hekate/bootloader/hos/hos.c
CTCaer 6a261e356f hos: Update NOGC for LAFW v3
And also add emuMMC reverse protection by disabling GC when 9.0.0 fuses are burnt and emuMMC is lower than this.

This avoids fatals on boot.
2019-09-12 23:53:46 +03:00

748 lines
23 KiB
C

/*
* Copyright (c) 2018 naehrwert
* Copyright (c) 2018 st4rk
* Copyright (c) 2018 Ced2911
* Copyright (c) 2018-2019 CTCaer
* Copyright (c) 2018 balika011
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include "hos.h"
#include "hos_config.h"
#include "sept.h"
#include "secmon_exo.h"
#include "../config/config.h"
#include "../gfx/di.h"
#include "../mem/heap.h"
#include "../mem/mc.h"
#include "../mem/minerva.h"
#include "../sec/se.h"
#include "../sec/se_t210.h"
#include "../sec/tsec.h"
#include "../soc/bpmp.h"
#include "../soc/cluster.h"
#include "../soc/fuse.h"
#include "../soc/pmc.h"
#include "../soc/smmu.h"
#include "../soc/t210.h"
#include "../storage/emummc.h"
#include "../storage/nx_emmc.h"
#include "../storage/sdmmc.h"
#include "../utils/util.h"
#include "../gfx/gfx.h"
extern hekate_config h_cfg;
extern void sd_unmount();
extern bool sd_mount();
//#define DPRINTF(...) gfx_printf(__VA_ARGS__)
#define DPRINTF(...)
#define EHPRINTFARGS(text, args...) \
({ display_backlight_brightness(h_cfg.backlight, 1000); \
gfx_con.mute = false; \
gfx_printf("%k"text"%k\n", 0xFFFF0000, args, 0xFFCCCCCC); })
#define PKG2_LOAD_ADDR 0xA9800000
// Secmon mailbox.
#define SECMON_MB_ADDR 0x40002EF8
#define SECMON7_MB_ADDR 0x400000F8
typedef struct _secmon_mailbox_t
{
// < 4.0.0 Signals - 0: Not ready, 1: BCT ready, 2: DRAM and pkg2 ready, 3: Continue boot.
// >= 4.0.0 Signals - 0: Not ready, 1: BCT ready, 2: DRAM ready, 4: pkg2 ready and continue boot.
u32 in;
// Non-zero: Secmon ready.
u32 out;
} secmon_mailbox_t;
static const u8 keyblob_keyseeds[][0x10] = {
{ 0xDF, 0x20, 0x6F, 0x59, 0x44, 0x54, 0xEF, 0xDC, 0x70, 0x74, 0x48, 0x3B, 0x0D, 0xED, 0x9F, 0xD3 }, //1.0.0
{ 0x0C, 0x25, 0x61, 0x5D, 0x68, 0x4C, 0xEB, 0x42, 0x1C, 0x23, 0x79, 0xEA, 0x82, 0x25, 0x12, 0xAC }, //3.0.0
{ 0x33, 0x76, 0x85, 0xEE, 0x88, 0x4A, 0xAE, 0x0A, 0xC2, 0x8A, 0xFD, 0x7D, 0x63, 0xC0, 0x43, 0x3B }, //3.0.1
{ 0x2D, 0x1F, 0x48, 0x80, 0xED, 0xEC, 0xED, 0x3E, 0x3C, 0xF2, 0x48, 0xB5, 0x65, 0x7D, 0xF7, 0xBE }, //4.0.0
{ 0xBB, 0x5A, 0x01, 0xF9, 0x88, 0xAF, 0xF5, 0xFC, 0x6C, 0xFF, 0x07, 0x9E, 0x13, 0x3C, 0x39, 0x80 }, //5.0.0
{ 0xD8, 0xCC, 0xE1, 0x26, 0x6A, 0x35, 0x3F, 0xCC, 0x20, 0xF3, 0x2D, 0x3B, 0x51, 0x7D, 0xE9, 0xC0 } //6.0.0
