mirror of
https://github.com/CTCaer/hekate
synced 2024-11-03 02:26:35 +00:00
780 lines
No EOL
26 KiB
C
780 lines
No EOL
26 KiB
C
/*
|
|
* Copyright (c) 2018 naehrwert
|
|
* Copyright (c) 2018 st4rk
|
|
* Copyright (c) 2018 Ced2911
|
|
* Copyright (c) 2018-2021 CTCaer
|
|
* Copyright (c) 2018 balika011
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <string.h>
|
|
|
|
#include "hos.h"
|
|
#include "sept.h"
|
|
#include "../config.h"
|
|
#include <display/di.h>
|
|
#include <gfx_utils.h>
|
|
#include <mem/heap.h>
|
|
#include <mem/mc.h>
|
|
#include <mem/smmu.h>
|
|
#include <sec/se.h>
|
|
#include <sec/se_t210.h>
|
|
#include <sec/tsec.h>
|
|
#include <soc/bpmp.h>
|
|
#include <soc/fuse.h>
|
|
#include <soc/pmc.h>
|
|
#include <soc/t210.h>
|
|
#include <storage/mbr_gpt.h>
|
|
#include "../storage/nx_emmc.h"
|
|
#include <storage/nx_sd.h>
|
|
#include <storage/sdmmc.h>
|
|
#include <utils/util.h>
|
|
|
|
extern hekate_config h_cfg;
|
|
|
|
static u8 *bis_keys = NULL;
|
|
|
|
typedef struct _tsec_keys_t
|
|
{
|
|
u8 tsec[SE_KEY_128_SIZE];
|
|
u8 tsec_root[SE_KEY_128_SIZE];
|
|
u8 tmp[SE_KEY_128_SIZE];
|
|
} tsec_keys_t;
|
|
|
|
typedef struct _kb_keys_t
|
|
{
|
|
u8 master_keyseed[SE_KEY_128_SIZE];
|
|
u8 random_data[0x70];
|
|
u8 package1_key[SE_KEY_128_SIZE];
|
|
} kb_keys_t;
|
|
|
|
typedef struct _kb_t
|
|
{
|
|
u8 cmac[SE_KEY_128_SIZE];
|
|
u8 ctr[SE_AES_IV_SIZE];
|
|
kb_keys_t keys;
|
|
u8 padding[0x150];
|
|
} kb_t;
|
|
|
|
static const u8 keyblob_keyseeds[][SE_KEY_128_SIZE] = {
|
|
{ 0xDF, 0x20, 0x6F, 0x59, 0x44, 0x54, 0xEF, 0xDC, 0x70, 0x74, 0x48, 0x3B, 0x0D, 0xED, 0x9F, 0xD3 }, // 1.0.0.
|
|
{ 0x0C, 0x25, 0x61, 0x5D, 0x68, 0x4C, 0xEB, 0x42, 0x1C, 0x23, 0x79, 0xEA, 0x82, 0x25, 0x12, 0xAC }, // 3.0.0.
|
|
{ 0x33, 0x76, 0x85, 0xEE, 0x88, 0x4A, 0xAE, 0x0A, 0xC2, 0x8A, 0xFD, 0x7D, 0x63, 0xC0, 0x43, 0x3B }, // 3.0.1.
|
|
{ 0x2D, 0x1F, 0x48, 0x80, 0xED, 0xEC, 0xED, 0x3E, 0x3C, 0xF2, 0x48, 0xB5, 0x65, 0x7D, 0xF7, 0xBE }, // 4.0.0.
|
|
{ 0xBB, 0x5A, 0x01, 0xF9, 0x88, 0xAF, 0xF5, 0xFC, 0x6C, 0xFF, 0x07, 0x9E, 0x13, 0x3C, 0x39, 0x80 }, // 5.0.0.
|
|
{ 0xD8, 0xCC, 0xE1, 0x26, 0x6A, 0x35, 0x3F, 0xCC, 0x20, 0xF3, 0x2D, 0x3B, 0x51, 0x7D, 0xE9, 0xC0 } // 6.0.0.
|
|
};
|
|
|
|
static const u8 cmac_keyseed[SE_KEY_128_SIZE] =
|
|
{ 0x59, 0xC7, 0xFB, 0x6F, 0xBE, 0x9B, 0xBE, 0x87, 0x65, 0x6B, 0x15, 0xC0, 0x53, 0x73, 0x36, 0xA5 };
|
|
|
|
static const u8 master_keyseed_retail[SE_KEY_128_SIZE] =
|
|
{ 0xD8, 0xA2, 0x41, 0x0A, 0xC6, 0xC5, 0x90, 0x01, 0xC6, 0x1D, 0x6A, 0x26, 0x7C, 0x51, 0x3F, 0x3C };
|
|
|
|
static const u8 master_keyseed_4xx_5xx_610[SE_KEY_128_SIZE] =
|
|
{ 0x2D, 0xC1, 0xF4, 0x8D, 0xF3, 0x5B, 0x69, 0x33, 0x42, 0x10, 0xAC, 0x65, 0xDA, 0x90, 0x46, 0x66 };
|
|
|
|
static const u8 master_keyseed_620[SE_KEY_128_SIZE] =
|
|
{ 0x37, 0x4B, 0x77, 0x29, 0x59, 0xB4, 0x04, 0x30, 0x81, 0xF6, 0xE5, 0x8C, 0x6D, 0x36, 0x17, 0x9A };
|
|
|
|
static const u8 master_kekseed_t210b01[][SE_KEY_128_SIZE] = {
|
|
{ 0x77, 0x60, 0x5A, 0xD2, 0xEE, 0x6E, 0xF8, 0x3C, 0x3F, 0x72, 0xE2, 0x59, 0x9D, 0xAC, 0x5E, 0x56 }, // 6.0.0.
|
|
{ 0x1E, 0x80, 0xB8, 0x17, 0x3E, 0xC0, 0x60, 0xAA, 0x11, 0xBE, 0x1A, 0x4A, 0xA6, 0x6F, 0xE4, 0xAE }, // 6.2.0.
|
|
{ 0x94, 0x08, 0x67, 0xBD, 0x0A, 0x00, 0x38, 0x84, 0x11, 0xD3, 0x1A, 0xDB, 0xDD, 0x8D, 0xF1, 0x8A }, // 7.0.0.
