nstool/src/NcaProcess.cpp
2019-01-31 17:10:19 +08:00

834 lines
No EOL
26 KiB
C++

#include <iostream>
#include <iomanip>
#include <sstream>
#include <fnd/SimpleTextOutput.h>
#include <fnd/OffsetAdjustedIFile.h>
#include <fnd/AesCtrWrappedIFile.h>
#include <fnd/LayeredIntegrityWrappedIFile.h>
#include <nn/hac/ContentArchiveUtils.h>
#include <nn/hac/AesKeygen.h>
#include <nn/hac/HierarchicalSha256Header.h>
#include <nn/hac/HierarchicalIntegrityHeader.h>
#include "NcaProcess.h"
#include "PfsProcess.h"
#include "RomfsProcess.h"
#include "MetaProcess.h"
NcaProcess::NcaProcess() :
mFile(),
mCliOutputMode(_BIT(OUTPUT_BASIC)),
mVerify(false),
mListFs(false)
{
for (size_t i = 0; i < nn::hac::nca::kPartitionNum; i++)
{
mPartitionPath[i].doExtract = false;
}
}
void NcaProcess::process()
{
// import header
importHeader();
// determine keys
generateNcaBodyEncryptionKeys();
// import/generate fs header data
generatePartitionConfiguration();
// validate signatures
if (mVerify)
validateNcaSignatures();
// display header
if (_HAS_BIT(mCliOutputMode, OUTPUT_BASIC))
displayHeader();
// process partition
processPartitions();
}
void NcaProcess::setInputFile(const fnd::SharedPtr<fnd::IFile>& file)
{
mFile = file;
}
void NcaProcess::setKeyCfg(const KeyConfiguration& keycfg)
{
mKeyCfg = keycfg;
}
void NcaProcess::setCliOutputMode(CliOutputMode type)
{
mCliOutputMode = type;
}
void NcaProcess::setVerifyMode(bool verify)
{
mVerify = verify;
}
void NcaProcess::setPartition0ExtractPath(const std::string& path)
{
mPartitionPath[0].path = path;
mPartitionPath[0].doExtract = true;
}
void NcaProcess::setPartition1ExtractPath(const std::string& path)
{
mPartitionPath[1].path = path;
mPartitionPath[1].doExtract = true;
}
void NcaProcess::setPartition2ExtractPath(const std::string& path)
{
mPartitionPath[2].path = path;
mPartitionPath[2].doExtract = true;
}
void NcaProcess::setPartition3ExtractPath(const std::string& path)
{
mPartitionPath[3].path = path;
mPartitionPath[3].doExtract = true;
}
void NcaProcess::setListFs(bool list_fs)
{
mListFs = list_fs;
}
void NcaProcess::importHeader()
{
if (*mFile == nullptr)
{
throw fnd::Exception(kModuleName, "No file reader set.");
}
// read header block
(*mFile)->read((byte_t*)&mHdrBlock, 0, sizeof(nn::hac::sContentArchiveHeaderBlock));
// decrypt header block
fnd::aes::sAesXts128Key header_key;
mKeyCfg.getContentArchiveHeaderKey(header_key);
nn::hac::ContentArchiveUtils::decryptContentArchiveHeader((byte_t*)&mHdrBlock, (byte_t*)&mHdrBlock, header_key);
// generate header hash
fnd::sha::Sha256((byte_t*)&mHdrBlock.header, sizeof(nn::hac::sContentArchiveHeader), mHdrHash.bytes);
// proccess main header
mHdr.fromBytes((byte_t*)&mHdrBlock.header, sizeof(nn::hac::sContentArchiveHeader));
}
void NcaProcess::generateNcaBodyEncryptionKeys()
{
// create zeros key
fnd::aes::sAes128Key zero_aesctr_key;
memset(zero_aesctr_key.key, 0, sizeof(zero_aesctr_key));
// get key data from header
byte_t masterkey_rev = nn::hac::ContentArchiveUtils::getMasterKeyRevisionFromKeyGeneration(mHdr.getKeyGeneration());
