mirror of
https://github.com/CTCaer/hekate
synced 2025-01-08 21:47:58 +00:00
714 lines
20 KiB
C
714 lines
20 KiB
C
/*
|
|
* Copyright (c) 2018 naehrwert
|
|
* Copyright (c) 2018-2022 CTCaer
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <string.h>
|
|
|
|
#include "se.h"
|
|
#include <memory_map.h>
|
|
#include <mem/heap.h>
|
|
#include <soc/bpmp.h>
|
|
#include <soc/hw_init.h>
|
|
#include <soc/pmc.h>
|
|
#include <soc/timer.h>
|
|
#include <soc/t210.h>
|
|
|
|
typedef struct _se_ll_t
|
|
{
|
|
vu32 num;
|
|
vu32 addr;
|
|
vu32 size;
|
|
} se_ll_t;
|
|
|
|
se_ll_t ll_src, ll_dst;
|
|
se_ll_t *ll_src_ptr, *ll_dst_ptr; // Must be u32 aligned.
|
|
|
|
static void _gf256_mul_x(void *block)
|
|
{
|
|
u8 *pdata = (u8 *)block;
|
|
u32 carry = 0;
|
|
|
|
for (int i = 0xF; i >= 0; i--)
|
|
{
|
|
u8 b = pdata[i];
|
|
pdata[i] = (b << 1) | carry;
|
|
carry = b >> 7;
|
|
}
|
|
|
|
if (carry)
|
|
pdata[0xF] ^= 0x87;
|
|
}
|
|
|
|
static void _gf256_mul_x_le(void *block)
|
|
{
|
|
u32 *pdata = (u32 *)block;
|
|
u32 carry = 0;
|
|
|
|
for (u32 i = 0; i < 4; i++)
|
|
{
|
|
u32 b = pdata[i];
|
|
pdata[i] = (b << 1) | carry;
|
|
carry = b >> 31;
|
|
}
|
|
|
|
if (carry)
|
|
pdata[0x0] ^= 0x87;
|
|
}
|
|
|
|
static void _se_ll_init(se_ll_t *ll, u32 addr, u32 size)
|
|
{
|
|
ll->num = 0;
|
|
ll->addr = addr;
|
|
ll->size = size;
|
|
}
|
|
|
|
static void _se_ll_set(se_ll_t *src, se_ll_t *dst)
|
|
{
|
|
SE(SE_IN_LL_ADDR_REG) = (u32)src;
|
|
SE(SE_OUT_LL_ADDR_REG) = (u32)dst;
|
|
}
|
|
|
|
static int _se_wait()
|
|
{
|
|
bool tegra_t210 = hw_get_chip_id() == GP_HIDREV_MAJOR_T210;
|
|
|
|
// Wait for operation to be done.
|
|
while (!(SE(SE_INT_STATUS_REG) & SE_INT_OP_DONE))
|
|
;
|
|
|
|
// Check for errors.
|
|
if ((SE(SE_INT_STATUS_REG) & SE_INT_ERR_STAT) ||
|
|
(SE(SE_STATUS_REG) & SE_STATUS_STATE_MASK) != SE_STATUS_STATE_IDLE ||
|
|
(SE(SE_ERR_STATUS_REG) != 0)
|
|
)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
// T210B01: IRAM/TZRAM/DRAM AHB coherency WAR.
|
|
if (!tegra_t210 && ll_dst_ptr)
|
|
{
|
|
u32 timeout = get_tmr_us() + 1000000;
|
|
// Ensure data is out from SE.
|
|
while (SE(SE_STATUS_REG) & SE_STATUS_MEM_IF_BUSY)
|
|
{
|
|
if (get_tmr_us() > timeout)
|
|
return 0;
|
|
usleep(1);
|
|
}
|
|
|
|
// Ensure data is out from AHB.