|
|
{ 0x5C, 0x24, 0xE3, 0xB8, 0xB4, 0xF7, 0x00, 0xC2, 0x3C, 0xFD, 0x0A, 0xCE, 0x13, 0xC3, 0xDC, 0x23 }, // 8.1.0.
|
|
{ 0x86, 0x69, 0xF0, 0x09, 0x87, 0xC8, 0x05, 0xAE, 0xB5, 0x7B, 0x48, 0x74, 0xDE, 0x62, 0xA6, 0x13 }, // 9.0.0.
|
|
{ 0x0E, 0x44, 0x0C, 0xED, 0xB4, 0x36, 0xC0, 0x3F, 0xAA, 0x1D, 0xAE, 0xBF, 0x62, 0xB1, 0x09, 0x82 }, // 9.1.0.
|
|
};
|
|
|
|
static const u8 console_keyseed[SE_KEY_128_SIZE] =
|
|
{ 0x4F, 0x02, 0x5F, 0x0E, 0xB6, 0x6D, 0x11, 0x0E, 0xDC, 0x32, 0x7D, 0x41, 0x86, 0xC2, 0xF4, 0x78 };
|
|
|
|
static const u8 console_keyseed_4xx_5xx[SE_KEY_128_SIZE] =
|
|
{ 0x0C, 0x91, 0x09, 0xDB, 0x93, 0x93, 0x07, 0x81, 0x07, 0x3C, 0xC4, 0x16, 0x22, 0x7C, 0x6C, 0x28 };
|
|
|
|
const u8 package2_keyseed[SE_KEY_128_SIZE] =
|
|
{ 0xFB, 0x8B, 0x6A, 0x9C, 0x79, 0x00, 0xC8, 0x49, 0xEF, 0xD2, 0x4D, 0x85, 0x4D, 0x30, 0xA0, 0xC7 };
|
|
|
|
static const u8 mkey_vectors[KB_FIRMWARE_VERSION_MAX + 1][SE_KEY_128_SIZE] = {
|
|
{ 0x0C, 0xF0, 0x59, 0xAC, 0x85, 0xF6, 0x26, 0x65, 0xE1, 0xE9, 0x19, 0x55, 0xE6, 0xF2, 0x67, 0x3D }, // Zeroes encrypted with mkey 00.
|
|
{ 0x29, 0x4C, 0x04, 0xC8, 0xEB, 0x10, 0xED, 0x9D, 0x51, 0x64, 0x97, 0xFB, 0xF3, 0x4D, 0x50, 0xDD }, // Mkey 00 encrypted with mkey 01.
|
|
{ 0xDE, 0xCF, 0xEB, 0xEB, 0x10, 0xAE, 0x74, 0xD8, 0xAD, 0x7C, 0xF4, 0x9E, 0x62, 0xE0, 0xE8, 0x72 }, // Mkey 01 encrypted with mkey 02.
|
|
{ 0x0A, 0x0D, 0xDF, 0x34, 0x22, 0x06, 0x6C, 0xA4, 0xE6, 0xB1, 0xEC, 0x71, 0x85, 0xCA, 0x4E, 0x07 }, // Mkey 02 encrypted with mkey 03.
|
|
{ 0x6E, 0x7D, 0x2D, 0xC3, 0x0F, 0x59, 0xC8, 0xFA, 0x87, 0xA8, 0x2E, 0xD5, 0x89, 0x5E, 0xF3, 0xE9 }, // Mkey 03 encrypted with mkey 04.
|
|
{ 0xEB, 0xF5, 0x6F, 0x83, 0x61, 0x9E, 0xF8, 0xFA, 0xE0, 0x87, 0xD7, 0xA1, 0x4E, 0x25, 0x36, 0xEE }, // Mkey 04 encrypted with mkey 05.
|
|
{ 0x1E, 0x1E, 0x22, 0xC0, 0x5A, 0x33, 0x3C, 0xB9, 0x0B, 0xA9, 0x03, 0x04, 0xBA, 0xDB, 0x07, 0x57 }, // Mkey 05 encrypted with mkey 06.
|
|
{ 0xA4, 0xD4, 0x52, 0x6F, 0xD1, 0xE4, 0x36, 0xAA, 0x9F, 0xCB, 0x61, 0x27, 0x1C, 0x67, 0x65, 0x1F }, // Mkey 06 encrypted with mkey 07.
|
|
{ 0xEA, 0x60, 0xB3, 0xEA, 0xCE, 0x8F, 0x24, 0x46, 0x7D, 0x33, 0x9C, 0xD1, 0xBC, 0x24, 0x98, 0x29 }, // Mkey 07 encrypted with mkey 08.
|
|
{ 0x4D, 0xD9, 0x98, 0x42, 0x45, 0x0D, 0xB1, 0x3C, 0x52, 0x0C, 0x9A, 0x44, 0xBB, 0xAD, 0xAF, 0x80 }, // Mkey 08 encrypted with mkey 09.
|
|
{ 0xB8, 0x96, 0x9E, 0x4A, 0x00, 0x0D, 0xD6, 0x28, 0xB3, 0xD1, 0xDB, 0x68, 0x5F, 0xFB, 0xE1, 0x2A }, // Mkey 09 encrypted with mkey 10.
|
|
};
|
|
|
|
static const u8 new_console_keyseed[KB_FIRMWARE_VERSION_MAX - KB_FIRMWARE_VERSION_400 + 1][SE_KEY_128_SIZE] = {
|
|
{ 0x8B, 0x4E, 0x1C, 0x22, 0x42, 0x07, 0xC8, 0x73, 0x56, 0x94, 0x08, 0x8B, 0xCC, 0x47, 0x0F, 0x5D }, // 4.x New Device Key Source.
|
|
{ 0x6C, 0xEF, 0xC6, 0x27, 0x8B, 0xEC, 0x8A, 0x91, 0x99, 0xAB, 0x24, 0xAC, 0x4F, 0x1C, 0x8F, 0x1C }, // 5.x New Device Key Source.
|
|
{ 0x70, 0x08, 0x1B, 0x97, 0x44, 0x64, 0xF8, 0x91, 0x54, 0x9D, 0xC6, 0x84, 0x8F, 0x1A, 0xB2, 0xE4 }, // 6.x New Device Key Source.
|
|
{ 0x8E, 0x09, 0x1F, 0x7A, 0xBB, 0xCA, 0x6A, 0xFB, 0xB8, 0x9B, 0xD5, 0xC1, 0x25, 0x9C, 0xA9, 0x17 }, // 6.2.0 New Device Key Source.