byte_t keak_index = mHdr.getKeyAreaEncryptionKeyIndex();
// process key area
sKeys::sKeyAreaKey kak;
fnd::aes::sAes128Key key_area_enc_key;
const fnd::aes::sAes128Key* key_area = (const fnd::aes::sAes128Key*) mHdr.getKeyArea();
for (size_t i = 0; i < nn::hac::nca::kKeyAreaKeyNum; i++)
{
if (key_area[i] != zero_aesctr_key)
{
kak.index = (byte_t)i;
kak.enc = key_area[i];
// key[0-3]
if (i < 4 && mKeyCfg.getNcaKeyAreaEncryptionKey(masterkey_rev, keak_index, key_area_enc_key) == true)
{
kak.decrypted = true;
nn::hac::AesKeygen::generateKey(kak.dec.key, kak.enc.key, key_area_enc_key.key);
}
// key[KEY_AESCTR_HW]
else if (i == nn::hac::nca::KEY_AESCTR_HW && mKeyCfg.getNcaKeyAreaEncryptionKeyHw(masterkey_rev, keak_index, key_area_enc_key) == true)
{
kak.decrypted = true;
nn::hac::AesKeygen::generateKey(kak.dec.key, kak.enc.key, key_area_enc_key.key);
}
else
{
kak.decrypted = false;
}
mContentKey.kak_list.addElement(kak);
}
}
// set flag to indicate that the keys are not available
mContentKey.aes_ctr.isSet = false;
// if this has a rights id, the key needs to be sourced from a ticket
if (mHdr.hasRightsId() == true)
{
fnd::aes::sAes128Key tmp_key;
if (mKeyCfg.getNcaExternalContentKey(mHdr.getRightsId(), tmp_key) == true)
{
mContentKey.aes_ctr = tmp_key;
}
else if (mKeyCfg.getNcaExternalContentKey(kDummyRightsIdForUserTitleKey, tmp_key) == true)
{
fnd::aes::sAes128Key common_key;
if (mKeyCfg.getETicketCommonKey(masterkey_rev, common_key) == true)
{
nn::hac::AesKeygen::generateKey(tmp_key.key, tmp_key.key, common_key.key);
}
mContentKey.aes_ctr = tmp_key;
}
}
// otherwise decrypt key area
else
{
fnd::aes::sAes128Key kak_aes_ctr = zero_aesctr_key;
for (size_t i = 0; i < mContentKey.kak_list.size(); i++)
{
if (mContentKey.kak_list[i].index == nn::hac::nca::KEY_AESCTR && mContentKey.kak_list[i].decrypted)
{
kak_aes_ctr = mContentKey.kak_list[i].dec;
}
}
if (kak_aes_ctr != zero_aesctr_key)
{
mContentKey.aes_ctr = kak_aes_ctr;
}
}
// if the keys weren't generated, check if the keys were supplied by the user
if (mContentKey.aes_ctr.isSet == false)
{
if (mKeyCfg.getNcaExternalContentKey(kDummyRightsIdForUserBodyKey, mContentKey.aes_ctr.var) == true)
mContentKey.aes_ctr.isSet = true;
}
if (_HAS_BIT(mCliOutputMode, OUTPUT_KEY_DATA))
{
if (mContentKey.aes_ctr.isSet)
{
std::cout << "[NCA Content Key]" << std::endl;
std::cout << " AES-CTR Key: " << fnd::SimpleTextOutput::arrayToString(mContentKey.aes_ctr.var.key, sizeof(mContentKey.aes_ctr.var), true, ":") << std::endl;
}
}
}
void NcaProcess::generatePartitionConfiguration()
{
std::stringstream error;
for (size_t i = 0; i < mHdr.getPartitionEntryList().size(); i++)
{
// get reference to relevant structures
const nn::hac::ContentArchiveHeader::sPartitionEntry& partition = mHdr.getPartitionEntryList()[i];
nn::hac::sNcaFsHeader& fs_header = mHdrBlock.fs_header[partition.header_index];
// output structure
sPartitionInfo& info = mPartitions[partition.header_index];
// validate header hash
fnd::sha::sSha256Hash fs_header_hash;