|
|
if (ll_dst_ptr->addr >= DRAM_START)
|
|
{
|
|
timeout = get_tmr_us() + 200000;
|
|
while (AHB_GIZMO(AHB_ARBITRATION_AHB_MEM_WRQUE_MST_ID) & MEM_WRQUE_SE_MST_ID)
|
|
{
|
|
if (get_tmr_us() > timeout)
|
|
return 0;
|
|
usleep(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int _se_execute_finalize()
|
|
{
|
|
int res = _se_wait();
|
|
|
|
// Invalidate data after OP is done.
|
|
bpmp_mmu_maintenance(BPMP_MMU_MAINT_INVALID_WAY, false);
|
|
|
|
ll_src_ptr = NULL;
|
|
ll_dst_ptr = NULL;
|
|
|
|
return res;
|
|
}
|
|
|
|
static int _se_execute(u32 op, void *dst, u32 dst_size, const void *src, u32 src_size, bool is_oneshot)
|
|
{
|
|
ll_src_ptr = NULL;
|
|
ll_dst_ptr = NULL;
|
|
|
|
if (src)
|
|
{
|
|
ll_src_ptr = &ll_src;
|
|
_se_ll_init(ll_src_ptr, (u32)src, src_size);
|
|
}
|
|
|
|
if (dst)
|
|
{
|
|
ll_dst_ptr = &ll_dst;
|
|
_se_ll_init(ll_dst_ptr, (u32)dst, dst_size);
|
|
}
|
|
|
|
_se_ll_set(ll_src_ptr, ll_dst_ptr);
|
|
|
|
SE(SE_ERR_STATUS_REG) = SE(SE_ERR_STATUS_REG);
|
|
SE(SE_INT_STATUS_REG) = SE(SE_INT_STATUS_REG);
|
|
|
|
// Flush data before starting OP.
|
|
bpmp_mmu_maintenance(BPMP_MMU_MAINT_CLEAN_WAY, false);
|
|
|
|
SE(SE_OPERATION_REG) = op;
|
|
|
|
if (is_oneshot)
|
|
return _se_execute_finalize();
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int _se_execute_oneshot(u32 op, void *dst, u32 dst_size, const void *src, u32 src_size)
|
|
{
|
|
return _se_execute(op, dst, dst_size, src, src_size, true);
|
|
}
|
|
|
|
static int _se_execute_one_block(u32 op, void *dst, u32 dst_size, const void *src, u32 src_size)
|
|
{
|
|
if (!src || !dst)
|
|
return 0;
|
|
|
|
u8 *block = (u8 *)calloc(1, SE_AES_BLOCK_SIZE);
|
|
|
|
SE(SE_CRYPTO_BLOCK_COUNT_REG) = 1 - 1;
|
|
|
|
memcpy(block, src, src_size);
|
|
int res = _se_execute_oneshot(op, block, SE_AES_BLOCK_SIZE, block, SE_AES_BLOCK_SIZE);
|
|
memcpy(dst, block, dst_size);
|
|
|
|
free(block);
|
|
return res;
|
|
}
|
|
|
|
static void _se_aes_ctr_set(void *ctr)
|
|
{
|
|
u32 data[SE_AES_IV_SIZE / 4];
|
|
memcpy(data, ctr, SE_AES_IV_SIZE);
|
|
|
|
for (u32 i = 0; i < SE_CRYPTO_LINEAR_CTR_REG_COUNT; i++)
|
|