|
|
{ 0x8F, 0x77, 0x5A, 0x96, 0xB0, 0x94, 0xFD, 0x8D, 0x28, 0xE4, 0x19, 0xC8, 0x16, 0x1C, 0xDB, 0x3D }, // 7.0.0 New Device Key Source.
|
|
{ 0x67, 0x62, 0xD4, 0x8E, 0x55, 0xCF, 0xFF, 0x41, 0x31, 0x15, 0x3B, 0x24, 0x0C, 0x7C, 0x07, 0xAE }, // 8.1.0 New Device Key Source.
|
|
{ 0x4A, 0xC3, 0x4E, 0x14, 0x8B, 0x96, 0x4A, 0xD5, 0xD4, 0x99, 0x73, 0xC4, 0x45, 0xAB, 0x8B, 0x49 }, // 9.0.0 New Device Key Source.
|
|
{ 0x14, 0xB8, 0x74, 0x12, 0xCB, 0xBD, 0x0B, 0x8F, 0x20, 0xFB, 0x30, 0xDA, 0x27, 0xE4, 0x58, 0x94 }, // 9.1.0 New Device Key Source.
|
|
};
|
|
|
|
static const u8 new_console_kekseed[KB_FIRMWARE_VERSION_MAX - KB_FIRMWARE_VERSION_400 + 1][SE_KEY_128_SIZE] = {
|
|
{ 0x88, 0x62, 0x34, 0x6E, 0xFA, 0xF7, 0xD8, 0x3F, 0xE1, 0x30, 0x39, 0x50, 0xF0, 0xB7, 0x5D, 0x5D }, // 4.x New Device Keygen Source.
|
|
{ 0x06, 0x1E, 0x7B, 0xE9, 0x6D, 0x47, 0x8C, 0x77, 0xC5, 0xC8, 0xE7, 0x94, 0x9A, 0xA8, 0x5F, 0x2E }, // 5.x New Device Keygen Source.
|
|
{ 0x99, 0xFA, 0x98, 0xBD, 0x15, 0x1C, 0x72, 0xFD, 0x7D, 0x9A, 0xD5, 0x41, 0x00, 0xFD, 0xB2, 0xEF }, // 6.x New Device Keygen Source.
|
|
{ 0x81, 0x3C, 0x6C, 0xBF, 0x5D, 0x21, 0xDE, 0x77, 0x20, 0xD9, 0x6C, 0xE3, 0x22, 0x06, 0xAE, 0xBB }, // 6.2.0 New Device Keygen Source.
|
|
{ 0x86, 0x61, 0xB0, 0x16, 0xFA, 0x7A, 0x9A, 0xEA, 0xF6, 0xF5, 0xBE, 0x1A, 0x13, 0x5B, 0x6D, 0x9E }, // 7.0.0 New Device Keygen Source.
|
|
{ 0xA6, 0x81, 0x71, 0xE7, 0xB5, 0x23, 0x74, 0xB0, 0x39, 0x8C, 0xB7, 0xFF, 0xA0, 0x62, 0x9F, 0x8D }, // 8.1.0 New Device Keygen Source.
|
|
{ 0x03, 0xE7, 0xEB, 0x43, 0x1B, 0xCF, 0x5F, 0xB5, 0xED, 0xDC, 0x97, 0xAE, 0x21, 0x8D, 0x19, 0xED }, // 9.0.0 New Device Keygen Source.
|
|
{ 0xCE, 0xFE, 0x41, 0x0F, 0x46, 0x9A, 0x30, 0xD6, 0xF2, 0xE9, 0x0C, 0x6B, 0xB7, 0x15, 0x91, 0x36 }, // 9.1.0 New Device Keygen Source.
|
|
};
|
|
|
|
static const u8 gen_keyseed[SE_KEY_128_SIZE] =
|
|
{ 0x89, 0x61, 0x5E, 0xE0, 0x5C, 0x31, 0xB6, 0x80, 0x5F, 0xE5, 0x8F, 0x3D, 0xA2, 0x4F, 0x7A, 0xA8 };
|
|
|
|
static const u8 gen_kekseed[SE_KEY_128_SIZE] =
|
|
{ 0x4D, 0x87, 0x09, 0x86, 0xC4, 0x5D, 0x20, 0x72, 0x2F, 0xBA, 0x10, 0x53, 0xDA, 0x92, 0xE8, 0xA9 };
|
|
|
|
static const u8 gen_keyseed_retail[SE_KEY_128_SIZE] =
|
|
{ 0xE2, 0xD6, 0xB8, 0x7A, 0x11, 0x9C, 0xB8, 0x80, 0xE8, 0x22, 0x88, 0x8A, 0x46, 0xFB, 0xA1, 0x95 };
|
|
|
|
static const u8 bis_kekseed[SE_KEY_128_SIZE] =
|
|
{ 0x34, 0xC1, 0xA0, 0xC4, 0x82, 0x58, 0xF8, 0xB4, 0xFA, 0x9E, 0x5E, 0x6A, 0xDA, 0xFC, 0x7E, 0x4F };
|
|
|
|
static const u8 bis_keyseed[][SE_KEY_128_SIZE] = {
|
|
{ 0xF8, 0x3F, 0x38, 0x6E, 0x2C, 0xD2, 0xCA, 0x32, 0xA8, 0x9A, 0xB9, 0xAA, 0x29, 0xBF, 0xC7, 0x48 }, // BIS 0 Crypt seed.
|
|
{ 0x7D, 0x92, 0xB0, 0x3A, 0xA8, 0xBF, 0xDE, 0xE1, 0xA7, 0x4C, 0x3B, 0x6E, 0x35, 0xCB, 0x71, 0x06 }, // BIS 0 Tweak seed.
|
|
{ 0x41, 0x00, 0x30, 0x49, 0xDD, 0xCC, 0xC0, 0x65, 0x64, 0x7A, 0x7E, 0xB4, 0x1E, 0xED, 0x9C, 0x5F }, // BIS 1 Crypt seed.
|
|
{ 0x44, 0x42, 0x4E, 0xDA, 0xB4, 0x9D, 0xFC, 0xD9, 0x87, 0x77, 0x24, 0x9A, 0xDC, 0x9F, 0x7C, 0xA4 }, // BIS 1 Tweak seed.
