Atmosphere/stratosphere/ams_mitm/source/uart_mitm/uart_mitm_service.cpp

372 lines
18 KiB
C++
Raw Normal View History

2020-12-22 02:51:43 +00:00
/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
#include "uart_mitm_service.hpp"
#include "../amsmitm_debug.hpp"
#include "../amsmitm_fs_utils.hpp"
/* TODO: This should really use async fs-writing, there's a slowdown with bluetooth communications with current fs-writing. */
namespace ams::mitm::uart {
/* Helper functions. */
bool UartPortService::TryGetCurrentTimestamp(u64 *out) {
/* Clear output. */
*out = 0;
/* Check if we have time service. */
{
bool has_time_service = false;
if (R_FAILED(sm::HasService(&has_time_service, sm::ServiceName::Encode("time:s"))) || !has_time_service) {
return false;
}
}
/* Try to get the current time. */
{
sm::ScopedServiceHolder<timeInitialize, timeExit> time_holder;
return time_holder && R_SUCCEEDED(timeGetCurrentTime(TimeType_LocalSystemClock, out));
}
}
UartPortService::UartPortService(const sm::MitmProcessInfo &cl, std::unique_ptr<::UartPortSession> s) : client_info(cl), srv(std::move(s)) {
Result rc=0;
/* Get a timestamp. */
2020-12-23 02:48:18 +00:00
u64 timestamp0=0, timestamp1;
2020-12-22 02:51:43 +00:00
this->TryGetCurrentTimestamp(&timestamp0);
timestamp1 = svcGetSystemTick();
2020-12-23 02:48:18 +00:00
/* Setup/create the logging directory. */
2020-12-22 02:51:43 +00:00
std::snprintf(this->base_path, sizeof(this->base_path), "uart_logs/%011lu_%011lu_%016lx", timestamp0, timestamp1, static_cast<u64>(this->client_info.program_id));
ams::mitm::fs::CreateAtmosphereSdDirectory("uart_logs");
ams::mitm::fs::CreateAtmosphereSdDirectory(this->base_path);
2020-12-23 02:48:18 +00:00
/* Create/initialize the text cmd_log. */
2020-12-22 02:51:43 +00:00
char tmp_path[256];
std::snprintf(tmp_path, sizeof(tmp_path), "%s/%s", this->base_path, "cmd_log");
ams::mitm::fs::CreateAtmosphereSdFile(tmp_path, 0, 0);
this->cmdlog_pos = 0;
2020-12-23 02:48:18 +00:00
/* Initialize the Send cache-buffer. */
2020-12-22 02:51:43 +00:00
this->send_cache_buffer = static_cast<u8 *>(std::malloc(this->CacheBufferSize));
if (this->send_cache_buffer != nullptr) {
std::memset(this->send_cache_buffer, 0, this->CacheBufferSize);
}
this->send_cache_pos = 0;
2020-12-23 02:48:18 +00:00
/* Initialize the Receive cache-buffer. */
2020-12-22 02:51:43 +00:00
this->receive_cache_buffer = static_cast<u8 *>(std::malloc(this->CacheBufferSize));
if (this->receive_cache_buffer != nullptr) {
std::memset(this->receive_cache_buffer, 0, this->CacheBufferSize);
}
this->receive_cache_pos = 0;
2020-12-23 02:48:18 +00:00
/* When the above is successful, initialize the datalog. */
2020-12-22 02:51:43 +00:00
if (this->send_cache_buffer != nullptr && this->receive_cache_buffer != nullptr) {
std::snprintf(tmp_path, sizeof(tmp_path), "%s/%s", this->base_path, "btsnoop_hci.log");
ams::mitm::fs::CreateAtmosphereSdFile(tmp_path, 0, 0);
rc = ams::mitm::fs::OpenAtmosphereSdFile(&this->datalog_file, tmp_path, FsOpenMode_Read | FsOpenMode_Write | FsOpenMode_Append);
2020-12-23 02:48:18 +00:00
/* Set datalog_ready to whether initialization was successful. */
2020-12-22 02:51:43 +00:00
this->datalog_ready = R_SUCCEEDED(rc);
}
this->datalog_pos = 0;
2020-12-23 02:48:18 +00:00
/* Setup the btsnoop header. */
2020-12-22 02:51:43 +00:00
struct {
char id[8];
u32 version;
u32 datalink_type;