};
static const u8 cmac_keyseed[0x10] =
{ 0x59, 0xC7, 0xFB, 0x6F, 0xBE, 0x9B, 0xBE, 0x87, 0x65, 0x6B, 0x15, 0xC0, 0x53, 0x73, 0x36, 0xA5 };
static const u8 master_keyseed_retail[0x10] =
{ 0xD8, 0xA2, 0x41, 0x0A, 0xC6, 0xC5, 0x90, 0x01, 0xC6, 0x1D, 0x6A, 0x26, 0x7C, 0x51, 0x3F, 0x3C };
static const u8 console_keyseed[0x10] =
{ 0x4F, 0x02, 0x5F, 0x0E, 0xB6, 0x6D, 0x11, 0x0E, 0xDC, 0x32, 0x7D, 0x41, 0x86, 0xC2, 0xF4, 0x78 };
const u8 package2_keyseed[] =
{ 0xFB, 0x8B, 0x6A, 0x9C, 0x79, 0x00, 0xC8, 0x49, 0xEF, 0xD2, 0x4D, 0x85, 0x4D, 0x30, 0xA0, 0xC7 };
static const u8 master_keyseed_4xx_5xx_610[0x10] =
{ 0x2D, 0xC1, 0xF4, 0x8D, 0xF3, 0x5B, 0x69, 0x33, 0x42, 0x10, 0xAC, 0x65, 0xDA, 0x90, 0x46, 0x66 };
static const u8 master_keyseed_620[0x10] =
{ 0x37, 0x4B, 0x77, 0x29, 0x59, 0xB4, 0x04, 0x30, 0x81, 0xF6, 0xE5, 0x8C, 0x6D, 0x36, 0x17, 0x9A };
static const u8 console_keyseed_4xx_5xx[0x10] =
{ 0x0C, 0x91, 0x09, 0xDB, 0x93, 0x93, 0x07, 0x81, 0x07, 0x3C, 0xC4, 0x16, 0x22, 0x7C, 0x6C, 0x28 };
static void _hos_crit_error(const char *text)
{
display_backlight_brightness(h_cfg.backlight, 1000);
gfx_con.mute = false;
gfx_printf("%k%s%k\n", 0xFFFF0000, text, 0xFFCCCCCC);
}
static void _se_lock(bool lock_se)
{
if (lock_se)
{
for (u32 i = 0; i < 16; i++)
se_key_acc_ctrl(i, 0x15);
for (u32 i = 0; i < 2; i++)
se_rsa_acc_ctrl(i, 1);
SE(0x4) = 0; // Make this reg secure only.
SE(SE_KEY_TABLE_ACCESS_LOCK_OFFSET) = 0; // Make all key access regs secure only.
SE(SE_RSA_KEYTABLE_ACCESS_LOCK_OFFSET) = 0; // Make all RSA access regs secure only.
SE(SE_SECURITY_0) &= 0xFFFFFFFB; // Make access lock regs secure only.
}
memset((void *)IPATCH_BASE, 0, 14 * sizeof(u32));
SB(SB_CSR) = SB_CSR_PIROM_DISABLE;
// This is useful for documenting the bits in the SE config registers, so we can keep it around.
/*gfx_printf("SE(SE_SECURITY_0) = %08X\n", SE(SE_SECURITY_0));
gfx_printf("SE(0x4) = %08X\n", SE(0x4));
gfx_printf("SE(SE_KEY_TABLE_ACCESS_LOCK_OFFSET) = %08X\n", SE(SE_KEY_TABLE_ACCESS_LOCK_OFFSET));
gfx_printf("SE(SE_RSA_KEYTABLE_ACCESS_LOCK_OFFSET) = %08X\n", SE(SE_RSA_KEYTABLE_ACCESS_LOCK_OFFSET));
for(u32 i = 0; i < 16; i++)
gfx_printf("%02X ", SE(SE_KEY_TABLE_ACCESS_REG_OFFSET + i * 4) & 0xFF);
gfx_putc('\n');
for(u32 i = 0; i < 2; i++)
gfx_printf("%02X ", SE(SE_RSA_KEYTABLE_ACCESS_REG_OFFSET + i * 4) & 0xFF);
gfx_putc('\n');
gfx_hexdump(SE_BASE, (void *)SE_BASE, 0x400);*/
}