fnd::sha::Sha256((const byte_t*)&mHdrBlock.fs_header[partition.header_index], sizeof(nn::hac::sNcaFsHeader), fs_header_hash.bytes);
if (fs_header_hash.compare(partition.fs_header_hash) == false)
{
error.clear();
error << "NCA FS Header [" << partition.header_index << "] Hash: FAIL \n";
throw fnd::Exception(kModuleName, error.str());
}
if (fs_header.version.get() != nn::hac::nca::kDefaultFsHeaderVersion)
{
error.clear();
error << "NCA FS Header [" << partition.header_index << "] Version(" << fs_header.version.get() << "): UNSUPPORTED";
throw fnd::Exception(kModuleName, error.str());
}
// setup AES-CTR
nn::hac::ContentArchiveUtils::getNcaPartitionAesCtr(&fs_header, info.aes_ctr.iv);
// save partition config
info.reader = nullptr;
info.offset = partition.offset;
info.size = partition.size;
info.format_type = (nn::hac::nca::FormatType)fs_header.format_type;
info.hash_type = (nn::hac::nca::HashType)fs_header.hash_type;
info.enc_type = (nn::hac::nca::EncryptionType)fs_header.encryption_type;
if (info.hash_type == nn::hac::nca::HASH_HIERARCHICAL_SHA256)
{
// info.hash_tree_meta.importData(fs_header.hash_superblock, nn::hac::nca::kFsHeaderHashSuperblockLen, LayeredIntegrityMetadata::HASH_TYPE_SHA256);
nn::hac::HierarchicalSha256Header hdr;
fnd::List<fnd::LayeredIntegrityMetadata::sLayer> hash_layers;
fnd::LayeredIntegrityMetadata::sLayer data_layer;
fnd::List<fnd::sha::sSha256Hash> master_hash_list;
// import raw data
hdr.fromBytes(fs_header.hash_superblock, nn::hac::nca::kFsHeaderHashSuperblockLen);
for (size_t i = 0; i < hdr.getLayerInfo().size(); i++)
{
fnd::LayeredIntegrityMetadata::sLayer layer;
layer.offset = hdr.getLayerInfo()[i].offset;
layer.size = hdr.getLayerInfo()[i].size;
layer.block_size = hdr.getHashBlockSize();
if (i + 1 == hdr.getLayerInfo().size())
{
data_layer = layer;
}
else
{
hash_layers.addElement(layer);
}
}
master_hash_list.addElement(hdr.getMasterHash());
// write data into metadata
info.layered_intergrity_metadata.setAlignHashToBlock(false);
info.layered_intergrity_metadata.setHashLayerInfo(hash_layers);
info.layered_intergrity_metadata.setDataLayerInfo(data_layer);
info.layered_intergrity_metadata.setMasterHashList(master_hash_list);
}
else if (info.hash_type == nn::hac::nca::HASH_HIERARCHICAL_INTERGRITY)
{
// info.hash_tree_meta.importData(fs_header.hash_superblock, nn::hac::nca::kFsHeaderHashSuperblockLen, LayeredIntegrityMetadata::HASH_TYPE_INTEGRITY);
nn::hac::HierarchicalIntegrityHeader hdr;
fnd::List<fnd::LayeredIntegrityMetadata::sLayer> hash_layers;
fnd::LayeredIntegrityMetadata::sLayer data_layer;
fnd::List<fnd::sha::sSha256Hash> master_hash_list;
hdr.fromBytes(fs_header.hash_superblock, nn::hac::nca::kFsHeaderHashSuperblockLen);
for (size_t i = 0; i < hdr.getLayerInfo().size(); i++)
{
fnd::LayeredIntegrityMetadata::sLayer layer;
layer.offset = hdr.getLayerInfo()[i].offset;
layer.size = hdr.getLayerInfo()[i].size;
layer.block_size = _BIT(hdr.getLayerInfo()[i].block_size);
if (i + 1 == hdr.getLayerInfo().size())
{
data_layer = layer;