|
|
{ 0x52, 0xC2, 0xE9, 0xEB, 0x09, 0xE3, 0xEE, 0x29, 0x32, 0xA1, 0x0C, 0x1F, 0xB6, 0xA0, 0x92, 0x6C }, // BIS 2/3 Crypt seed.
|
|
{ 0x4D, 0x12, 0xE1, 0x4B, 0x2A, 0x47, 0x4C, 0x1C, 0x09, 0xCB, 0x03, 0x59, 0xF0, 0x15, 0xF4, 0xE4 } // BIS 2/3 Tweak seed.
|
|
};
|
|
|
|
bool hos_eks_rw_try(u8 *buf, bool write)
|
|
{
|
|
for (u32 i = 0; i < 3; i++)
|
|
{
|
|
if (!write)
|
|
{
|
|
if (sdmmc_storage_read(&sd_storage, 0, 1, buf))
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
if (sdmmc_storage_write(&sd_storage, 0, 1, buf))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void hos_eks_get()
|
|
{
|
|
// Check if Erista based unit.
|
|
if (h_cfg.t210b01)
|
|
return;
|
|
|
|
// Check if EKS already found and parsed.
|
|
if (!h_cfg.eks)
|
|
{
|
|
// Read EKS blob.
|
|
u8 *mbr = calloc(512 , 1);
|
|
if (!hos_eks_rw_try(mbr, false))
|
|
goto out;
|
|
|
|
// Decrypt EKS blob.
|
|
hos_eks_mbr_t *eks = (hos_eks_mbr_t *)(mbr + 0x80);
|
|
se_aes_crypt_ecb(14, 0, eks, sizeof(hos_eks_mbr_t), eks, sizeof(hos_eks_mbr_t));
|
|
|
|
// Check if valid and for this unit.
|
|
if (eks->magic == HOS_EKS_MAGIC &&
|
|
(eks->lot0 == FUSE(FUSE_OPT_LOT_CODE_0) || eks->lot0 == FUSE(FUSE_PRIVATE_KEY0)))
|
|
{
|
|
h_cfg.eks = eks;
|
|
return;
|
|
}
|
|
|
|
out:
|
|
free(mbr);
|
|
}
|
|
}
|
|
|
|
void hos_eks_save(u32 kb)
|
|
{
|
|
// Check if Erista based unit.
|
|
if (h_cfg.t210b01)
|
|
return;
|
|
|
|
if (kb >= KB_FIRMWARE_VERSION_700)
|
|
{
|
|
u32 key_idx = 0;
|
|
if (kb >= KB_FIRMWARE_VERSION_810)
|
|
key_idx = 1;
|
|
|
|
bool new_eks = false;
|
|
if (!h_cfg.eks)
|
|
{
|
|
h_cfg.eks = calloc(512 , 1);
|
|
new_eks = true;
|
|
}
|
|
|
|
// If matching blob doesn't exist, create it.
|
|
bool update_eks = key_idx ? (h_cfg.eks->enabled[key_idx] < kb) : !h_cfg.eks->enabled[0];
|
|
// If old EKS version was found, update it.
|
|
update_eks |= h_cfg.eks->lot0 != FUSE(FUSE_OPT_LOT_CODE_0);
|
|
if (update_eks)
|
|
{
|
|
// Read EKS blob.
|
|
u8 *mbr = calloc(512 , 1);
|
|
if (!hos_eks_rw_try(mbr, false))
|
|
{
|
|
if (new_eks)
|
|
{
|
|
free(h_cfg.eks);
|
|
h_cfg.eks = NULL;
|
|
}
|
|
|
|
goto out;
|
|
}
|
|
|
|
// Get keys.
|
|
u8 *keys = (u8 *)calloc(0x2000, 1);
|
|
se_get_aes_keys(keys + 0x1000, keys, SE_KEY_128_SIZE);
|
|
|
|
// Set magic and personalized info.
|
|
h_cfg.eks->magic = HOS_EKS_MAGIC;
|
|
h_cfg.eks->enabled[key_idx] = kb;
|
|
h_cfg.eks->lot0 = FUSE(FUSE_OPT_LOT_CODE_0);
|
|
|
|
// Copy new keys.
|
|
memcpy(h_cfg.eks->dkg, keys + 10 * SE_KEY_128_SIZE, SE_KEY_128_SIZE);
|
|
memcpy(h_cfg.eks->dkk, keys + 15 * SE_KEY_128_SIZE, SE_KEY_128_SIZE);
|
|
|
|
if (!h_cfg.aes_slots_new)
|
|
{
|
|
memcpy(h_cfg.eks->keys[key_idx].mkk, keys + 12 * SE_KEY_128_SIZE, SE_KEY_128_SIZE);
|
|
memcpy(h_cfg.eks->keys[key_idx].fdk, keys + 13 * SE_KEY_128_SIZE, SE_KEY_128_SIZE);
|
|
}
|
|
else // New sept slots.
|
|
{
|
|
memcpy(h_cfg.eks->keys[key_idx].mkk, keys + 13 * SE_KEY_128_SIZE, SE_KEY_128_SIZE);
|
|
memcpy(h_cfg.eks->keys[key_idx].fdk, keys + 12 * SE_KEY_128_SIZE, SE_KEY_128_SIZE);
|
|
}
|
|
|
|
// Encrypt EKS blob.
|
|
u8 *eks = calloc(512 , 1);
|
|
memcpy(eks, h_cfg.eks, sizeof(hos_eks_mbr_t));
|
|
se_aes_crypt_ecb(14, 1, eks, sizeof(hos_eks_mbr_t), eks, sizeof(hos_eks_mbr_t));
|
|
|
|
// Write EKS blob to SD.
|
|
memcpy(mbr + 0x80, eks, sizeof(hos_eks_mbr_t));
|
|
hos_eks_rw_try(mbr, true);
|
|
|
|
free(eks);
|
|
free(keys);
|
|
out:
|
|
free(mbr);
|
|
}
|
|
}
|
|
}
|
|
|
|
void hos_eks_clear(u32 kb)
|
|
{
|
|
// Check if Erista based unit.
|
|
if (h_cfg.t210b01)
|
|
return;
|
|
|
|
if (h_cfg.eks && kb >= KB_FIRMWARE_VERSION_700)
|
|
{
|
|
u32 key_idx = 0;
|
|
if (kb >= KB_FIRMWARE_VERSION_810)
|
|
key_idx = 1;
|
|
|
|
// Check if Current Master key is enabled.
