/* * Copyright (c) 2018-2020 Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "uart_mitm_service.hpp" #include "../amsmitm_debug.hpp" #include "../amsmitm_fs_utils.hpp" /* TODO: This should really use async fs-writing, there's a slowdown with bluetooth communications with current fs-writing. */ namespace ams::mitm::uart { /* Helper functions. */ bool UartPortService::TryGetCurrentTimestamp(u64 *out) { /* Clear output. */ *out = 0; /* Check if we have time service. */ { bool has_time_service = false; if (R_FAILED(sm::HasService(&has_time_service, sm::ServiceName::Encode("time:s"))) || !has_time_service) { return false; } } /* Try to get the current time. */ { sm::ScopedServiceHolder time_holder; return time_holder && R_SUCCEEDED(timeGetCurrentTime(TimeType_LocalSystemClock, out)); } } UartPortService::UartPortService(const sm::MitmProcessInfo &cl, std::unique_ptr<::UartPortSession> s) : client_info(cl), srv(std::move(s)) { Result rc=0; /* Get a timestamp. */ u64 timestamp0=0, timestamp1; this->TryGetCurrentTimestamp(×tamp0); timestamp1 = svcGetSystemTick(); /* Setup/create the logging directory. */ std::snprintf(this->base_path, sizeof(this->base_path), "uart_logs/%011lu_%011lu_%016lx", timestamp0, timestamp1, static_cast(this->client_info.program_id)); ams::mitm::fs::CreateAtmosphereSdDirectory("uart_logs"); ams::mitm::fs::CreateAtmosphereSdDirectory(this->base_path); /* Create/initialize the text cmd_log. */ char tmp_path[256]; std::snprintf(tmp_path, sizeof(tmp_path), "%s/%s", this->base_path, "cmd_log"); ams::mitm::fs::CreateAtmosphereSdFile(tmp_path, 0, 0); this->cmdlog_pos = 0; /* Initialize the Send cache-buffer. */ this->send_cache_buffer = static_cast(std::malloc(this->CacheBufferSize)); if (this->send_cache_buffer != nullptr) { std::memset(this->send_cache_buffer, 0, this->CacheBufferSize); } this->send_cache_pos = 0; /* Initialize the Receive cache-buffer. */ this->receive_cache_buffer = static_cast(std::malloc(this->CacheBufferSize)); if (this->receive_cache_buffer != nullptr) { std::memset(this->receive_cache_buffer, 0, this->CacheBufferSize); } this->receive_cache_pos = 0; /* When the above is successful, initialize the datalog. */ if (this->send_cache_buffer != nullptr && this->receive_cache_buffer != nullptr) { std::snprintf(tmp_path, sizeof(tmp_path), "%s/%s", this->base_path, "btsnoop_hci.log"); ams::mitm::fs::CreateAtmosphereSdFile(tmp_path, 0, 0); rc = ams::mitm::fs::OpenAtmosphereSdFile(&this->datalog_file, tmp_path, FsOpenMode_Read | FsOpenMode_Write | FsOpenMode_Append); /* Set datalog_ready to whether initialization was successful. */ this->datalog_ready = R_SUCCEEDED(rc); } this->datalog_pos = 0; /* Setup the btsnoop header. */ struct { char id[8]; u32 version; u32 datalink_type; } btsnoop_header = { .id = "btsnoop" }; u32 version = 1; u32 datalink_type = 1002; /* HCI UART (H4) */ ams::util::StoreBigEndian(&btsnoop_header.version, version); ams::util::StoreBigEndian(&btsnoop_header.datalink_type, datalink_type); /* Enable data-logging, required for WriteLog() to write anything. */ this->data_logging_enabled = true; /* Write the btsnoop header to the datalog. */ this->WriteLog(&btsnoop_header, sizeof(btsnoop_header)); /* This will be re-enabled by WriteUartData once a certain command is detected. */ /* If you want to log all HCI traffic during system-boot initialization, you can comment out the below line, however there will be a slowdown. */ this->data_logging_enabled = false; } /* Append the specified string to the text cmd_log file. */ void UartPortService::WriteCmdLog(const