void _pmc_scratch_lock(u32 kb)
{
switch (kb)
{
case KB_FIRMWARE_VERSION_100_200:
case KB_FIRMWARE_VERSION_300:
case KB_FIRMWARE_VERSION_301:
PMC(APBDEV_PMC_SEC_DISABLE) = 0x7FFFF3;
PMC(APBDEV_PMC_SEC_DISABLE2) = 0xFFFFFFFF;
PMC(APBDEV_PMC_SEC_DISABLE3) = 0xFFAFFFFF;
PMC(APBDEV_PMC_SEC_DISABLE4) = 0xFFFFFFFF;
PMC(APBDEV_PMC_SEC_DISABLE5) = 0xFFFFFFFF;
PMC(APBDEV_PMC_SEC_DISABLE6) = 0xFFFFFFFF;
PMC(APBDEV_PMC_SEC_DISABLE7) = 0xFFFFFFFF;
PMC(APBDEV_PMC_SEC_DISABLE8) = 0xFFAAFFFF;
break;
default:
PMC(APBDEV_PMC_SEC_DISABLE2) |= 0x3FCFFFF;
PMC(APBDEV_PMC_SEC_DISABLE4) |= 0x3F3FFFFF;
PMC(APBDEV_PMC_SEC_DISABLE5) = 0xFFFFFFFF;
PMC(APBDEV_PMC_SEC_DISABLE6) |= 0xF3FFC00F;
PMC(APBDEV_PMC_SEC_DISABLE7) |= 0x3FFFFF;
PMC(APBDEV_PMC_SEC_DISABLE8) |= 0xFF;
break;
}
}
void _sysctr0_reset()
{
SYSCTR0(SYSCTR0_CNTCR) = 0;
SYSCTR0(SYSCTR0_COUNTERID0) = 0;
SYSCTR0(SYSCTR0_COUNTERID1) = 0;
SYSCTR0(SYSCTR0_COUNTERID2) = 0;
SYSCTR0(SYSCTR0_COUNTERID3) = 0;
SYSCTR0(SYSCTR0_COUNTERID4) = 0;
SYSCTR0(SYSCTR0_COUNTERID5) = 0;
SYSCTR0(SYSCTR0_COUNTERID6) = 0;
SYSCTR0(SYSCTR0_COUNTERID7) = 0;
SYSCTR0(SYSCTR0_COUNTERID8) = 0;
SYSCTR0(SYSCTR0_COUNTERID9) = 0;
SYSCTR0(SYSCTR0_COUNTERID10) = 0;
SYSCTR0(SYSCTR0_COUNTERID11) = 0;
}
int keygen(u8 *keyblob, u32 kb, tsec_ctxt_t *tsec_ctxt, launch_ctxt_t *hos_ctxt)
{
u8 tmp[0x20];
u32 retries = 0;
if (kb > KB_FIRMWARE_VERSION_MAX)
return 0;
if (kb <= KB_FIRMWARE_VERSION_600)
tsec_ctxt->size = 0xF00;
else if (kb == KB_FIRMWARE_VERSION_620)
tsec_ctxt->size = 0x2900;
else if (kb == KB_FIRMWARE_VERSION_700)
tsec_ctxt->size = 0x3000;
else
tsec_ctxt->size = 0x3300;
// Prepare smmu tsec page for 6.2.0.
if (kb == KB_FIRMWARE_VERSION_620)
{
u8 *tsec_paged = (u8 *)page_alloc(3);
memcpy(tsec_paged, (void *)tsec_ctxt->fw, tsec_ctxt->size);
tsec_ctxt->fw = tsec_paged;
}
// Get TSEC key.
if (kb <= KB_FIRMWARE_VERSION_620)
{
while (tsec_query(tmp, kb, tsec_ctxt) < 0)
{
memset(tmp, 0x00, 0x20);
retries++;
// We rely on racing conditions, make sure we cover even the unluckiest cases.
if (retries > 15)
{
_hos_crit_error("\nFailed to get TSEC keys. Please try again.");
return 0;
}
}
}
if (kb >= KB_FIRMWARE_VERSION_700)
se_aes_unwrap_key(8, 12, package2_keyseed);
else if (kb == KB_FIRMWARE_VERSION_620)
{
// Set TSEC key.
se_aes_key_set(12, tmp, 0x10);
// Set TSEC root key.
se_aes_key_set(13, tmp + 0x10, 0x10);
if (!(emu_cfg.enabled && !h_cfg.emummc_force_disable) && hos_ctxt->stock)
{
// Package2 key.