}
else
{
hash_layers.addElement(layer);
}
}
// write data into metadata
info.layered_intergrity_metadata.setAlignHashToBlock(true);
info.layered_intergrity_metadata.setHashLayerInfo(hash_layers);
info.layered_intergrity_metadata.setDataLayerInfo(data_layer);
info.layered_intergrity_metadata.setMasterHashList(hdr.getMasterHashList());
}
// create reader
try
{
// filter out unrecognised format types
switch (info.format_type)
{
case (nn::hac::nca::FORMAT_PFS0):
case (nn::hac::nca::FORMAT_ROMFS):
break;
default:
error.clear();
error << "FormatType(" << info.format_type << "): UNKNOWN";
throw fnd::Exception(kModuleName, error.str());
}
// create reader based on encryption type0
if (info.enc_type == nn::hac::nca::CRYPT_NONE)
{
info.reader = new fnd::OffsetAdjustedIFile(mFile, info.offset, info.size);
}
else if (info.enc_type == nn::hac::nca::CRYPT_AESCTR)
{
if (mContentKey.aes_ctr.isSet == false)
throw fnd::Exception(kModuleName, "AES-CTR Key was not determined");
info.reader = new fnd::OffsetAdjustedIFile(new fnd::AesCtrWrappedIFile(mFile, mContentKey.aes_ctr.var, info.aes_ctr), info.offset, info.size);
}
else if (info.enc_type == nn::hac::nca::CRYPT_AESXTS || info.enc_type == nn::hac::nca::CRYPT_AESCTREX)
{
error.clear();
error << "EncryptionType(" << getEncryptionTypeStr(info.enc_type) << "): UNSUPPORTED";
throw fnd::Exception(kModuleName, error.str());
}
else
{
error.clear();
error << "EncryptionType(" << info.enc_type << "): UNKNOWN";
throw fnd::Exception(kModuleName, error.str());
}
// filter out unrecognised hash types, and hash based readers
if (info.hash_type == nn::hac::nca::HASH_HIERARCHICAL_SHA256 || info.hash_type == nn::hac::nca::HASH_HIERARCHICAL_INTERGRITY)
{
info.reader = new fnd::LayeredIntegrityWrappedIFile(info.reader, info.layered_intergrity_metadata);
}
else if (info.hash_type != nn::hac::nca::HASH_NONE)
{
error.clear();
error << "HashType(" << info.hash_type << "): UNKNOWN";
throw fnd::Exception(kModuleName, error.str());
}
}
catch (const fnd::Exception& e)
{
info.fail_reason = std::string(e.error());
}
}
}
void NcaProcess::validateNcaSignatures()
{
// validate signature[0]
fnd::rsa::sRsa2048Key sign0_key;
mKeyCfg.getContentArchiveHeader0SignKey(sign0_key);
if (fnd::rsa::pss::rsaVerify(sign0_key, fnd::sha::HASH_SHA256, mHdrHash.bytes, mHdrBlock.signature_main) != 0)
{
std::cout << "[WARNING] NCA Header Main Signature: FAIL" << std::endl;
}
// validate signature[1]
if (mHdr.getContentType() == nn::hac::nca::TYPE_PROGRAM)
{
if (mPartitions[nn::hac::nca::PARTITION_CODE].format_type == nn::hac::nca::FORMAT_PFS0)
{
if (*mPartitions[nn::hac::nca::PARTITION_CODE].reader != nullptr)
{
PfsProcess exefs;
exefs.setInputFile(mPartitions[nn::hac::nca::PARTITION_CODE].reader);
exefs.setCliOutputMode(0);
exefs.process();
// open main.npdm
if (exefs.getPfsHeader().getFileList().hasElement(kNpdmExefsPath) == true)
{
const nn::hac::PartitionFsHeader::sFile& file = exefs.getPfsHeader().getFileList().getElement(kNpdmExefsPath);
MetaProcess npdm;