|
|
if (h_cfg.eks->enabled[key_idx])
|
|
{
|
|
// Read EKS blob.
|
|
u8 *mbr = calloc(512 , 1);
|
|
if (!hos_eks_rw_try(mbr, false))
|
|
goto out;
|
|
|
|
// Disable current Master key version.
|
|
h_cfg.eks->enabled[key_idx] = 0;
|
|
|
|
// Encrypt EKS blob.
|
|
u8 *eks = calloc(512 , 1);
|
|
memcpy(eks, h_cfg.eks, sizeof(hos_eks_mbr_t));
|
|
se_aes_crypt_ecb(14, 1, eks, sizeof(hos_eks_mbr_t), eks, sizeof(hos_eks_mbr_t));
|
|
|
|
// Write EKS blob to SD.
|
|
memcpy(mbr + 0x80, eks, sizeof(hos_eks_mbr_t));
|
|
hos_eks_rw_try(mbr, true);
|
|
|
|
EMC(EMC_SCRATCH0) &= ~EMC_SEPT_RUN;
|
|
h_cfg.sept_run = false;
|
|
|
|
free(eks);
|
|
out:
|
|
free(mbr);
|
|
}
|
|
}
|
|
}
|
|
|
|
void hos_eks_bis_save()
|
|
{
|
|
// Check if Erista based unit.
|
|
if (h_cfg.t210b01)
|
|
return;
|
|
|
|
bool new_eks = false;
|
|
if (!h_cfg.eks)
|
|
{
|
|
h_cfg.eks = calloc(512 , 1);
|
|
new_eks = true;
|
|
}
|
|
|
|
// If matching blob doesn't exist, create it.
|
|
if (!h_cfg.eks->enabled_bis)
|
|
{
|
|
// Read EKS blob.
|
|
u8 *mbr = calloc(512 , 1);
|
|
if (!hos_eks_rw_try(mbr, false))
|
|
{
|
|
if (new_eks)
|
|
{
|
|
free(h_cfg.eks);
|
|
h_cfg.eks = NULL;
|
|
}
|
|
|
|
goto out;
|
|
}
|
|
|
|
// Set magic and personalized info.
|
|
h_cfg.eks->magic = HOS_EKS_MAGIC;
|
|
h_cfg.eks->enabled_bis = 1;
|
|
h_cfg.eks->lot0 = FUSE(FUSE_OPT_LOT_CODE_0);
|
|
|
|
// Copy new keys.
|
|
memcpy(h_cfg.eks->bis_keys[0].crypt, bis_keys + (0 * SE_KEY_128_SIZE), SE_KEY_128_SIZE);
|
|
memcpy(h_cfg.eks->bis_keys[0].tweak, bis_keys + (1 * SE_KEY_128_SIZE), SE_KEY_128_SIZE);
|
|
|
|
memcpy(h_cfg.eks->bis_keys[1].crypt, bis_keys + (2 * SE_KEY_128_SIZE), SE_KEY_128_SIZE);
|
|
memcpy(h_cfg.eks->bis_keys[1].tweak, bis_keys + (3 * SE_KEY_128_SIZE), SE_KEY_128_SIZE);
|
|
|
|
memcpy(h_cfg.eks->bis_keys[2].crypt, bis_keys + (4 * SE_KEY_128_SIZE), SE_KEY_128_SIZE);
|
|
memcpy(h_cfg.eks->bis_keys[2].tweak, bis_keys + (5 * SE_KEY_128_SIZE), SE_KEY_128_SIZE);
|
|
|
|
// Encrypt EKS blob.
|
|
u8 *eks = calloc(512 , 1);
|
|
memcpy(eks, h_cfg.eks, sizeof(hos_eks_mbr_t));
|
|
se_aes_crypt_ecb(14, 1, eks, sizeof(hos_eks_mbr_t), eks, sizeof(hos_eks_mbr_t));
|
|
|
|
// Write EKS blob to SD.
|
|
memcpy(mbr + 0x80, eks, sizeof(hos_eks_mbr_t));
|
|
hos_eks_rw_try(mbr, true);
|
|
|
|
|
|
free(eks);
|
|
out:
|
|
free(mbr);
|
|
}
|
|
}
|
|
|
|
void hos_eks_bis_clear()
|
|
{
|
|
// Check if Erista based unit.
|
|
if (h_cfg.t210b01)
|
|
return;
|
|
|
|
// Check if BIS keys are enabled.
|
|
if (h_cfg.eks && h_cfg.eks->enabled_bis)
|
|
{
|
|
// Read EKS blob.
|
|
u8 *mbr = calloc(512 , 1);
|
|
if (!hos_eks_rw_try(mbr, false))
|
|
goto out;
|
|
|
|
// Disable BIS storage.
|
|
h_cfg.eks->enabled_bis = 0;
|
|
|
|
// Encrypt EKS blob.
|
|
u8 *eks = calloc(512 , 1);
|
|
memcpy(eks, h_cfg.eks, sizeof(hos_eks_mbr_t));
|
|
se_aes_crypt_ecb(14, 1, eks, sizeof(hos_eks_mbr_t), eks, sizeof(hos_eks_mbr_t));
|
|
|
|
// Write EKS blob to SD.
|
|
memcpy(mbr + 0x80, eks, sizeof(hos_eks_mbr_t));
|
|
hos_eks_rw_try(mbr, true);
|
|
|
|
free(eks);
|
|
out:
|
|
free(mbr);
|
|
}
|
|
}
|
|
|
|
int hos_keygen_t210b01(u32 kb)
|
|
{
|
|
// Use SBK as Device key 4x unsealer and KEK for mkey in T210B01 units.
|
|
se_aes_unwrap_key(10, 14, console_keyseed_4xx_5xx);
|
|
|
|
// Derive master key.
|
|
se_aes_unwrap_key(7, 12, &master_kekseed_t210b01[kb - KB_FIRMWARE_VERSION_600]);
|
|
se_aes_unwrap_key(7, 7, master_keyseed_retail);
|
|
|
|
// Derive latest pkg2 key.