se_aes_key_set(8, tmp + 0x10, 0x10);
se_aes_unwrap_key(8, 8, master_keyseed_620);
se_aes_unwrap_key(8, 8, master_keyseed_retail);
se_aes_unwrap_key(8, 8, package2_keyseed);
}
else
{
// Decrypt keyblob and set keyslots
se_aes_crypt_block_ecb(12, 0, tmp + 0x20, keyblob_keyseeds[0]);
se_aes_unwrap_key(15, 14, tmp + 0x20);
se_aes_unwrap_key(14, 15, console_keyseed_4xx_5xx);
se_aes_unwrap_key(15, 15, console_keyseed);
se_aes_unwrap_key(13, 13, master_keyseed_620);
se_aes_unwrap_key(12, 13, master_keyseed_retail);
se_aes_unwrap_key(10, 13, master_keyseed_4xx_5xx_610);
// Package2 key.
se_aes_unwrap_key(8, 12, package2_keyseed);
h_cfg.se_keygen_done = 1;
}
}
else
{
se_key_acc_ctrl(13, 0x15);
se_key_acc_ctrl(14, 0x15);
// Set TSEC key.
se_aes_key_set(13, tmp, 0x10);
// Derive keyblob keys from TSEC+SBK.
se_aes_crypt_block_ecb(13, 0, tmp, keyblob_keyseeds[0]);
se_aes_unwrap_key(15, 14, tmp);
se_aes_crypt_block_ecb(13, 0, tmp, keyblob_keyseeds[kb]);
se_aes_unwrap_key(13, 14, tmp);
// Clear SBK.
se_aes_key_clear(14);
//TODO: verify keyblob CMAC.
//se_aes_unwrap_key(11, 13, cmac_keyseed);
//se_aes_cmac(tmp, 0x10, 11, keyblob + 0x10, 0xA0);
//if (!memcmp(keyblob, tmp, 0x10))
// return 0;
se_aes_crypt_block_ecb(13, 0, tmp, cmac_keyseed);
se_aes_unwrap_key(11, 13, cmac_keyseed);
// Decrypt keyblob and set keyslots.
se_aes_crypt_ctr(13, keyblob + 0x20, 0x90, keyblob + 0x20, 0x90, keyblob + 0x10);
se_aes_key_set(11, keyblob + 0x20 + 0x80, 0x10); // Package1 key.
se_aes_key_set(12, keyblob + 0x20, 0x10);
se_aes_key_set(13, keyblob + 0x20, 0x10);
se_aes_crypt_block_ecb(12, 0, tmp, master_keyseed_retail);
switch (kb)
{
case KB_FIRMWARE_VERSION_100_200:
case KB_FIRMWARE_VERSION_300:
case KB_FIRMWARE_VERSION_301:
se_aes_unwrap_key(13, 15, console_keyseed);
se_aes_unwrap_key(12, 12, master_keyseed_retail);
break;
case KB_FIRMWARE_VERSION_400:
se_aes_unwrap_key(13, 15, console_keyseed_4xx_5xx);
se_aes_unwrap_key(15, 15, console_keyseed);
se_aes_unwrap_key(14, 12, master_keyseed_4xx_5xx_610);
se_aes_unwrap_key(12, 12, master_keyseed_retail);
break;
case KB_FIRMWARE_VERSION_500:
case KB_FIRMWARE_VERSION_600:
se_aes_unwrap_key(10, 15, console_keyseed_4xx_5xx);
se_aes_unwrap_key(15, 15, console_keyseed);
se_aes_unwrap_key(14, 12, master_keyseed_4xx_5xx_610);
se_aes_unwrap_key(12, 12, master_keyseed_retail);
break;
}
// Package2 key.
se_key_acc_ctrl(8, 0x15);
se_aes_unwrap_key(8, 12, package2_keyseed);
}
return 1;
}
static int _read_emmc_pkg1(launch_ctxt_t *ctxt)
{
int res = 0;
sdmmc_storage_t storage;
sdmmc_t sdmmc;
emummc_storage_init_mmc(&storage, &sdmmc);
// Read package1.
ctxt->pkg1 = (void *)malloc(0x40000);
emummc_storage_set_mmc_partition(&storage, 1);
emummc_storage_read(&storage, 0x100000 / NX_EMMC_BLOCKSIZE, 0x40000 / NX_EMMC_BLOCKSIZE, ctxt->pkg1);
ctxt->pkg1_id = pkg1_identify(ctxt->pkg1);
if (!ctxt->pkg1_id)
{
_hos_crit_error("Unknown pkg1 version.");
goto out;
}
gfx_printf("Identified pkg1 and Keyblob %d\n\n", ctxt->pkg1_id->kb);
// Read the correct keyblob.