} btsnoop_header = { .id = "btsnoop" };
u32 version = 1;
u32 datalink_type = 1002; /* HCI UART (H4) */
ams::util::StoreBigEndian(&btsnoop_header.version, version);
ams::util::StoreBigEndian(&btsnoop_header.datalink_type, datalink_type);
2020-12-23 02:48:18 +00:00
/* Enable data-logging, required for WriteLog() to write anything. */
2020-12-22 02:51:43 +00:00
this->data_logging_enabled = true;
2020-12-23 02:48:18 +00:00
/* Write the btsnoop header to the datalog. */
2020-12-22 02:51:43 +00:00
this->WriteLog(&btsnoop_header, sizeof(btsnoop_header));
2020-12-23 02:48:18 +00:00
2020-12-22 02:51:43 +00:00
/* This will be re-enabled by WriteUartData once a certain command is detected. */
/* If you want to log all HCI traffic during system-boot initialization, you can comment out the below line, however there will be a slowdown. */
this->data_logging_enabled = false;
}
2020-12-23 02:48:18 +00:00
/* Append the specified string to the text cmd_log file. */
2020-12-22 02:51:43 +00:00
void UartPortService::WriteCmdLog(const char *str) {
Result rc=0;
FsFile file={};
char tmp_path[256];
size_t len = strlen(str);
std::snprintf(tmp_path, sizeof(tmp_path), "%s/%s", this->base_path, "cmd_log");
rc = ams::mitm::fs::OpenAtmosphereSdFile(&file, tmp_path, FsOpenMode_Read | FsOpenMode_Write | FsOpenMode_Append);
if (R_SUCCEEDED(rc)) {
rc = fsFileWrite(&file, this->cmdlog_pos, str, len, FsWriteOption_None);
}
if (R_SUCCEEDED(rc)) {
this->cmdlog_pos += len;
}
fsFileClose(&file);
}
2020-12-23 02:48:18 +00:00
/* Append the specified data to the datalog file. */
2020-12-22 02:51:43 +00:00
void UartPortService::WriteLog(const void* buffer, size_t size) {
2020-12-23 02:48:18 +00:00
/* Only write to the file if data-logging is enabled and initialized. */
2020-12-22 02:51:43 +00:00
if (this->data_logging_enabled && this->datalog_ready) {
if (R_SUCCEEDED(fsFileWrite(&this->datalog_file, this->datalog_pos, buffer, size, FsWriteOption_None))) {
this->datalog_pos += size;
}
}
}
2020-12-23 02:48:18 +00:00
/* Append the specified packet to the datalog via WriteLog. */
/* dir: false = Send (host->controller), true = Receive (controller->host). */
2020-12-22 02:51:43 +00:00
void UartPortService::WriteLogPacket(bool dir, const void* buffer, size_t size) {
struct {
u32 original_length;
u32 included_length;
u32 packet_flags;
u32 cumulative_drops;
s64 timestamp_microseconds;
} pkt_hdr = {};
u32 flags = 0;
if (dir) {
flags |= BIT(0);
}
ams::util::StoreBigEndian(&pkt_hdr.original_length, static_cast<u32>(size));
ams::util::StoreBigEndian(&pkt_hdr.included_length, static_cast<u32>(size));
ams::util::StoreBigEndian(&pkt_hdr.packet_flags, flags);
2020-12-23 02:48:18 +00:00
/* Currently we leave the timestamp at value 0. */
2020-12-22 02:51:43 +00:00
this->WriteLog(&pkt_hdr, sizeof(pkt_hdr));
this->WriteLog(buffer, size);
}
2020-12-23 02:48:18 +00:00
/* Log data from Send/Receive. */
/* dir: false = Send (host->controller), true = Receive (controller->host). */
2020-12-22 02:51:43 +00:00
void UartPortService::WriteUartData(bool dir, const void* buffer, size_t size) {
2020-12-23 02:48:18 +00:00
/* Select which cache buffer/pos to use via dir. */
2020-12-22 02:51:43 +00:00
u8 *cache_buffer = !dir ? this->send_cache_buffer : this->receive_cache_buffer;
size_t *cache_pos = !dir ? &this->send_cache_pos : &this->receive_cache_pos;
2020-12-23 02:48:18 +00:00