|
|
se_aes_unwrap_key(8, 7, package2_keyseed);
|
|
|
|
return 1;
|
|
}
|
|
|
|
int hos_keygen(void *keyblob, u32 kb, tsec_ctxt_t *tsec_ctxt)
|
|
{
|
|
u32 retries = 0;
|
|
tsec_keys_t tsec_keys;
|
|
kb_t *kb_data = (kb_t *)keyblob;
|
|
|
|
if (kb > KB_FIRMWARE_VERSION_MAX)
|
|
return 0;
|
|
|
|
if (h_cfg.t210b01)
|
|
return hos_keygen_t210b01(kb);
|
|
|
|
if (kb <= KB_FIRMWARE_VERSION_600)
|
|
tsec_ctxt->size = 0xF00;
|
|
else if (kb == KB_FIRMWARE_VERSION_620)
|
|
tsec_ctxt->size = 0x2900;
|
|
else if (kb == KB_FIRMWARE_VERSION_700)
|
|
tsec_ctxt->size = 0x3000;
|
|
else
|
|
tsec_ctxt->size = 0x3300;
|
|
|
|
// Prepare smmu tsec page for 6.2.0.
|
|
if (kb == KB_FIRMWARE_VERSION_620)
|
|
{
|
|
u8 *tsec_paged = (u8 *)page_alloc(3);
|
|
memcpy(tsec_paged, (void *)tsec_ctxt->fw, tsec_ctxt->size);
|
|
tsec_ctxt->fw = tsec_paged;
|
|
}
|
|
|
|
// Get TSEC key.
|
|
if (kb <= KB_FIRMWARE_VERSION_620)
|
|
{
|
|
while (tsec_query(&tsec_keys, kb, tsec_ctxt) < 0)
|
|
{
|
|
memset(&tsec_keys, 0x00, 0x20);
|
|
retries++;
|
|
|
|
// We rely on racing conditions, make sure we cover even the unluckiest cases.
|
|
if (retries > 15)
|
|
{
|
|
EPRINTF("\nFailed to get TSEC keys. Please try again.\n");
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (kb >= KB_FIRMWARE_VERSION_700)
|
|
{
|
|
// Use HOS EKS if it exists.
|
|
u32 key_idx = 0;
|
|
if (kb >= KB_FIRMWARE_VERSION_810)
|
|
key_idx = 1;
|
|
|
|
if (h_cfg.eks && h_cfg.eks->enabled[key_idx] >= kb)
|
|
{
|
|
// Set Device keygen key to slot 10.
|
|
se_aes_key_set(10, h_cfg.eks->dkg, SE_KEY_128_SIZE);
|
|
// Set Master key to slot 12.
|
|
se_aes_key_set(12, h_cfg.eks->keys[key_idx].mkk, SE_KEY_128_SIZE);
|
|
// Set FW Device key key to slot 13.
|
|
se_aes_key_set(13, h_cfg.eks->keys[key_idx].fdk, SE_KEY_128_SIZE);
|
|
// Set Device key to slot 15.
|
|
se_aes_key_set(15, h_cfg.eks->dkk, SE_KEY_128_SIZE);
|
|
}
|
|
else
|
|
h_cfg.aes_slots_new = se_key_acc_ctrl_get(12) == 0x6A;
|
|
|
|
se_aes_key_clear(8);
|
|
se_aes_unwrap_key(8, !h_cfg.aes_slots_new ? 12 : 13, package2_keyseed);
|
|
}
|
|
else if (kb == KB_FIRMWARE_VERSION_620)
|
|
{
|
|
// Set TSEC key.
|
|
se_aes_key_set(12, tsec_keys.tsec, SE_KEY_128_SIZE);
|
|
// Set TSEC root key.
|
|
se_aes_key_set(13, tsec_keys.tsec_root, SE_KEY_128_SIZE);
|
|
|
|
// Decrypt keyblob and set keyslots
|
|
se_aes_crypt_block_ecb(12, 0, tsec_keys.tmp, keyblob_keyseeds[0]);
|
|
se_aes_unwrap_key(15, 14, tsec_keys.tmp);
|
|
se_aes_unwrap_key(10, 15, console_keyseed_4xx_5xx);
|
|
se_aes_unwrap_key(15, 15, console_keyseed);
|
|
|
|
// Package2 key.
|
|
se_aes_unwrap_key(8, 13, master_keyseed_620);
|
|
se_aes_unwrap_key(9, 8, master_keyseed_retail);
|
|
se_aes_unwrap_key(8, 9, package2_keyseed);
|
|
}
|
|
else
|
|
{
|
|
// Set TSEC key.
|
|
se_aes_key_set(13, tsec_keys.tsec, SE_KEY_128_SIZE);
|
|
|
|
// Derive keyblob keys from TSEC+SBK.
|
|
se_aes_crypt_block_ecb(13, 0, tsec_keys.tsec, keyblob_keyseeds[0]);
|
|
se_aes_unwrap_key(15, 14, tsec_keys.tsec);
|
|
se_aes_crypt_block_ecb(13, 0, tsec_keys.tsec, keyblob_keyseeds[kb]);
|
|
se_aes_unwrap_key(13, 14, tsec_keys.tsec);
|
|
|
|
// Clear SBK.
|
|
if (!h_cfg.sbk_set)
|
|
se_aes_key_clear(14);
|
|
|
|
/*
|
|
// Verify keyblob CMAC.
|
|
u8 cmac[SE_KEY_128_SIZE];
|
|
se_aes_unwrap_key(11, 13, cmac_keyseed);
|
|
se_aes_cmac(cmac, SE_KEY_128_SIZE, 11, (void *)kb_data->ctr, sizeof(kb_data->ctr) + sizeof(kb_data->keys));
|
|
if (!memcmp(kb_data->cmac, cmac, SE_KEY_128_SIZE))
|
|
return 0;
|
|
*/
|
|
|
|
se_aes_crypt_block_ecb(13, 0, tsec_keys.tsec, cmac_keyseed);
|
|
se_aes_unwrap_key(11, 13, cmac_keyseed);
|
|
|
|
// Decrypt keyblob and set keyslots.