ctxt->keyblob = (u8 *)calloc(NX_EMMC_BLOCKSIZE, 1);
emummc_storage_read(&storage, 0x180000 / NX_EMMC_BLOCKSIZE + ctxt->pkg1_id->kb, 1, ctxt->keyblob);
res = 1;
out:;
sdmmc_storage_end(&storage);
return res;
}
static u8 *_read_emmc_pkg2(launch_ctxt_t *ctxt)
{
u8 *bctBuf = NULL;
sdmmc_storage_t storage;
sdmmc_t sdmmc;
if (!emummc_storage_init_mmc(&storage, &sdmmc))
return NULL;
emummc_storage_set_mmc_partition(&storage, 0);
// Parse eMMC GPT.
LIST_INIT(gpt);
nx_emmc_gpt_parse(&gpt, &storage);
DPRINTF("Parsed GPT\n");
// Find package2 partition.
emmc_part_t *pkg2_part = nx_emmc_part_find(&gpt, "BCPKG2-1-Normal-Main");
if (!pkg2_part)
goto out;
// Read in package2 header and get package2 real size.
//TODO: implement memalign for DMA buffers.
static const u32 BCT_SIZE = 0x4000;
bctBuf = (u8 *)malloc(BCT_SIZE);
nx_emmc_part_read(&storage, pkg2_part, BCT_SIZE / NX_EMMC_BLOCKSIZE, 1, bctBuf);
u32 *hdr = (u32 *)(bctBuf + 0x100);
u32 pkg2_size = hdr[0] ^ hdr[2] ^ hdr[3];
DPRINTF("pkg2 size on emmc is %08X\n", pkg2_size);
// Read in Boot Config.
memset(bctBuf, 0, BCT_SIZE);
nx_emmc_part_read(&storage, pkg2_part, 0, BCT_SIZE / NX_EMMC_BLOCKSIZE, bctBuf);
// Read in package2.
u32 pkg2_size_aligned = ALIGN(pkg2_size, NX_EMMC_BLOCKSIZE);
DPRINTF("pkg2 size aligned is %08X\n", pkg2_size_aligned);
ctxt->pkg2 = malloc(pkg2_size_aligned);
ctxt->pkg2_size = pkg2_size;
nx_emmc_part_read(&storage, pkg2_part, BCT_SIZE / NX_EMMC_BLOCKSIZE,
pkg2_size_aligned / NX_EMMC_BLOCKSIZE, ctxt->pkg2);
out:;
nx_emmc_gpt_free(&gpt);
sdmmc_storage_end(&storage);
return bctBuf;
}
static void _free_launch_components(launch_ctxt_t *ctxt)
{
free(ctxt->keyblob);
free(ctxt->pkg1);
free(ctxt->pkg2);
free(ctxt->warmboot);
free(ctxt->secmon);
free(ctxt->kernel);
free(ctxt->kip1_patches);
}
int hos_launch(ini_sec_t *cfg)
{
minerva_change_freq(FREQ_1600);
launch_ctxt_t ctxt;
tsec_ctxt_t tsec_ctxt;
volatile secmon_mailbox_t *secmon_mb;
memset(&ctxt, 0, sizeof(launch_ctxt_t));
memset(&tsec_ctxt, 0, sizeof(tsec_ctxt_t));
list_init(&ctxt.kip1_list);
ctxt.cfg = cfg;
if (!gfx_con.mute)
gfx_clear_grey(0x1B);
gfx_con_setpos(0, 0);
gfx_printf("Initializing...\n\n");
// Read package1 and the correct keyblob.
if (!_read_emmc_pkg1(&ctxt))
return 0;
// Try to parse config if present.
if (ctxt.cfg && !parse_boot_config(&ctxt))
{
_hos_crit_error("Wrong ini cfg or missing files!");
return 0;
}
// Enable emummc patching.
if (emu_cfg.enabled && !h_cfg.emummc_force_disable)
{
if (ctxt.stock)
{
_hos_crit_error("Stock emuMMC is not supported yet!");
return 0;
}
ctxt.atmosphere = true; // Set atmosphere patching in case of Stock emuMMC and no fss0.
config_kip1patch(&ctxt, "emummc");
}
// Check if fuses lower than 4.0.0 or 9.0.0 and if yes apply NO Gamecard patch.