npdm.setInputFile(new fnd::OffsetAdjustedIFile(mPartitions[nn::hac::nca::PARTITION_CODE].reader, file.offset, file.size));
npdm.setCliOutputMode(0);
npdm.process();
if (fnd::rsa::pss::rsaVerify(npdm.getMeta().getAcid().getContentArchiveHeaderSignature2Key(), fnd::sha::HASH_SHA256, mHdrHash.bytes, mHdrBlock.signature_acid) != 0)
{
std::cout << "[WARNING] NCA Header ACID Signature: FAIL" << std::endl;
}
}
else
{
std::cout << "[WARNING] NCA Header ACID Signature: FAIL (\"" << kNpdmExefsPath << "\" not present in ExeFs)" << std::endl;
}
}
else
{
std::cout << "[WARNING] NCA Header ACID Signature: FAIL (ExeFs unreadable)" << std::endl;
}
}
else
{
std::cout << "[WARNING] NCA Header ACID Signature: FAIL (No ExeFs partition)" << std::endl;
}
}
}
void NcaProcess::displayHeader()
{
std::cout << "[NCA Header]" << std::endl;
std::cout << " Format Type: " << getFormatVersionStr(mHdr.getFormatVersion()) << std::endl;
std::cout << " Dist. Type: " << getDistributionTypeStr(mHdr.getDistributionType()) << std::endl;
std::cout << " Content Type: " << getContentTypeStr(mHdr.getContentType()) << std::endl;
std::cout << " Key Generation: " << std::dec << (uint32_t)mHdr.getKeyGeneration() << std::endl;
std::cout << " Kaek Index: " << getKaekIndexStr((nn::hac::nca::KeyAreaEncryptionKeyIndex)mHdr.getKeyAreaEncryptionKeyIndex()) << " (" << std::dec << (uint32_t)mHdr.getKeyAreaEncryptionKeyIndex() << ")" << std::endl;
std::cout << " Size: 0x" << std::hex << mHdr.getContentSize() << std::endl;
std::cout << " ProgID: 0x" << std::hex << std::setw(16) << std::setfill('0') << mHdr.getProgramId() << std::endl;
std::cout << " Content Index: " << std::dec << mHdr.getContentIndex() << std::endl;
#define _SPLIT_VER(ver) std::dec << (uint32_t)((ver>>24) & 0xff) << "." << (uint32_t)((ver>>16) & 0xff) << "." << (uint32_t)((ver>>8) & 0xff)
std::cout << " SdkAddon Ver.: v" << std::dec << mHdr.getSdkAddonVersion() << " (" << _SPLIT_VER(mHdr.getSdkAddonVersion()) << ")" << std::endl;
#undef _SPLIT_VER
if (mHdr.hasRightsId())
{
std::cout << " RightsId: " << fnd::SimpleTextOutput::arrayToString(mHdr.getRightsId(), nn::hac::nca::kRightsIdLen, true, "") << std::endl;
}
if (mContentKey.kak_list.size() > 0 && _HAS_BIT(mCliOutputMode, OUTPUT_KEY_DATA))
{
std::cout << " Key Area:" << std::endl;
std::cout << " <--------------------------------------------------------------------------------------------------------->" << std::endl;
std::cout << " | IDX | ENCRYPTED KEY | DECRYPTED KEY |" << std::endl;
std::cout << " |-----|-------------------------------------------------|-------------------------------------------------|" << std::endl;
for (size_t i = 0; i < mContentKey.kak_list.size(); i++)
{
std::cout << " | " << std::dec << std::setw(3) << std::setfill(' ') << (uint32_t)mContentKey.kak_list[i].index << " | ";
std::cout << fnd::SimpleTextOutput::arrayToString(mContentKey.kak_list[i].enc.key, 16, true, ":") << " | ";
if (mContentKey.kak_list[i].decrypted)
std::cout << fnd::SimpleTextOutput::arrayToString(mContentKey.kak_list[i].dec.key, 16, true, ":");