SE(SE_CRYPTO_LINEAR_CTR_REG + (4 * i)) = data[i];
|
|
}
|
|
|
|
void se_rsa_acc_ctrl(u32 rs, u32 flags)
|
|
{
|
|
if (flags & SE_RSA_KEY_TBL_DIS_KEY_ACCESS_FLAG)
|
|
SE(SE_RSA_KEYTABLE_ACCESS_REG + 4 * rs) =
|
|
(((flags >> 4) & SE_RSA_KEY_TBL_DIS_KEYUSE_FLAG) | (flags & SE_RSA_KEY_TBL_DIS_KEY_READ_UPDATE_FLAG)) ^
|
|
SE_RSA_KEY_TBL_DIS_KEY_READ_UPDATE_USE_FLAG;
|
|
if (flags & SE_RSA_KEY_LOCK_FLAG)
|
|
SE(SE_RSA_SECURITY_PERKEY_REG) &= ~BIT(rs);
|
|
}
|
|
|
|
void se_key_acc_ctrl(u32 ks, u32 flags)
|
|
{
|
|
if (flags & SE_KEY_TBL_DIS_KEY_ACCESS_FLAG)
|
|
SE(SE_CRYPTO_KEYTABLE_ACCESS_REG + 4 * ks) = ~flags;
|
|
if (flags & SE_KEY_LOCK_FLAG)
|
|
SE(SE_CRYPTO_SECURITY_PERKEY_REG) &= ~BIT(ks);
|
|
}
|
|
|
|
u32 se_key_acc_ctrl_get(u32 ks)
|
|
{
|
|
return SE(SE_CRYPTO_KEYTABLE_ACCESS_REG + 4 * ks);
|
|
}
|
|
|
|
void se_aes_key_set(u32 ks, void *key, u32 size)
|
|
{
|
|
u32 data[SE_AES_MAX_KEY_SIZE / 4];
|
|
memcpy(data, key, size);
|
|
|
|
for (u32 i = 0; i < (size / 4); i++)
|
|
{
|
|
SE(SE_CRYPTO_KEYTABLE_ADDR_REG) = SE_KEYTABLE_SLOT(ks) | SE_KEYTABLE_PKT(i); // QUAD is automatically set by PKT.
|
|
SE(SE_CRYPTO_KEYTABLE_DATA_REG) = data[i];
|
|
}
|
|
}
|
|
|
|
void se_aes_iv_set(u32 ks, void *iv)
|
|
{
|
|
u32 data[SE_AES_IV_SIZE / 4];
|
|
memcpy(data, iv, SE_AES_IV_SIZE);
|
|
|
|
for (u32 i = 0; i < (SE_AES_IV_SIZE / 4); i++)
|
|
{
|
|
SE(SE_CRYPTO_KEYTABLE_ADDR_REG) = SE_KEYTABLE_SLOT(ks) | SE_KEYTABLE_QUAD(ORIGINAL_IV) | SE_KEYTABLE_PKT(i);
|
|
SE(SE_CRYPTO_KEYTABLE_DATA_REG) = data[i];
|
|
}
|
|
}
|
|
|
|
void se_aes_key_get(u32 ks, void *key, u32 size)
|
|
{
|
|
u32 data[SE_AES_MAX_KEY_SIZE / 4];
|
|
|
|
for (u32 i = 0; i < (size / 4); i++)
|
|
{
|
|
SE(SE_CRYPTO_KEYTABLE_ADDR_REG) = SE_KEYTABLE_SLOT(ks) | SE_KEYTABLE_PKT(i); // QUAD is automatically set by PKT.
|
|
data[i] = SE(SE_CRYPTO_KEYTABLE_DATA_REG);
|
|
}
|
|
|
|
memcpy(key, data, size);
|
|
}
|
|
|
|
void se_aes_key_clear(u32 ks)
|
|
{
|
|
for (u32 i = 0; i < (SE_AES_MAX_KEY_SIZE / 4); i++)
|
|
{
|
|
SE(SE_CRYPTO_KEYTABLE_ADDR_REG) = SE_KEYTABLE_SLOT(ks) | SE_KEYTABLE_PKT(i); // QUAD is automatically set by PKT.