// Additionally check if running emuMMC and disable GC if v3 fuses are burnt and HOS is <= 8.1.0.
if ((h_cfg.autonogc &&
((!(fuse_read_odm(7) & ~0xF) && (ctxt.pkg1_id->kb >= KB_FIRMWARE_VERSION_400)) || // LAFW v2.
(!(fuse_read_odm(7) & ~0x3FF) && (ctxt.pkg1_id->kb >= KB_FIRMWARE_VERSION_900)))) // LAFW v3.
|| ((emu_cfg.enabled && !h_cfg.emummc_force_disable) &&
((fuse_read_odm(7) & 0x400) && (ctxt.pkg1_id->kb <= KB_FIRMWARE_VERSION_810))))
config_kip1patch(&ctxt, "nogc");
gfx_printf("Loaded pkg1 & keyblob\n");
// Generate keys.
if (!h_cfg.se_keygen_done)
{
tsec_ctxt.fw = (u8 *)ctxt.pkg1 + ctxt.pkg1_id->tsec_off;
tsec_ctxt.pkg1 = ctxt.pkg1;
tsec_ctxt.pkg11_off = ctxt.pkg1_id->pkg11_off;
tsec_ctxt.secmon_base = ctxt.pkg1_id->secmon_base;
if (ctxt.pkg1_id->kb >= KB_FIRMWARE_VERSION_700 && !h_cfg.sept_run)
{
_hos_crit_error("Failed to run sept");
return 0;
}
if (!keygen(ctxt.keyblob, ctxt.pkg1_id->kb, &tsec_ctxt, &ctxt))
return 0;
DPRINTF("Generated keys\n");
if (ctxt.pkg1_id->kb <= KB_FIRMWARE_VERSION_600)
h_cfg.se_keygen_done = 1;
}
// Decrypt and unpack package1 if we require parts of it.
if (!ctxt.warmboot || !ctxt.secmon)
{
if (ctxt.pkg1_id->kb <= KB_FIRMWARE_VERSION_600)
pkg1_decrypt(ctxt.pkg1_id, ctxt.pkg1);
if (ctxt.pkg1_id->kb <= KB_FIRMWARE_VERSION_620 && !(emu_cfg.enabled && !h_cfg.emummc_force_disable))
{
pkg1_unpack((void *)ctxt.pkg1_id->warmboot_base, (void *)ctxt.pkg1_id->secmon_base, NULL, ctxt.pkg1_id, ctxt.pkg1);
gfx_printf("Decrypted & unpacked pkg1\n");
}
else
{
_hos_crit_error("No mandatory secmon or warmboot provided!");
return 0;
}
}
// Replace 'warmboot.bin' if requested.
if (ctxt.warmboot)
memcpy((void *)ctxt.pkg1_id->warmboot_base, ctxt.warmboot, ctxt.warmboot_size);
else
{
if (ctxt.pkg1_id->kb >= KB_FIRMWARE_VERSION_700)
{
_hos_crit_error("No warmboot provided!");
return 0;
}
// Else we patch it to allow downgrading.
patch_t *warmboot_patchset = ctxt.pkg1_id->warmboot_patchset;
gfx_printf("%kPatching Warmboot%k\n", 0xFFFFBA00, 0xFFCCCCCC);
for (u32 i = 0; warmboot_patchset[i].off != 0xFFFFFFFF; i++)
*(vu32 *)(ctxt.pkg1_id->warmboot_base + warmboot_patchset[i].off) = warmboot_patchset[i].val;
}
// Set warmboot address in PMC if required.
if (ctxt.pkg1_id->set_warmboot)
PMC(APBDEV_PMC_SCRATCH1) = ctxt.pkg1_id->warmboot_base;
// Replace 'SecureMonitor' if requested.
if (ctxt.secmon)
memcpy((void *)ctxt.pkg1_id->secmon_base, ctxt.secmon, ctxt.secmon_size);
else if (ctxt.pkg1_id->secmon_patchset)
{
// Else we patch it to allow for an unsigned package2 and patched kernel.
patch_t *secmon_patchset = ctxt.pkg1_id->secmon_patchset;
gfx_printf("%kPatching Security Monitor%k\n", 0xFFFFBA00, 0xFFCCCCCC);
for (u32 i = 0; secmon_patchset[i].off != 0xFFFFFFFF; i++)
*(vu32 *)(ctxt.pkg1_id->secmon_base + secmon_patchset[i].off) = secmon_patchset[i].val;
}
gfx_printf("Loaded warmboot and secmon\n");
// Read package2.