char *str) { Result rc=0; FsFile file={}; char tmp_path[256]; size_t len = strlen(str); std::snprintf(tmp_path, sizeof(tmp_path), "%s/%s", this->base_path, "cmd_log"); rc = ams::mitm::fs::OpenAtmosphereSdFile(&file, tmp_path, FsOpenMode_Read | FsOpenMode_Write | FsOpenMode_Append); if (R_SUCCEEDED(rc)) { rc = fsFileWrite(&file, this->cmdlog_pos, str, len, FsWriteOption_None); } if (R_SUCCEEDED(rc)) { this->cmdlog_pos += len; } fsFileClose(&file); } /* Append the specified data to the datalog file. */ void UartPortService::WriteLog(const void* buffer, size_t size) { /* Only write to the file if data-logging is enabled and initialized. */ if (this->data_logging_enabled && this->datalog_ready) { if (R_SUCCEEDED(fsFileWrite(&this->datalog_file, this->datalog_pos, buffer, size, FsWriteOption_None))) { this->datalog_pos += size; } } } /* Append the specified packet to the datalog via WriteLog. */ /* dir: false = Send (host->controller), true = Receive (controller->host). */ void UartPortService::WriteLogPacket(bool dir, const void* buffer, size_t size) { struct { u32 original_length; u32 included_length; u32 packet_flags; u32 cumulative_drops; s64 timestamp_microseconds; } pkt_hdr = {}; u32 flags = 0; if (dir) { flags |= BIT(0); } ams::util::StoreBigEndian(&pkt_hdr.original_length, static_cast(size)); ams::util::StoreBigEndian(&pkt_hdr.included_length, static_cast(size)); ams::util::StoreBigEndian(&pkt_hdr.packet_flags, flags); /* Currently we leave the timestamp at value 0. */ this->WriteLog(&pkt_hdr, sizeof(pkt_hdr)); this->WriteLog(buffer, size); } /* Log data from Send/Receive. */ /* dir: false = Send (host->controller), true = Receive (controller->host). */ void UartPortService::WriteUartData(bool dir, const void* buffer, size_t size) { /* Select which cache buffer/pos to use via dir. */ u8 *cache_buffer = !dir ? this->send_cache_buffer : this->receive_cache_buffer; size_t *cache_pos = !dir ? &this->send_cache_pos : &this->receive_cache_pos; /* Verify that the input size is non-zero, and within cache buffer bounds. */ if (size && *cache_pos + size <= this->CacheBufferSize) { struct { u8 opcode[0x2]; u8 param_len; } *hci_cmd = reinterpret_cast(&cache_buffer[0x1]); static_assert(sizeof(*hci_cmd) == 0x3); struct { u8 handle_flags[0x2]; u16 data_len; } *hci_acl_data = reinterpret_cast(&cache_buffer[0x1]); static_assert(sizeof(*hci_acl_data) == 0x4); struct { u8 handle_flags[0x2]; u8 data_len; } *hci_sco_data = reinterpret_cast(&cache_buffer[0x1]); static_assert(sizeof(*hci_sco_data) == 0x3); struct { u8 event_code; u8 param_len; } *hci_event = reinterpret_cast(&cache_buffer[0x1]); static_assert(sizeof(*hci_event) == 0x2); struct { u8 handle_flags[0x2]; u16 data_load_len : 14; u8 rfu1 : 2; } *hci_iso_data = reinterpret_cast(&cache_buffer[0x1]); static_assert(sizeof(*hci_iso_data) == 0x4); /* Copy the input data into the cache and update the pos. */ std::memcpy(&cache_buffer[*cache_pos], buffer, size); (*cache_pos)+= size; /* Process the packets in the cache. */ do { size_t orig_pkt_len = 0x0; size_t pkt_len = 0x1; /* Determine which HCI packet this is, via the packet indicator. */ /* These are supported regardless of whether the official bluetooth-sysmodule supports it. */ if (cache_buffer[0] == 0x1) { /* HCI Command */ if (*cache_pos >= 0x1+sizeof(*hci_cmd)) { orig_pkt_len = sizeof(*hci_cmd) + hci_cmd->param_len; /* Check for the first command used in the port which is opened last by bluetooth-sysmodule. */ /* This is a vendor command. */ /* Once detected, data-logging will be enabled. */ if (!this->data_logging_enabled && hci_cmd->opcode[1] == 0xFC && hci_cmd->opcode[0] == 0x16) { this->data_logging_enabled = true; } } } else if (cache_buffer[0] == 0x2) { /* HCI ACL Data */ if (*cache_pos >= 0x1+sizeof(*hci_acl_data)) { orig_pkt_len = sizeof(*hci_acl_data) + hci_acl_data->data_len; } } else if (cache_buffer[0] == 0x3) { /* HCI Synchronous Data (SCO) */ if (*cache_pos >= 0x1+sizeof(*hci_sco_data)) { orig_pkt_len = sizeof(*hci_sco_data) + hci_sco_data->data_len; } } else if (cache_buffer[0] == 0x4) { /* HCI Event */ if (*cache_pos >= 0x1+sizeof(*hci_event)) { orig_pkt_len = sizeof(*hci_event) + hci_event->param_len; } } else if (cache_buffer[0] == 0x5) { /* HCI ISO Data */ if (*cache_pos >= 0x1+sizeof(*hci_iso_data)) { orig_pkt_len = sizeof(*hci_iso_data) + hci_iso_data->data_load_len; } } else { /* Unknown HCI packet */ char str[256]; std::snprintf(str, sizeof(str), "WriteUartData(dir = %s): Unknown HCI packet indicator 0x%x, ignoring the packet and emptying the cache.\n", !dir ? "send" : "receive", cache_buffer[0]); this->WriteCmdLog(str); *cache_pos = 0; } /* If a full packet is available in the cache, update pkt_len. */ if (orig_pkt_len) { if (*cache_pos >= 0x1+orig_pkt_len) { pkt_len+= orig_pkt_len; } } /* If a packet is available, log it and update the cache. */ if (pkt_len>0x1) { this->WriteLogPacket(dir, cache_buffer, pkt_len); (*cache_pos)-= pkt_len; if (*cache_pos) { std::memmove(cache_buffer, &cache_buffer[pkt_len], *cache_pos); } } /* Otherwise, exit the loop. */ else break; } while(*cache_pos); } } /* Forward OpenPort and write to the cmd_log. */ Result UartPortService::OpenPort(sf::Out out, u32 port, u32 baud_rate, UartFlowControlMode flow_control_mode, u32 device_variation, bool is_invert_tx, bool is_invert_rx, bool is_invert_rts, bool is_invert_cts, sf::CopyHandle send_handle, sf::CopyHandle receive_handle, u64 send_buffer_length, u64 receive_buffer_length) { Result rc = uartPortSessionOpenPortFwd(this->srv.get(), reinterpret_cast(out.GetPointer()), port, baud_rate, flow_control_mode, device_variation, is_invert_tx, is_invert_rx, is_invert_rts, is_invert_cts, send_handle.GetValue(), receive_handle.GetValue(), send_buffer_length, receive_buffer_length); svcCloseHandle(send_handle.GetValue()); svcCloseHandle(receive_handle.GetValue()); char str[256]; std::snprintf(str, sizeof(str), "OpenPort(port = 0x%x, baud_rate = %u, flow_control_mode = %u, device_variation = %u, is_invert_tx = %d, is_invert_rx = %d, is_invert_rts = %d, is_invert_cts = %d, send_buffer_length = 0x%lx, receive_buffer_length = 0x%lx): rc = 0x%x, out = %d\n", port, baud_rate, flow_control_mode, device_variation, is_invert_tx, is_invert_rx, is_invert_rts, is_invert_cts, send_buffer_length, receive_buffer_length, rc.GetValue(), out.GetValue()); this->WriteCmdLog(str); return rc; } /* Forward OpenPortForDev and write to the cmd_log. */ Result UartPortService::OpenPortForDev(sf::Out out, u32 port, u32 baud_rate, UartFlowControlMode flow_control_mode, u32 device_variation, bool is_invert_tx, bool is_invert_rx, bool is_invert_rts, bool is_invert_cts, sf::CopyHandle send_handle, sf::CopyHandle receive_handle, u64 send_buffer_length, u64 receive_buffer_length) { Result rc = uartPortSessionOpenPortForDevFwd(this->srv.get(), reinterpret_cast(out.GetPointer()), port, baud_rate, flow_control_mode, device_variation, is_invert_tx, is_invert_rx, is_invert_rts, is_invert_cts, send_handle.GetValue(), receive_handle.GetValue(), send_buffer_length, receive_buffer_length); svcCloseHandle(send_handle.GetValue()); svcCloseHandle(receive_handle.GetValue()); char