/* Verify that the input size is non-zero, and within cache buffer bounds. */
2020-12-22 02:51:43 +00:00
if (size && *cache_pos + size <= this->CacheBufferSize) {
struct {
u8 opcode[0x2];
u8 param_len;
} *hci_cmd = reinterpret_cast<decltype(hci_cmd)>(&cache_buffer[0x1]);
static_assert(sizeof(*hci_cmd) == 0x3);
struct {
u8 handle_flags[0x2];
u16 data_len;
} *hci_acl_data = reinterpret_cast<decltype(hci_acl_data)>(&cache_buffer[0x1]);
static_assert(sizeof(*hci_acl_data) == 0x4);
struct {
u8 handle_flags[0x2];
u8 data_len;
} *hci_sco_data = reinterpret_cast<decltype(hci_sco_data)>(&cache_buffer[0x1]);
static_assert(sizeof(*hci_sco_data) == 0x3);
struct {
u8 event_code;
u8 param_len;
} *hci_event = reinterpret_cast<decltype(hci_event)>(&cache_buffer[0x1]);
static_assert(sizeof(*hci_event) == 0x2);
struct {
u8 handle_flags[0x2];
u16 data_load_len : 14;
u8 rfu1 : 2;
} *hci_iso_data = reinterpret_cast<decltype(hci_iso_data)>(&cache_buffer[0x1]);
static_assert(sizeof(*hci_iso_data) == 0x4);
2020-12-23 02:48:18 +00:00
/* Copy the input data into the cache and update the pos. */
2020-12-22 02:51:43 +00:00
std::memcpy(&cache_buffer[*cache_pos], buffer, size);
(*cache_pos)+= size;
2020-12-23 02:48:18 +00:00
/* Process the packets in the cache. */
2020-12-22 02:51:43 +00:00
do {
size_t orig_pkt_len = 0x0;
size_t pkt_len = 0x1;
2020-12-23 02:48:18 +00:00
/* Determine which HCI packet this is, via the packet indicator. */
/* These are supported regardless of whether the official bluetooth-sysmodule supports it. */
if (cache_buffer[0] == 0x1) { /* HCI Command */
2020-12-22 02:51:43 +00:00
if (*cache_pos >= 0x1+sizeof(*hci_cmd)) {
orig_pkt_len = sizeof(*hci_cmd) + hci_cmd->param_len;
2020-12-23 02:48:18 +00:00
/* Check for the first command used in the port which is opened last by bluetooth-sysmodule. */
/* This is a vendor command. */
/* Once detected, data-logging will be enabled. */
2020-12-22 02:51:43 +00:00
if (!this->data_logging_enabled && hci_cmd->opcode[1] == 0xFC && hci_cmd->opcode[0] == 0x16) {
this->data_logging_enabled = true;
}
}
}
2020-12-23 02:48:18 +00:00
else if (cache_buffer[0] == 0x2) { /* HCI ACL Data */
2020-12-22 02:51:43 +00:00
if (*cache_pos >= 0x1+sizeof(*hci_acl_data)) {
orig_pkt_len = sizeof(*hci_acl_data) + hci_acl_data->data_len;
}
}
2020-12-23 02:48:18 +00:00
else if (cache_buffer[0] == 0x3) { /* HCI Synchronous Data (SCO) */
2020-12-22 02:51:43 +00:00
if (*cache_pos >= 0x1+sizeof(*hci_sco_data)) {
orig_pkt_len = sizeof(*hci_sco_data) + hci_sco_data->data_len;
}
}
2020-12-23 02:48:18 +00:00
else if (cache_buffer[0] == 0x4) { /* HCI Event */
2020-12-22 02:51:43 +00:00
if (*cache_pos >= 0x1+sizeof(*hci_event)) {
orig_pkt_len = sizeof(*hci_event) + hci_event->param_len;
}
}
2020-12-23 02:48:18 +00:00
else if (cache_buffer[0] == 0x5) { /* HCI ISO Data */
2020-12-22 02:51:43 +00:00
if (*cache_pos >= 0x1+sizeof(*hci_iso_data)) {
orig_pkt_len = sizeof(*hci_iso_data) + hci_iso_data->data_load_len;
}
}
2020-12-23 02:48:18 +00:00
else { /* Unknown HCI packet */
2020-12-22 02:51:43 +00:00
char str[256];
std::snprintf(str, sizeof(str), "WriteUartData(dir = %s): Unknown HCI packet indicator 0x%x, ignoring the packet and emptying the cache.\n", !dir ? "send" : "receive", cache_buffer[0]);
this->WriteCmdLog(str);
*cache_pos = 0;
}
2020-12-23 02:48:18 +00:00
/* If a full packet is available in the cache, update pkt_len. */
2020-12-22 02:51:43 +00:00