|
|
SE(SE_CRYPTO_KEYTABLE_DATA_REG) = 0;
|
|
}
|
|
}
|
|
|
|
void se_aes_iv_clear(u32 ks)
|
|
{
|
|
for (u32 i = 0; i < (SE_AES_IV_SIZE / 4); i++)
|
|
{
|
|
SE(SE_CRYPTO_KEYTABLE_ADDR_REG) = SE_KEYTABLE_SLOT(ks) | SE_KEYTABLE_QUAD(ORIGINAL_IV) | SE_KEYTABLE_PKT(i);
|
|
SE(SE_CRYPTO_KEYTABLE_DATA_REG) = 0;
|
|
}
|
|
}
|
|
|
|
void se_aes_iv_updated_clear(u32 ks)
|
|
{
|
|
for (u32 i = 0; i < (SE_AES_IV_SIZE / 4); i++)
|
|
{
|
|
SE(SE_CRYPTO_KEYTABLE_ADDR_REG) = SE_KEYTABLE_SLOT(ks) | SE_KEYTABLE_QUAD(UPDATED_IV) | SE_KEYTABLE_PKT(i);
|
|
SE(SE_CRYPTO_KEYTABLE_DATA_REG) = 0;
|
|
}
|
|
}
|
|
|
|
int se_aes_unwrap_key(u32 ks_dst, u32 ks_src, const void *input)
|
|
{
|
|
SE(SE_CONFIG_REG) = SE_CONFIG_DEC_ALG(ALG_AES_DEC) | SE_CONFIG_DST(DST_KEYTABLE);
|
|
SE(SE_CRYPTO_CONFIG_REG) = SE_CRYPTO_KEY_INDEX(ks_src) | SE_CRYPTO_CORE_SEL(CORE_DECRYPT);
|
|
SE(SE_CRYPTO_BLOCK_COUNT_REG) = 1 - 1;
|
|
SE(SE_CRYPTO_KEYTABLE_DST_REG) = SE_KEYTABLE_DST_KEY_INDEX(ks_dst) | SE_KEYTABLE_DST_WORD_QUAD(KEYS_0_3);
|
|
|
|
return _se_execute_oneshot(SE_OP_START, NULL, 0, input, SE_KEY_128_SIZE);
|
|
}
|
|
|
|
int se_aes_crypt_hash(u32 ks, u32 enc, void *dst, u32 dst_size, const void *src, u32 src_size)
|
|
{
|
|
if (enc)
|
|
{
|
|
SE(SE_CONFIG_REG) = SE_CONFIG_ENC_ALG(ALG_AES_ENC) | SE_CONFIG_DST(DST_MEMORY);
|
|
SE(SE_CRYPTO_CONFIG_REG) = SE_CRYPTO_KEY_INDEX(ks) | SE_CRYPTO_VCTRAM_SEL(VCTRAM_AESOUT) |
|
|
SE_CRYPTO_CORE_SEL(CORE_ENCRYPT) | SE_CRYPTO_XOR_POS(XOR_TOP) |
|
|
SE_CRYPTO_HASH(HASH_ENABLE);
|
|
}
|
|
else
|
|
{
|
|
SE(SE_CONFIG_REG) = SE_CONFIG_DEC_ALG(ALG_AES_DEC) | SE_CONFIG_DST(DST_MEMORY);
|
|
SE(SE_CRYPTO_CONFIG_REG) = SE_CRYPTO_KEY_INDEX(ks) | SE_CRYPTO_VCTRAM_SEL(VCTRAM_PREVMEM) |
|
|
SE_CRYPTO_CORE_SEL(CORE_DECRYPT) | SE_CRYPTO_XOR_POS(XOR_BOTTOM) |
|
|
SE_CRYPTO_HASH(HASH_ENABLE);
|
|
}
|
|
SE(SE_CRYPTO_BLOCK_COUNT_REG) = (src_size >> 4) - 1;
|
|
return _se_execute_oneshot(SE_OP_START, dst, dst_size, src, src_size);
|
|
}
|
|
|
|
int se_aes_crypt_ecb(u32 ks, u32 enc, void *dst, u32 dst_size, const void *src, u32 src_size)
|
|
{
|
|
if (enc)
|
|
{
|
|
SE(SE_CONFIG_REG) = SE_CONFIG_ENC_ALG(ALG_AES_ENC) | SE_CONFIG_DST(DST_MEMORY);
|
|
SE(SE_CRYPTO_CONFIG_REG) = SE_CRYPTO_KEY_INDEX(ks) | SE_CRYPTO_CORE_SEL(CORE_ENCRYPT);
|
|
}
|
|
else
|
|
{
|
|
SE(SE_CONFIG_REG) = SE_CONFIG_DEC_ALG(ALG_AES_DEC) | SE_CONFIG_DST(DST_MEMORY);
|
|
SE(SE_CRYPTO_CONFIG_REG) = SE_CRYPTO_KEY_INDEX(ks) | SE_CRYPTO_CORE_SEL(CORE_DECRYPT);