else
std::cout << "<unable to decrypt> ";
std::cout << " |" << std::endl;
}
std::cout << " <--------------------------------------------------------------------------------------------------------->" << std::endl;
}
if (_HAS_BIT(mCliOutputMode, OUTPUT_LAYOUT))
{
std::cout << " Partitions:" << std::endl;
for (size_t i = 0; i < mHdr.getPartitionEntryList().size(); i++)
{
uint32_t index = mHdr.getPartitionEntryList()[i].header_index;
sPartitionInfo& info = mPartitions[index];
if (info.size == 0) continue;
std::cout << " " << std::dec << index << ":" << std::endl;
std::cout << " Offset: 0x" << std::hex << (uint64_t)info.offset << std::endl;
std::cout << " Size: 0x" << std::hex << (uint64_t)info.size << std::endl;
std::cout << " Format Type: " << getFormatTypeStr(info.format_type) << std::endl;
std::cout << " Hash Type: " << getHashTypeStr(info.hash_type) << std::endl;
std::cout << " Enc. Type: " << getEncryptionTypeStr(info.enc_type) << std::endl;
if (info.enc_type == nn::hac::nca::CRYPT_AESCTR)
{
fnd::aes::sAesIvCtr ctr;
fnd::aes::AesIncrementCounter(info.aes_ctr.iv, info.offset>>4, ctr.iv);
std::cout << " AesCtr Counter:" << std::endl;
std::cout << " " << fnd::SimpleTextOutput::arrayToString(ctr.iv, sizeof(fnd::aes::sAesIvCtr), true, ":") << std::endl;
}
if (info.hash_type == nn::hac::nca::HASH_HIERARCHICAL_INTERGRITY)
{
fnd::LayeredIntegrityMetadata& hash_hdr = info.layered_intergrity_metadata;
std::cout << " HierarchicalIntegrity Header:" << std::endl;
for (size_t j = 0; j < hash_hdr.getHashLayerInfo().size(); j++)
{
std::cout << " Hash Layer " << std::dec << j << ":" << std::endl;
std::cout << " Offset: 0x" << std::hex << (uint64_t)hash_hdr.getHashLayerInfo()[j].offset << std::endl;
std::cout << " Size: 0x" << std::hex << (uint64_t)hash_hdr.getHashLayerInfo()[j].size << std::endl;
std::cout << " BlockSize: 0x" << std::hex << (uint32_t)hash_hdr.getHashLayerInfo()[j].block_size << std::endl;
}
std::cout << " Data Layer:" << std::endl;
std::cout << " Offset: 0x" << std::hex << (uint64_t)hash_hdr.getDataLayer().offset << std::endl;
std::cout << " Size: 0x" << std::hex << (uint64_t)hash_hdr.getDataLayer().size << std::endl;
std::cout << " BlockSize: 0x" << std::hex << (uint32_t)hash_hdr.getDataLayer().block_size << std::endl;
for (size_t j = 0; j < hash_hdr.getMasterHashList().size(); j++)
{
std::cout << " Master Hash " << std::dec << j << ":" << std::endl;
std::cout << " " << fnd::SimpleTextOutput::arrayToString(hash_hdr.getMasterHashList()[j].bytes, 0x10, true, ":") << std::endl;
std::cout << " " << fnd::SimpleTextOutput::arrayToString(hash_hdr.getMasterHashList()[j].bytes+0x10, 0x10, true, ":") << std::endl;
}
}
else if (info.hash_type == nn::hac::nca::HASH_HIERARCHICAL_SHA256)
{
fnd::LayeredIntegrityMetadata& hash_hdr = info.layered_intergrity_metadata;
std::cout << " HierarchicalSha256 Header:" << std::endl;
std::cout << " Master Hash:" << std::endl;
std::cout << " " << fnd::SimpleTextOutput::arrayToString(hash_hdr.getMasterHashList()[0].bytes, 0x10, true, ":") << std::endl;
