Applet", KMemoryLayout::GetKernelAppletPoolRegionPhysicalExtents());
}
if (KMemoryLayout::HasKernelApplicationPoolRegion()) {
PrintMemoryRegion(" Application", KMemoryLayout::GetKernelApplicationPoolRegionPhysicalExtents());
}
} else {
PrintMemoryRegion(" Secure", KMemoryLayout::GetKernelSystemPoolRegionPhysicalExtents());
PrintMemoryRegion(" Management", KMemoryLayout::GetKernelPoolManagementRegionPhysicalExtents());
PrintMemoryRegion(" Secure", KMemoryLayout::GetKernelSystemPoolRegionPhysicalExtents());
PrintMemoryRegion(" Unsafe", KMemoryLayout::GetKernelApplicationPoolRegionPhysicalExtents());
}
if constexpr (IsKTraceEnabled) {

View file

@ -36,7 +36,7 @@ namespace ams::kern::svc {
size_t remaining = size;
while (remaining > 0) {
/* Get a contiguous range to operate on. */
KPageTableBase::MemoryRange contig_range = {};
KPageTableBase::MemoryRange contig_range = { .address = Null<KPhysicalAddress>, .size = 0 };
R_TRY(page_table.OpenMemoryRangeForProcessCacheOperation(std::addressof(contig_range), cur_address, aligned_end - cur_address));
/* Close the range when we're done operating on it. */