|
|
}
|
|
SE(SE_CRYPTO_BLOCK_COUNT_REG) = (src_size >> 4) - 1;
|
|
return _se_execute_oneshot(SE_OP_START, dst, dst_size, src, src_size);
|
|
}
|
|
|
|
int se_aes_crypt_cbc(u32 ks, u32 enc, void *dst, u32 dst_size, const void *src, u32 src_size)
|
|
{
|
|
if (enc)
|
|
{
|
|
SE(SE_CONFIG_REG) = SE_CONFIG_ENC_ALG(ALG_AES_ENC) | SE_CONFIG_DST(DST_MEMORY);
|
|
SE(SE_CRYPTO_CONFIG_REG) = SE_CRYPTO_KEY_INDEX(ks) | SE_CRYPTO_VCTRAM_SEL(VCTRAM_AESOUT) |
|
|
SE_CRYPTO_CORE_SEL(CORE_ENCRYPT) | SE_CRYPTO_XOR_POS(XOR_TOP);
|
|
}
|
|
else
|
|
{
|
|
SE(SE_CONFIG_REG) = SE_CONFIG_DEC_ALG(ALG_AES_DEC) | SE_CONFIG_DST(DST_MEMORY);
|
|
SE(SE_CRYPTO_CONFIG_REG) = SE_CRYPTO_KEY_INDEX(ks) | SE_CRYPTO_VCTRAM_SEL(VCTRAM_PREVMEM) |
|
|
SE_CRYPTO_CORE_SEL(CORE_DECRYPT) | SE_CRYPTO_XOR_POS(XOR_BOTTOM);
|
|
}
|
|
SE(SE_CRYPTO_BLOCK_COUNT_REG) = (src_size >> 4) - 1;
|
|
return _se_execute_oneshot(SE_OP_START, dst, dst_size, src, src_size);
|
|
}
|
|
|
|
int se_aes_crypt_block_ecb(u32 ks, u32 enc, void *dst, const void *src)
|
|
{
|
|
return se_aes_crypt_ecb(ks, enc, dst, SE_AES_BLOCK_SIZE, src, SE_AES_BLOCK_SIZE);
|
|
}
|
|
|
|
int se_aes_crypt_ctr(u32 ks, void *dst, u32 dst_size, const void *src, u32 src_size, void *ctr)
|
|
{
|
|
SE(SE_SPARE_REG) = SE_ECO(SE_ERRATA_FIX_ENABLE);
|
|
SE(SE_CONFIG_REG) = SE_CONFIG_ENC_ALG(ALG_AES_ENC) | SE_CONFIG_DST(DST_MEMORY);
|
|
SE(SE_CRYPTO_CONFIG_REG) = SE_CRYPTO_KEY_INDEX(ks) | SE_CRYPTO_CORE_SEL(CORE_ENCRYPT) |
|
|
SE_CRYPTO_XOR_POS(XOR_BOTTOM) | SE_CRYPTO_INPUT_SEL(INPUT_LNR_CTR) |
|
|
SE_CRYPTO_CTR_CNTN(1);
|
|
_se_aes_ctr_set(ctr);
|
|
|
|
u32 src_size_aligned = src_size & 0xFFFFFFF0;
|
|
u32 src_size_delta = src_size & 0xF;
|
|
|
|
if (src_size_aligned)
|
|
{
|
|
SE(SE_CRYPTO_BLOCK_COUNT_REG) = (src_size >> 4) - 1;
|
|
if (!_se_execute_oneshot(SE_OP_START, dst, dst_size, src, src_size_aligned))
|
|
return 0;
|
|
}
|
|
|
|
if (src_size - src_size_aligned && src_size_aligned < dst_size)
|
|
return _se_execute_one_block(SE_OP_START, dst + src_size_aligned,
|
|
MIN(src_size_delta, dst_size - src_size_aligned),
|
|
src + src_size_aligned, src_size_delta);
|
|
|
|
return 1;
|
|
}
|
|
|
|
int se_aes_xts_crypt_sec(u32 tweak_ks, u32 crypt_ks, u32 enc, u64 sec, void *dst, void *src, u32 secsize)
|
|
{
|
|
int res = 0;
|
|
u8 *tweak = (u8 *)malloc(SE_AES_BLOCK_SIZE);
|
|
u8 *pdst = (u8 *)dst;
|
|
u8 *psrc = (u8 *)src;
|
|
|
|
// Generate tweak.