std::cout << " " << fnd::SimpleTextOutput::arrayToString(hash_hdr.getMasterHashList()[0].bytes+0x10, 0x10, true, ":") << std::endl;
std::cout << " HashBlockSize: 0x" << std::hex << (uint32_t)hash_hdr.getDataLayer().block_size << std::endl;
std::cout << " Hash Layer:" << std::endl;
std::cout << " Offset: 0x" << std::hex << (uint64_t)hash_hdr.getHashLayerInfo()[0].offset << std::endl;
std::cout << " Size: 0x" << std::hex << (uint64_t)hash_hdr.getHashLayerInfo()[0].size << std::endl;
std::cout << " Data Layer:" << std::endl;
std::cout << " Offset: 0x" << std::hex << (uint64_t)hash_hdr.getDataLayer().offset << std::endl;
std::cout << " Size: 0x" << std::hex << (uint64_t)hash_hdr.getDataLayer().size << std::endl;
}
}
}
}
void NcaProcess::processPartitions()
{
for (size_t i = 0; i < mHdr.getPartitionEntryList().size(); i++)
{
uint32_t index = mHdr.getPartitionEntryList()[i].header_index;
struct sPartitionInfo& partition = mPartitions[index];
// if the reader is null, skip
if (*partition.reader == nullptr)
{
std::cout << "[WARNING] NCA Partition " << std::dec << index << " not readable.";
if (partition.fail_reason.empty() == false)
{
std::cout << " (" << partition.fail_reason << ")";
}
std::cout << std::endl;
continue;
}
if (partition.format_type == nn::hac::nca::FORMAT_PFS0)
{
PfsProcess pfs;
pfs.setInputFile(partition.reader);
pfs.setCliOutputMode(mCliOutputMode);
pfs.setListFs(mListFs);
if (mHdr.getContentType() == nn::hac::nca::TYPE_PROGRAM)
{
pfs.setMountPointName(std::string(getContentTypeForMountStr(mHdr.getContentType())) + ":/" + std::string(getProgramPartitionNameStr(index)));
}
else
{
pfs.setMountPointName(std::string(getContentTypeForMountStr(mHdr.getContentType())) + ":/");
}
if (mPartitionPath[index].doExtract)
pfs.setExtractPath(mPartitionPath[index].path);
pfs.process();
}
else if (partition.format_type == nn::hac::nca::FORMAT_ROMFS)
{
RomfsProcess romfs;
romfs.setInputFile(partition.reader);
romfs.setCliOutputMode(mCliOutputMode);
romfs.setListFs(mListFs);
if (mHdr.getContentType() == nn::hac::nca::TYPE_PROGRAM)
{
romfs.setMountPointName(std::string(getContentTypeForMountStr(mHdr.getContentType())) + ":/" + std::string(getProgramPartitionNameStr(index)));
}
else
{
romfs.setMountPointName(std::string(getContentTypeForMountStr(mHdr.getContentType())) + ":/");
}
if (mPartitionPath[index].doExtract)
romfs.setExtractPath(mPartitionPath[index].path);
romfs.process();
}
}
}
const char* NcaProcess::getFormatVersionStr(byte_t format_ver) const
{
const char* str = nullptr;
switch (format_ver)
{
case (nn::hac::nca::FORMAT_NCA2):
str = "NCA2";
break;
case (nn::hac::nca::FORMAT_NCA3):
str = "NCA3";
break;
default:
str = "Unknown";
break;
}
return str;
}
const char* NcaProcess::getDistributionTypeStr(nn::hac::nca::DistributionType dist_type) const
{
const char* str = nullptr;
switch (dist_type)
{
case (nn::hac::nca::DIST_DOWNLOAD):
str = "Download";
break;
case (nn::hac::nca::DIST_GAME_CARD):
str = "Game Card";
break;
default:
str = "Unknown";
break;
}