str[256]; std::snprintf(str, sizeof(str), "OpenPortForDev(port = 0x%x, baud_rate = %u, flow_control_mode = %u, device_variation = %u, is_invert_tx = %d, is_invert_rx = %d, is_invert_rts = %d, is_invert_cts = %d, send_buffer_length = 0x%lx, receive_buffer_length = 0x%lx): rc = 0x%x, out = %d\n", port, baud_rate, flow_control_mode, device_variation, is_invert_tx, is_invert_rx, is_invert_rts, is_invert_cts, send_buffer_length, receive_buffer_length, rc.GetValue(), out.GetValue()); this->WriteCmdLog(str); return rc; } /* Forward GetWritableLength and write to the cmd_log. */ Result UartPortService::GetWritableLength(sf::Out out) { Result rc = uartPortSessionGetWritableLength(this->srv.get(), reinterpret_cast(out.GetPointer())); char str[256]; std::snprintf(str, sizeof(str), "GetWritableLength(): rc = 0x%x, out = 0x%lx\n", rc.GetValue(), out.GetValue()); this->WriteCmdLog(str); return rc; } /* Forward Send and log the data if the out_size is non-zero. */ Result UartPortService::Send(sf::Out out_size, const sf::InAutoSelectBuffer &data) { Result rc = uartPortSessionSend(this->srv.get(), data.GetPointer(), data.GetSize(), reinterpret_cast(out_size.GetPointer())); if (R_SUCCEEDED(rc) && out_size.GetValue()) { this->WriteUartData(false, data.GetPointer(), out_size.GetValue()); } return rc; } /* Forward GetReadableLength and write to the cmd_log. */ Result UartPortService::GetReadableLength(sf::Out out) { Result rc = uartPortSessionGetReadableLength(this->srv.get(), reinterpret_cast(out.GetPointer())); char str[256]; std::snprintf(str, sizeof(str), "GetReadableLength(): rc = 0x%x, out = 0x%lx\n", rc.GetValue(), out.GetValue()); this->WriteCmdLog(str); return rc; } /* Forward Receive and log the data if the out_size is non-zero. */ Result UartPortService::Receive(sf::Out out_size, const sf::OutAutoSelectBuffer &data) { Result rc = uartPortSessionReceive(this->srv.get(), data.GetPointer(), data.GetSize(), reinterpret_cast(out_size.GetPointer())); if (R_SUCCEEDED(rc) && out_size.GetValue()) { this->WriteUartData(true, data.GetPointer(), out_size.GetValue()); } return rc; } /* Forward BindPortEvent and write to the cmd_log. */ Result UartPortService::BindPortEvent(sf::Out out, sf::OutCopyHandle out_event_handle, UartPortEventType port_event_type, s64 threshold) { Result rc = uartPortSessionBindPortEventFwd(this->srv.get(), port_event_type, threshold, reinterpret_cast(out.GetPointer()), out_event_handle.GetHandlePointer()); char str[256]; std::snprintf(str, sizeof(str), "BindPortEvent(port_event_type = 0x%x, threshold = 0x%lx): rc = 0x%x, out = %d\n", port_event_type, threshold, rc.GetValue(), out.GetValue()); this->WriteCmdLog(str); return rc; } /* Forward UnbindPortEvent and write to the cmd_log. */ Result UartPortService::UnbindPortEvent(sf::Out out, UartPortEventType port_event_type) { Result rc = uartPortSessionUnbindPortEvent(this->srv.get(), port_event_type, reinterpret_cast(out.GetPointer())); char str[256]; std::snprintf(str, sizeof(str), "UnbindPortEvent(port_event_type = 0x%x): rc = 0x%x, out = %d\n", port_event_type, rc.GetValue(), out.GetValue()); this->WriteCmdLog(str); return rc; } Result UartMitmService::CreatePortSession(sf::Out> out) { /* Open a port interface. */ UartPortSession port; R_TRY(uartCreatePortSessionFwd(this->forward_service.get(), &port)); const sf::cmif::DomainObjectId target_object_id{serviceGetObjectId(&port.s)}; out.SetValue(sf::MakeShared(this->client_info, std::make_unique(port)), target_object_id); return ResultSuccess(); } }