|
|
for (int i = 0xF; i >= 0; i--)
|
|
{
|
|
tweak[i] = sec & 0xFF;
|
|
sec >>= 8;
|
|
}
|
|
if (!se_aes_crypt_block_ecb(tweak_ks, ENCRYPT, tweak, tweak))
|
|
goto out;
|
|
|
|
// We are assuming a 0x10-aligned sector size in this implementation.
|
|
for (u32 i = 0; i < secsize / SE_AES_BLOCK_SIZE; i++)
|
|
{
|
|
for (u32 j = 0; j < SE_AES_BLOCK_SIZE; j++)
|
|
pdst[j] = psrc[j] ^ tweak[j];
|
|
if (!se_aes_crypt_block_ecb(crypt_ks, enc, pdst, pdst))
|
|
goto out;
|
|
for (u32 j = 0; j < SE_AES_BLOCK_SIZE; j++)
|
|
pdst[j] = pdst[j] ^ tweak[j];
|
|
_gf256_mul_x(tweak);
|
|
psrc += SE_AES_BLOCK_SIZE;
|
|
pdst += SE_AES_BLOCK_SIZE;
|
|
}
|
|
|
|
res = 1;
|
|
|
|
out:;
|
|
free(tweak);
|
|
return res;
|
|
}
|
|
|
|
int se_aes_xts_crypt_sec_nx(u32 tweak_ks, u32 crypt_ks, u32 enc, u64 sec, u8 *tweak, bool regen_tweak, u32 tweak_exp, void *dst, void *src, u32 sec_size)
|
|
{
|
|
u32 *pdst = (u32 *)dst;
|
|
u32 *psrc = (u32 *)src;
|
|
u32 *ptweak = (u32 *)tweak;
|
|
|
|
if (regen_tweak)
|
|
{
|
|
for (int i = 0xF; i >= 0; i--)
|
|
{
|
|
tweak[i] = sec & 0xFF;
|
|
sec >>= 8;
|
|
}
|
|
if (!se_aes_crypt_block_ecb(tweak_ks, ENCRYPT, tweak, tweak))
|
|
return 0;
|
|
}
|
|
|
|
// tweak_exp allows using a saved tweak to reduce _gf256_mul_x_le calls.
|
|
for (u32 i = 0; i < (tweak_exp << 5); i++)
|
|
_gf256_mul_x_le(tweak);
|
|
|
|
u8 orig_tweak[SE_KEY_128_SIZE] __attribute__((aligned(4)));
|
|
memcpy(orig_tweak, tweak, SE_KEY_128_SIZE);
|
|
|
|
// We are assuming a 16 sector aligned size in this implementation.