return str;
}
const char* NcaProcess::getContentTypeStr(nn::hac::nca::ContentType cont_type) const
{
const char* str = nullptr;
switch (cont_type)
{
case (nn::hac::nca::TYPE_PROGRAM):
str = "Program";
break;
case (nn::hac::nca::TYPE_META):
str = "Meta";
break;
case (nn::hac::nca::TYPE_CONTROL):
str = "Control";
break;
case (nn::hac::nca::TYPE_MANUAL):
str = "Manual";
break;
case (nn::hac::nca::TYPE_DATA):
str = "Data";
break;
case (nn::hac::nca::TYPE_PUBLIC_DATA):
str = "PublicData";
break;
default:
str = "Unknown";
break;
}
return str;
}
const char* NcaProcess::getEncryptionTypeStr(nn::hac::nca::EncryptionType enc_type) const
{
const char* str = nullptr;
switch (enc_type)
{
case (nn::hac::nca::CRYPT_AUTO):
str = "Auto";
break;
case (nn::hac::nca::CRYPT_NONE):
str = "None";
break;
case (nn::hac::nca::CRYPT_AESXTS):
str = "AesXts";
break;
case (nn::hac::nca::CRYPT_AESCTR):
str = "AesCtr";
break;
case (nn::hac::nca::CRYPT_AESCTREX):
str = "AesCtrEx";
break;
default:
str = "Unknown";
break;
}
return str;
}
const char* NcaProcess::getHashTypeStr(nn::hac::nca::HashType hash_type) const
{
const char* str = nullptr;
switch (hash_type)
{
case (nn::hac::nca::HASH_AUTO):
str = "Auto";
break;
case (nn::hac::nca::HASH_NONE):
str = "None";
break;
case (nn::hac::nca::HASH_HIERARCHICAL_SHA256):
str = "HierarchicalSha256";
break;
case (nn::hac::nca::HASH_HIERARCHICAL_INTERGRITY):
str = "HierarchicalIntegrity";
break;
default:
str = "Unknown";
break;
}
return str;
}
const char* NcaProcess::getFormatTypeStr(nn::hac::nca::FormatType format_type) const
{
const char* str = nullptr;
switch (format_type)
{
case (nn::hac::nca::FORMAT_ROMFS):
str = "RomFs";
break;
case (nn::hac::nca::FORMAT_PFS0):
str = "PartitionFs";
break;
default:
str = "Unknown";
break;
}
return str;
}
const char* NcaProcess::getKaekIndexStr(nn::hac::nca::KeyAreaEncryptionKeyIndex keak_index) const
{
const char* str = nullptr;
switch (keak_index)
{
case (nn::hac::nca::KAEK_IDX_APPLICATION):
str = "Application";
break;
case (nn::hac::nca::KAEK_IDX_OCEAN):
str = "Ocean";
break;
case (nn::hac::nca::KAEK_IDX_SYSTEM):
str = "System";
break;
default:
str = "Unknown";
break;
}
return str;
}
const char* NcaProcess::getContentTypeForMountStr(nn::hac::nca::ContentType cont_type) const
{
const char* str = nullptr;
switch (cont_type)
{
case (nn::hac::nca::TYPE_PROGRAM):
str = "program";
break;
case (nn::hac::nca::TYPE_META):
str = "meta";
break;
case (nn::hac::nca::TYPE_CONTROL):
str = "control";
break;
case (nn::hac::nca::TYPE_MANUAL):
str = "manual";
break;
case (nn::hac::nca::TYPE_DATA):
str = "data";
break;
case (nn::hac::nca::TYPE_PUBLIC_DATA):
str = "publicdata";
break;
default:
str = "";
break;
}
return str;
}
const char* NcaProcess::getProgramPartitionNameStr(size_t i) const
{
const char* str = nullptr;
switch (i)
{
case (nn::hac::nca::PARTITION_CODE):
str = "code";
break;
case (nn::hac::nca::PARTITION_DATA):
str = "data";
break;
case (nn::hac::nca::PARTITION_LOGO):
str = "logo";
break;
default:
str = "";
break;
}
return str;
}