|
|
se_aes_crypt_ctr(13, &kb_data->keys, sizeof(kb_data->keys), &kb_data->keys, sizeof(kb_data->keys), kb_data->ctr);
|
|
se_aes_key_set(11, kb_data->keys.package1_key, SE_KEY_128_SIZE);
|
|
se_aes_key_set(12, kb_data->keys.master_keyseed, SE_KEY_128_SIZE);
|
|
se_aes_key_set(13, kb_data->keys.master_keyseed, SE_KEY_128_SIZE);
|
|
|
|
se_aes_crypt_block_ecb(12, 0, tsec_keys.tsec, master_keyseed_retail);
|
|
|
|
switch (kb)
|
|
{
|
|
case KB_FIRMWARE_VERSION_100_200:
|
|
case KB_FIRMWARE_VERSION_300:
|
|
case KB_FIRMWARE_VERSION_301:
|
|
se_aes_unwrap_key(13, 15, console_keyseed);
|
|
se_aes_unwrap_key(12, 12, master_keyseed_retail);
|
|
break;
|
|
case KB_FIRMWARE_VERSION_400:
|
|
se_aes_unwrap_key(13, 15, console_keyseed_4xx_5xx);
|
|
se_aes_unwrap_key(15, 15, console_keyseed);
|
|
if (!h_cfg.sbk_set) // Do not clear SBK if patched. In this context the below key is useless.
|
|
se_aes_unwrap_key(14, 12, master_keyseed_4xx_5xx_610);
|
|
se_aes_unwrap_key(12, 12, master_keyseed_retail);
|
|
break;
|
|
case KB_FIRMWARE_VERSION_500:
|
|
case KB_FIRMWARE_VERSION_600:
|
|
se_aes_unwrap_key(10, 15, console_keyseed_4xx_5xx);
|
|
se_aes_unwrap_key(15, 15, console_keyseed);
|
|
if (!h_cfg.sbk_set) // Do not clear SBK if patched. In this context the below key is useless.
|
|
se_aes_unwrap_key(14, 12, master_keyseed_4xx_5xx_610);
|
|
se_aes_unwrap_key(12, 12, master_keyseed_retail);
|
|
break;
|
|
}
|
|
|
|
// Package2 key.
|
|
se_aes_unwrap_key(8, 12, package2_keyseed);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void _hos_validate_sept_mkey(u32 kb)
|
|
{
|
|
u8 tmp_mkey[SE_KEY_128_SIZE];
|
|
u32 mkey_idx = sizeof(mkey_vectors) / SE_KEY_128_SIZE;
|
|
u8 mkey_slot = !h_cfg.aes_slots_new ? 12 : 13;
|
|
do
|
|
{
|
|
mkey_idx--;
|
|
se_aes_crypt_ecb(mkey_slot, 0, tmp_mkey, SE_KEY_128_SIZE, mkey_vectors[mkey_idx], SE_KEY_128_SIZE);
|
|
for (u32 idx = 0; idx < mkey_idx; idx++)
|
|
{
|
|
se_aes_key_clear(2);
|
|
se_aes_key_set(2, tmp_mkey, SE_KEY_128_SIZE);
|
|
se_aes_crypt_ecb(2, 0, tmp_mkey, SE_KEY_128_SIZE, mkey_vectors[mkey_idx - 1 - idx], SE_KEY_128_SIZE);
|
|
}
|
|
|
|
if (!memcmp(tmp_mkey, "\x00\x00\x00\x00\x00\x00\x00\x00", 8))
|
|
{
|
|
se_aes_key_clear(2);
|
|
hos_eks_save(kb);
|
|
return;
|
|
}
|
|
} while (mkey_idx - 1);
|
|
|
|
se_aes_key_clear(2);
|
|
hos_eks_clear(kb);
|
|
}
|
|
|
|
static void _hos_bis_print_key(u32 idx, u8 *key)
|
|
{
|
|
gfx_printf("BIS %d Crypt: ", idx);
|
|
for (int i = 0; i < SE_KEY_128_SIZE; i++)
|
|
gfx_printf("%02X", key[((idx * 2 + 0) * SE_KEY_128_SIZE) + i]);
|
|
gfx_puts("\n");
|
|
|
|
gfx_printf("BIS %d Tweak: ", idx);
|
|
for (int i = 0; i < SE_KEY_128_SIZE; i++)
|
|
gfx_printf("%02X", key[((idx * 2 + 1) * SE_KEY_128_SIZE) + i]);
|
|
gfx_puts("\n");
|
|
}
|
|
|
|
int hos_bis_keygen(void *keyblob, u32 kb, tsec_ctxt_t *tsec_ctxt)
|
|
{
|
|
u32 keygen_rev = 0;
|
|
u32 console_key_slot = kb >= KB_FIRMWARE_VERSION_400 ? 15 : 13;
|
|
|
|
if (!bis_keys)
|
|
bis_keys = malloc(SE_KEY_128_SIZE * 6);
|
|
|
|
if (!h_cfg.eks || !h_cfg.eks->enabled_bis)
|
|
{
|
|
hos_keygen(keyblob, kb, tsec_ctxt);
|
|
|
|
// All Mariko use new device keygen. New keygen was introduced in 4.0.0.
|
|
// We check unconditionally in order to support downgrades.
|
|
keygen_rev = fuse_read_odm_keygen_rev();
|
|
|
|
gfx_printf("Keygen rev: %d\n", keygen_rev);
|
|
|
|
if (keygen_rev)
|
|
{
|
|
u8 tmp_mkey[SE_KEY_128_SIZE];
|
|
u32 mkey_idx = sizeof(mkey_vectors) / SE_KEY_128_SIZE;
|
|
u8 mkey_slot = kb >= KB_FIRMWARE_VERSION_700 ? (!h_cfg.aes_slots_new ? 12 : 13) : (kb == KB_FIRMWARE_VERSION_620 ? 9 : 12);
|
|
|
|
// Keygen revision uses bootloader version, which starts from 1.
|
|
keygen_rev -= (KB_FIRMWARE_VERSION_400 + 1);
|
|
|
|
// Use SBK as Device key 4x unsealer and KEK for mkey in T210B01 units.
|
|
if (h_cfg.t210b01)
|
|
mkey_slot = 7;
|
|
|
|
// Derive mkey 0.
|
|
do
|
|
{
|
|
mkey_idx--;
|
|
se_aes_crypt_ecb(mkey_slot, 0, tmp_mkey, SE_KEY_128_SIZE, mkey_vectors[mkey_idx], SE_KEY_128_SIZE);
|
|
for (u32 idx = 0; idx < mkey_idx; idx++)
|
|
{
|
|
se_aes_key_clear(2);
|
|
se_aes_key_set(2, tmp_mkey, SE_KEY_128_SIZE);
|
|
se_aes_crypt_ecb(2, 0, tmp_mkey, SE_KEY_128_SIZE, mkey_vectors[mkey_idx - 1 - idx], SE_KEY_128_SIZE);
|
|
}
|
|
} while (memcmp(tmp_mkey, "\x00\x00\x00\x00\x00\x00\x00\x00", 8) != 0 && (mkey_idx - 1));
|
|
|
|
// Derive new device key.