if (orig_pkt_len) {
if (*cache_pos >= 0x1+orig_pkt_len) {
pkt_len+= orig_pkt_len;
}
}
2020-12-23 02:48:18 +00:00
/* If a packet is available, log it and update the cache. */
2020-12-22 02:51:43 +00:00
if (pkt_len>0x1) {
this->WriteLogPacket(dir, cache_buffer, pkt_len);
(*cache_pos)-= pkt_len;
if (*cache_pos) {
std::memmove(cache_buffer, &cache_buffer[pkt_len], *cache_pos);
}
}
2020-12-23 02:48:18 +00:00
/* Otherwise, exit the loop. */
2020-12-22 02:51:43 +00:00
else break;
} while(*cache_pos);
}
}
2020-12-23 02:48:18 +00:00
/* Forward OpenPort and write to the cmd_log. */
2020-12-22 02:51:43 +00:00
Result UartPortService::OpenPort(sf::Out<bool> out, u32 port, u32 baud_rate, UartFlowControlMode flow_control_mode, u32 device_variation, bool is_invert_tx, bool is_invert_rx, bool is_invert_rts, bool is_invert_cts, sf::CopyHandle send_handle, sf::CopyHandle receive_handle, u64 send_buffer_length, u64 receive_buffer_length) {
Result rc = uartPortSessionOpenPortFwd(this->srv.get(), reinterpret_cast<bool *>(out.GetPointer()), port, baud_rate, flow_control_mode, device_variation, is_invert_tx, is_invert_rx, is_invert_rts, is_invert_cts, send_handle.GetValue(), receive_handle.GetValue(), send_buffer_length, receive_buffer_length);
svcCloseHandle(send_handle.GetValue());
svcCloseHandle(receive_handle.GetValue());
char str[256];
std::snprintf(str, sizeof(str), "OpenPort(port = 0x%x, baud_rate = %u, flow_control_mode = %u, device_variation = %u, is_invert_tx = %d, is_invert_rx = %d, is_invert_rts = %d, is_invert_cts = %d, send_buffer_length = 0x%lx, receive_buffer_length = 0x%lx): rc = 0x%x, out = %d\n", port, baud_rate, flow_control_mode, device_variation, is_invert_tx, is_invert_rx, is_invert_rts, is_invert_cts, send_buffer_length, receive_buffer_length, rc.GetValue(), out.GetValue());
this->WriteCmdLog(str);
return rc;
}
2020-12-23 02:48:18 +00:00
/* Forward OpenPortForDev and write to the cmd_log. */
2020-12-22 02:51:43 +00:00
Result UartPortService::OpenPortForDev(sf::Out<bool> out, u32 port, u32 baud_rate, UartFlowControlMode flow_control_mode, u32 device_variation, bool is_invert_tx, bool is_invert_rx, bool is_invert_rts, bool is_invert_cts, sf::CopyHandle send_handle, sf::CopyHandle receive_handle, u64 send_buffer_length, u64 receive_buffer_length) {
Result rc = uartPortSessionOpenPortForDevFwd(this->srv.get(), reinterpret_cast<bool *>(out.GetPointer()), port, baud_rate, flow_control_mode, device_variation, is_invert_tx, is_invert_rx, is_invert_rts, is_invert_cts, send_handle.GetValue(), receive_handle.GetValue(), send_buffer_length, receive_buffer_length);
svcCloseHandle(send_handle.GetValue());
svcCloseHandle(receive_handle.GetValue());
char str[256];
std::snprintf(str, sizeof(str), "OpenPortForDev(port = 0x%x, baud_rate = %u, flow_control_mode = %u, device_variation = %u, is_invert_tx = %d, is_invert_rx = %d, is_invert_rts = %d, is_invert_cts = %d, send_buffer_length = 0x%lx, receive_buffer_length = 0x%lx): rc = 0x%x, out = %d\n", port, baud_rate, flow_control_mode, device_variation, is_invert_tx, is_invert_rx, is_invert_rts, is_invert_cts, send_buffer_length, receive_buffer_length, rc.GetValue(), out.GetValue());
this->WriteCmdLog(str);
return rc;
}
2020-12-23 02:48:18 +00:00
/* Forward GetWritableLength and write to the cmd_log. */
2020-12-22 02:51:43 +00:00
Result UartPortService::GetWritableLength(sf::Out<u64> out) {