u8 *bootConfigBuf = _read_emmc_pkg2(&ctxt);
if (!bootConfigBuf)
return 0;
gfx_printf("Read pkg2\n");
// Decrypt package2 and parse KIP1 blobs in INI1 section.
pkg2_hdr_t *pkg2_hdr = pkg2_decrypt(ctxt.pkg2, ctxt.pkg1_id->kb);
if (!pkg2_hdr)
{
_hos_crit_error("Pkg2 decryption failed!");
return 0;
}
LIST_INIT(kip1_info);
pkg2_parse_kips(&kip1_info, pkg2_hdr, &ctxt.new_pkg2);
gfx_printf("Parsed ini1\n");
// Use the kernel included in package2 in case we didn't load one already.
if (!ctxt.kernel)
{
ctxt.kernel = pkg2_hdr->data;
ctxt.kernel_size = pkg2_hdr->sec_size[PKG2_SEC_KERNEL];
if (!ctxt.stock && (ctxt.svcperm || ctxt.debugmode || ctxt.atmosphere))
{
u8 kernel_hash[0x20];
// Hash only Kernel when it embeds INI1.
if (!ctxt.new_pkg2)
se_calc_sha256(kernel_hash, ctxt.kernel, ctxt.kernel_size);
else
se_calc_sha256(kernel_hash, ctxt.kernel + PKG2_NEWKERN_START,
pkg2_newkern_ini1_start - PKG2_NEWKERN_START);
ctxt.pkg2_kernel_id = pkg2_identify(kernel_hash);
if (!ctxt.pkg2_kernel_id)
{
_hos_crit_error("Failed to identify kernel!");
return 0;
}
// In case a kernel patch option is set; allows to disable SVC verification or/and enable debug mode.
kernel_patch_t *kernel_patchset = ctxt.pkg2_kernel_id->kernel_patchset;
if (kernel_patchset != NULL)
{
gfx_printf("%kPatching kernel%k\n", 0xFFFFBA00, 0xFFCCCCCC);
u32 *temp;
for (u32 i = 0; kernel_patchset[i].id != 0xFFFFFFFF; i++)
{
if ((ctxt.svcperm && kernel_patchset[i].id == SVC_VERIFY_DS)
|| (ctxt.debugmode && kernel_patchset[i].id == DEBUG_MODE_EN && !(ctxt.atmosphere && ctxt.secmon))
|| (ctxt.atmosphere && kernel_patchset[i].id == ATM_GEN_PATCH))
*(vu32 *)(ctxt.kernel + kernel_patchset[i].off) = kernel_patchset[i].val;
else if (ctxt.atmosphere && kernel_patchset[i].id == ATM_ARR_PATCH)
{
temp = (u32 *)kernel_patchset[i].ptr;
for (u32 j = 0; j < kernel_patchset[i].val; j++)
*(vu32 *)(ctxt.kernel + kernel_patchset[i].off + (j << 2)) = temp[j];
}
else if (kernel_patchset[i].id < SVC_VERIFY_DS)
*(vu32 *)(ctxt.kernel + kernel_patchset[i].off) = kernel_patchset[i].val;
}
}
}
}
// Merge extra KIP1s into loaded ones.
gfx_printf("%kPatching kips%k\n", 0xFFFFBA00, 0xFFCCCCCC);
LIST_FOREACH_ENTRY(merge_kip_t, mki, &ctxt.kip1_list, link)
pkg2_merge_kip(&kip1_info, (pkg2_kip1_t *)mki->kip1);
// Patch kip1s in memory if needed.
const char* unappliedPatch = pkg2_patch_kips(&kip1_info, ctxt.kip1_patches);
if (unappliedPatch != NULL)
{
EHPRINTFARGS("Failed to apply '%s'!", unappliedPatch);
sd_unmount(); // Just exiting is not enough until pkg2_patch_kips stops modifying the string passed into it.
_free_launch_components(&ctxt);
return 0; // MUST stop here, because if user requests 'nogc' but it's not applied, their GC controller gets updated!