|
|
for (u32 i = 0; i < (sec_size >> 4); i++)
|
|
{
|
|
for (u32 j = 0; j < 4; j++)
|
|
pdst[j] = psrc[j] ^ ptweak[j];
|
|
|
|
_gf256_mul_x_le(tweak);
|
|
psrc += 4;
|
|
pdst += 4;
|
|
}
|
|
|
|
if (!se_aes_crypt_ecb(crypt_ks, enc, dst, sec_size, dst, sec_size))
|
|
return 0;
|
|
|
|
pdst = (u32 *)dst;
|
|
ptweak = (u32 *)orig_tweak;
|
|
for (u32 i = 0; i < (sec_size >> 4); i++)
|
|
{
|
|
for (u32 j = 0; j < 4; j++)
|
|
pdst[j] = pdst[j] ^ ptweak[j];
|
|
|
|
_gf256_mul_x_le(orig_tweak);
|
|
pdst += 4;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int se_aes_xts_crypt(u32 tweak_ks, u32 crypt_ks, u32 enc, u64 sec, void *dst, void *src, u32 secsize, u32 num_secs)
|
|
{
|
|
u8 *pdst = (u8 *)dst;
|
|
u8 *psrc = (u8 *)src;
|
|
|
|
for (u32 i = 0; i < num_secs; i++)
|
|
if (!se_aes_xts_crypt_sec(tweak_ks, crypt_ks, enc, sec + i, pdst + secsize * i, psrc + secsize * i, secsize))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void se_calc_sha256_get_hash(void *hash, u32 *msg_left)
|
|
{
|
|
u32 hash32[SE_SHA_256_SIZE / 4];
|
|
|
|
// Backup message left.
|
|
if (msg_left)
|
|
{
|
|
msg_left[0] = SE(SE_SHA_MSG_LEFT_0_REG);
|
|
msg_left[1] = SE(SE_SHA_MSG_LEFT_1_REG);
|
|
}
|
|
|
|
// Copy output hash.
|
|
for (u32 i = 0; i < (SE_SHA_256_SIZE / 4); i++)
|
|
hash32[i] = byte_swap_32(SE(SE_HASH_RESULT_REG + (i * 4)));
|
|
memcpy(hash, hash32, SE_SHA_256_SIZE);
|
|
}
|
|
|
|
int se_calc_sha256(void *hash, u32 *msg_left, const void *src, u32 src_size, u64 total_size, u32 sha_cfg, bool is_oneshot)
|
|
{
|
|
int res;
|
|
u32 hash32[SE_SHA_256_SIZE / 4];
|
|
|
|
//! TODO: src_size must be 512 bit aligned if continuing and not last block for SHA256.
|
|
if (src_size > 0xFFFFFF || !hash) // Max 16MB - 1 chunks and aligned x4 hash buffer.
|
|
return 0;
|
|
|
|
// Src size of 0 is not supported, so return null string sha256.
|
|
// if (!src_size)
|
|
// {
|
|
// const u8 null_hash[SE_SHA_256_SIZE] = {
|
|
// 0xE3, 0xB0, 0xC4, 0x42, 0x98, 0xFC, 0x1C, 0x14, 0x9A, 0xFB, 0xF4, 0xC8, 0x99, 0x6F, 0xB9, 0x24,
|
|
// 0x27, 0xAE, 0x41, 0xE4, 0x64, 0x9B, 0x93, 0x4C, 0xA4, 0x95, 0x99, 0x1B, 0x78, 0x52, 0xB8, 0x55
|
|
// };
|
|
// memcpy(hash, null_hash, SE_SHA_256_SIZE);
|
|
// return 1;
|
|
// }
|
|
|
|
// Setup config for SHA256.
|
|
SE(SE_CONFIG_REG) = SE_CONFIG_ENC_MODE(MODE_SHA256) | SE_CONFIG_ENC_ALG(ALG_SHA) | SE_CONFIG_DST(DST_HASHREG);
|
|
SE(SE_SHA_CONFIG_REG) = sha_cfg;
|
|
SE(SE_CRYPTO_BLOCK_COUNT_REG) = 1 - 1;
|
|
|
|
// Set total size to current buffer size if empty.