Result rc = uartPortSessionGetWritableLength(this->srv.get(), reinterpret_cast<u64 *>(out.GetPointer()));
char str[256];
std::snprintf(str, sizeof(str), "GetWritableLength(): rc = 0x%x, out = 0x%lx\n", rc.GetValue(), out.GetValue());
this->WriteCmdLog(str);
return rc;
}
2020-12-23 02:48:18 +00:00
/* Forward Send and log the data if the out_size is non-zero. */
2020-12-22 02:51:43 +00:00
Result UartPortService::Send(sf::Out<u64> out_size, const sf::InAutoSelectBuffer &data) {
Result rc = uartPortSessionSend(this->srv.get(), data.GetPointer(), data.GetSize(), reinterpret_cast<u64 *>(out_size.GetPointer()));
if (R_SUCCEEDED(rc) && out_size.GetValue()) {
this->WriteUartData(false, data.GetPointer(), out_size.GetValue());
}
return rc;
}
2020-12-23 02:48:18 +00:00
/* Forward GetReadableLength and write to the cmd_log. */
2020-12-22 02:51:43 +00:00
Result UartPortService::GetReadableLength(sf::Out<u64> out) {
Result rc = uartPortSessionGetReadableLength(this->srv.get(), reinterpret_cast<u64 *>(out.GetPointer()));
char str[256];
2020-12-23 02:48:18 +00:00
std::snprintf(str, sizeof(str), "GetReadableLength(): rc = 0x%x, out = 0x%lx\n", rc.GetValue(), out.GetValue());
2020-12-22 02:51:43 +00:00
this->WriteCmdLog(str);
return rc;
}
2020-12-23 02:48:18 +00:00
/* Forward Receive and log the data if the out_size is non-zero. */
2020-12-22 02:51:43 +00:00
Result UartPortService::Receive(sf::Out<u64> out_size, const sf::OutAutoSelectBuffer &data) {
Result rc = uartPortSessionReceive(this->srv.get(), data.GetPointer(), data.GetSize(), reinterpret_cast<u64 *>(out_size.GetPointer()));
if (R_SUCCEEDED(rc) && out_size.GetValue()) {
this->WriteUartData(true, data.GetPointer(), out_size.GetValue());
}
return rc;
}
2020-12-23 02:48:18 +00:00
/* Forward BindPortEvent and write to the cmd_log. */
2020-12-22 02:51:43 +00:00
Result UartPortService::BindPortEvent(sf::Out<bool> out, sf::OutCopyHandle out_event_handle, UartPortEventType port_event_type, s64 threshold) {
Result rc = uartPortSessionBindPortEventFwd(this->srv.get(), port_event_type, threshold, reinterpret_cast<bool *>(out.GetPointer()), out_event_handle.GetHandlePointer());
char str[256];
std::snprintf(str, sizeof(str), "BindPortEvent(port_event_type = 0x%x, threshold = 0x%lx): rc = 0x%x, out = %d\n", port_event_type, threshold, rc.GetValue(), out.GetValue());
this->WriteCmdLog(str);
return rc;
}
2020-12-23 02:48:18 +00:00
/* Forward UnbindPortEvent and write to the cmd_log. */
2020-12-22 02:51:43 +00:00
Result UartPortService::UnbindPortEvent(sf::Out<bool> out, UartPortEventType port_event_type) {
Result rc = uartPortSessionUnbindPortEvent(this->srv.get(), port_event_type, reinterpret_cast<bool *>(out.GetPointer()));
char str[256];
std::snprintf(str, sizeof(str), "UnbindPortEvent(port_event_type = 0x%x): rc = 0x%x, out = %d\n", port_event_type, rc.GetValue(), out.GetValue());
this->WriteCmdLog(str);
return rc;
}
Result UartMitmService::CreatePortSession(sf::Out<std::shared_ptr<impl::IPortSession>> out) {
/* Open a port interface. */
UartPortSession port;
R_TRY(uartCreatePortSessionFwd(this->forward_service.get(), &port));
const sf::cmif::DomainObjectId target_object_id{serviceGetObjectId(&port.s)};
out.SetValue(sf::MakeShared<impl::IPortSession, UartPortService>(this->client_info, std::make_unique<UartPortSession>(port)), target_object_id);
return ResultSuccess();
}
}