|
|
se_aes_key_clear(1);
|
|
se_aes_unwrap_key(1, 10, new_console_keyseed[keygen_rev]); // Uses Device key 4x.
|
|
se_aes_crypt_ecb(10, 0, tmp_mkey, SE_KEY_128_SIZE, new_console_keyseed[keygen_rev], SE_KEY_128_SIZE); // Uses Device key 4x.
|
|
se_aes_unwrap_key(1, 2, new_console_kekseed[keygen_rev]); // Uses Master Key 0.
|
|
se_aes_unwrap_key(1, 1, tmp_mkey);
|
|
|
|
console_key_slot = 1;
|
|
}
|
|
|
|
// Generate generic kek.
|
|
se_aes_key_clear(2);
|
|
se_aes_unwrap_key(2, console_key_slot, gen_keyseed_retail);
|
|
|
|
// Clear bis keys storage.
|
|
memset(bis_keys, 0, SE_KEY_128_SIZE * 6);
|
|
|
|
// Generate BIS 0 Keys.
|
|
se_aes_crypt_block_ecb(2, 0, bis_keys + (0 * SE_KEY_128_SIZE), bis_keyseed[0]);
|
|
se_aes_crypt_block_ecb(2, 0, bis_keys + (1 * SE_KEY_128_SIZE), bis_keyseed[1]);
|
|
|
|
// Generate generic kek.
|
|
se_aes_key_clear(2);
|
|
se_aes_unwrap_key(2, console_key_slot, gen_kekseed);
|
|
se_aes_unwrap_key(2, 2, bis_kekseed);
|
|
se_aes_unwrap_key(2, 2, gen_keyseed);
|
|
|
|
// Generate BIS 1 Keys.
|
|
se_aes_crypt_block_ecb(2, 0, bis_keys + (2 * SE_KEY_128_SIZE), bis_keyseed[2]);
|
|
se_aes_crypt_block_ecb(2, 0, bis_keys + (3 * SE_KEY_128_SIZE), bis_keyseed[3]);
|
|
|
|
// Generate BIS 2/3 Keys.
|
|
se_aes_crypt_block_ecb(2, 0, bis_keys + (4 * SE_KEY_128_SIZE), bis_keyseed[4]);
|
|
se_aes_crypt_block_ecb(2, 0, bis_keys + (5 * SE_KEY_128_SIZE), bis_keyseed[5]);
|
|
|
|
if (!h_cfg.t210b01 && kb >= KB_FIRMWARE_VERSION_700)
|
|
_hos_validate_sept_mkey(kb);
|
|
}
|
|
else
|
|
{
|
|
memcpy(bis_keys + (0 * SE_KEY_128_SIZE), h_cfg.eks->bis_keys[0].crypt, SE_KEY_128_SIZE);
|
|
memcpy(bis_keys + (1 * SE_KEY_128_SIZE), h_cfg.eks->bis_keys[0].tweak, SE_KEY_128_SIZE);
|
|
|
|
memcpy(bis_keys + (2 * SE_KEY_128_SIZE), h_cfg.eks->bis_keys[1].crypt, SE_KEY_128_SIZE);
|
|
memcpy(bis_keys + (3 * SE_KEY_128_SIZE), h_cfg.eks->bis_keys[1].tweak, SE_KEY_128_SIZE);
|
|
|
|
memcpy(bis_keys + (4 * SE_KEY_128_SIZE), h_cfg.eks->bis_keys[2].crypt, SE_KEY_128_SIZE);
|
|
memcpy(bis_keys + (5 * SE_KEY_128_SIZE), h_cfg.eks->bis_keys[2].tweak, SE_KEY_128_SIZE);
|
|
}
|
|
|
|
_hos_bis_print_key(0, bis_keys);
|
|
_hos_bis_print_key(1, bis_keys);
|
|
_hos_bis_print_key(2, bis_keys);
|
|
|
|
// Clear all AES keyslots.
|
|
for (u32 i = 0; i < 6; i++)
|
|
se_aes_key_clear(i);
|
|
|
|
// Set BIS keys.
|
|
se_aes_key_set(0, bis_keys + (0 * SE_KEY_128_SIZE), SE_KEY_128_SIZE);
|
|
se_aes_key_set(1, bis_keys + (1 * SE_KEY_128_SIZE), SE_KEY_128_SIZE);
|
|
|
|
se_aes_key_set(2, bis_keys + (2 * SE_KEY_128_SIZE), SE_KEY_128_SIZE);
|
|
se_aes_key_set(3, bis_keys + (3 * SE_KEY_128_SIZE), SE_KEY_128_SIZE);
|
|
|
|
se_aes_key_set(4, bis_keys + (4 * SE_KEY_128_SIZE), SE_KEY_128_SIZE);
|
|
se_aes_key_set(5, bis_keys + (5 * SE_KEY_128_SIZE), SE_KEY_128_SIZE);
|
|
|
|
return 1;
|
|
}
|
|
|
|
void hos_bis_keys_clear()
|
|
{
|
|
// Clear all aes keyslots.
|
|
for (u32 i = 0; i < 6; i++)
|
|
se_aes_key_clear(i);
|
|
|
|
// Check if Erista based unit.
|
|
if (h_cfg.t210b01)
|
|
return;
|
|
|
|
// Set SBK back.
|
|
if (!h_cfg.sbk_set)
|
|
{
|
|
u32 sbk[4] = {
|
|
FUSE(FUSE_PRIVATE_KEY0),
|
|
FUSE(FUSE_PRIVATE_KEY1),
|
|
FUSE(FUSE_PRIVATE_KEY2),
|
|
FUSE(FUSE_PRIVATE_KEY3)
|
|
};
|
|
// Set SBK to slot 14.
|
|
se_aes_key_set(14, sbk, SE_KEY_128_SIZE);
|
|
|
|
// Lock SBK from being read.
|
|
se_key_acc_ctrl(14, SE_KEY_TBL_DIS_KEYREAD_FLAG);
|
|
}
|
|
} |