}
// Rebuild and encrypt package2.
pkg2_build_encrypt((void *)PKG2_LOAD_ADDR, ctxt.kernel, ctxt.kernel_size, &kip1_info, ctxt.new_pkg2);
gfx_printf("Rebuilt & loaded pkg2\n");
// Unmount SD card.
sd_unmount();
gfx_printf("\n%kBooting...%k\n", 0xFF96FF00, 0xFFCCCCCC);
// Clear pkg1/pkg2 keys.
se_aes_key_clear(8);
se_aes_key_clear(11);
// Finalize per firmware keys.
int bootStateDramPkg2 = 0;
int bootStatePkg2Continue = 0;
switch (ctxt.pkg1_id->kb)
{
case KB_FIRMWARE_VERSION_100_200:
case KB_FIRMWARE_VERSION_300:
case KB_FIRMWARE_VERSION_301:
if (ctxt.pkg1_id->kb == KB_FIRMWARE_VERSION_300)
PMC(APBDEV_PMC_SECURE_SCRATCH32) = 0xE3; // Warmboot 3.0.0 PA address id.
else if (ctxt.pkg1_id->kb == KB_FIRMWARE_VERSION_301)
PMC(APBDEV_PMC_SECURE_SCRATCH32) = 0x104; // Warmboot 3.0.1/.2 PA address id.
se_key_acc_ctrl(12, 0xFF);
se_key_acc_ctrl(13, 0xFF);
bootStateDramPkg2 = 2;
bootStatePkg2Continue = 3;
break;
case KB_FIRMWARE_VERSION_400:
case KB_FIRMWARE_VERSION_500:
case KB_FIRMWARE_VERSION_600:
se_key_acc_ctrl(12, 0xFF);
se_key_acc_ctrl(15, 0xFF);
default:
bootStateDramPkg2 = 2;
bootStatePkg2Continue = 4;
break;
}
// Clear BCT area for retail units and copy it over if dev unit.
if (ctxt.pkg1_id->kb <= KB_FIRMWARE_VERSION_500)
{
memset((void *)0x4003D000, 0, 0x3000);
if ((fuse_read_odm(4) & 3) == 3)
memcpy((void *)0x4003D000, bootConfigBuf, 0x1000);
}
else
{
memset((void *)0x4003F000, 0, 0x1000);
if ((fuse_read_odm(4) & 3) == 3)
memcpy((void *)0x4003F800, bootConfigBuf, 0x800);
}
free(bootConfigBuf);
// Config Exosphère if booting full Atmosphère.
if (ctxt.atmosphere && ctxt.secmon)
config_exosphere(&ctxt);
// Finalize MC carveout.
if (ctxt.pkg1_id->kb <= KB_FIRMWARE_VERSION_301)
mc_config_carveout();
// Lock SE before starting 'SecureMonitor' if < 6.2.0, otherwise lock bootrom and ipatches.
_se_lock(ctxt.pkg1_id->kb <= KB_FIRMWARE_VERSION_600);
// Reset sysctr0 counters.
if (ctxt.pkg1_id->kb >= KB_FIRMWARE_VERSION_620)
_sysctr0_reset();
// < 4.0.0 pkg1.1 locks PMC scratches.
//_pmc_scratch_lock(ctxt.pkg1_id->kb);
// Set secmon mailbox address.
if (ctxt.pkg1_id->kb >= KB_FIRMWARE_VERSION_700)
secmon_mb = (secmon_mailbox_t *)SECMON7_MB_ADDR;
else
secmon_mb = (secmon_mailbox_t *)SECMON_MB_ADDR;
// Start from DRAM ready signal and reset outgoing value.
secmon_mb->in = bootStateDramPkg2;
secmon_mb->out = 0;
// Free allocated memory.
_free_launch_components(&ctxt);
// Disable display. This must be executed before secmon to provide support for all fw versions.
display_end();
// Clear EMC_SCRATCH0.
EMC(EMC_SCRATCH0) = 0;
// Flush cache and disable MMU.
bpmp_mmu_disable();
bpmp_clk_rate_set(BPMP_CLK_NORMAL);
minerva_change_freq(FREQ_800);
// emuMMC: Some cards (Sandisk U1), do not like a fast power cycle. Wait min 100ms.
sdmmc_storage_init_wait_sd();
// Wait for secmon to get ready.
if (smmu_is_used())
smmu_exit();
else
cluster_boot_cpu0(ctxt.pkg1_id->secmon_base);
while (!secmon_mb->out)
; // A usleep(1) only works when in IRAM or with a trained DRAM.
// Signal pkg2 ready and continue boot.
secmon_mb->in = bootStatePkg2Continue;
// Halt ourselves in waitevent state and resume if there's JTAG activity.
while (true)
bpmp_halt();
return 0;
}