|
|
if (!total_size)
|
|
total_size = src_size;
|
|
|
|
// Set total size: BITS(src_size), up to 2 EB.
|
|
SE(SE_SHA_MSG_LENGTH_0_REG) = (u32)(total_size << 3);
|
|
SE(SE_SHA_MSG_LENGTH_1_REG) = (u32)(total_size >> 29);
|
|
SE(SE_SHA_MSG_LENGTH_2_REG) = 0;
|
|
SE(SE_SHA_MSG_LENGTH_3_REG) = 0;
|
|
|
|
// Set size left to hash.
|
|
SE(SE_SHA_MSG_LEFT_0_REG) = (u32)(total_size << 3);
|
|
SE(SE_SHA_MSG_LEFT_1_REG) = (u32)(total_size >> 29);
|
|
SE(SE_SHA_MSG_LEFT_2_REG) = 0;
|
|
SE(SE_SHA_MSG_LEFT_3_REG) = 0;
|
|
|
|
// If we hash in chunks, copy over the intermediate.
|
|
if (sha_cfg == SHA_CONTINUE && msg_left)
|
|
{
|
|
// Restore message left to process.
|
|
SE(SE_SHA_MSG_LEFT_0_REG) = msg_left[0];
|
|
SE(SE_SHA_MSG_LEFT_1_REG) = msg_left[1];
|
|
|
|
// Restore hash reg.
|
|
memcpy(hash32, hash, SE_SHA_256_SIZE);
|
|
for (u32 i = 0; i < (SE_SHA_256_SIZE / 4); i++)
|
|
SE(SE_HASH_RESULT_REG + (i * 4)) = byte_swap_32(hash32[i]);
|
|
}
|
|
|
|
// Trigger the operation.
|
|
res = _se_execute(SE_OP_START, NULL, 0, src, src_size, is_oneshot);
|
|
|
|
if (is_oneshot)
|
|
se_calc_sha256_get_hash(hash, msg_left);
|
|
|
|
return res;
|
|
}
|
|
|
|
int se_calc_sha256_oneshot(void *hash, const void *src, u32 src_size)
|
|
{
|
|
return se_calc_sha256(hash, NULL, src, src_size, 0, SHA_INIT_HASH, true);
|
|
}
|
|
|
|
int se_calc_sha256_finalize(void *hash, u32 *msg_left)
|
|
{
|
|
int res = _se_execute_finalize();
|
|
|
|
se_calc_sha256_get_hash(hash, msg_left);
|
|
|
|
return res;
|
|
}
|
|
|
|
int se_gen_prng128(void *dst)
|
|
{
|
|
// Setup config for X931 PRNG.
|
|
SE(SE_CONFIG_REG) = SE_CONFIG_ENC_MODE(MODE_KEY128) | SE_CONFIG_ENC_ALG(ALG_RNG) | SE_CONFIG_DST(DST_MEMORY);
|
|
SE(SE_CRYPTO_CONFIG_REG) = SE_CRYPTO_HASH(HASH_DISABLE) | SE_CRYPTO_XOR_POS(XOR_BYPASS) | SE_CRYPTO_INPUT_SEL(INPUT_RANDOM);
|
|
SE(SE_RNG_CONFIG_REG) = SE_RNG_CONFIG_SRC(SRC_ENTROPY) | SE_RNG_CONFIG_MODE(MODE_NORMAL);
|
|
//SE(SE_RNG_SRC_CONFIG_REG) =
|
|
// SE_RNG_SRC_CONFIG_ENTR_SRC(RO_ENTR_ENABLE) | SE_RNG_SRC_CONFIG_ENTR_SRC_LOCK(RO_ENTR_LOCK_ENABLE);
|
|
SE(SE_RNG_RESEED_INTERVAL_REG) = 1;
|
|
|
|
SE(SE_CRYPTO_BLOCK_COUNT_REG) = (16 >> 4) - 1;
|
|
|
|
// Trigger the operation.
|
|
return _se_execute_oneshot(SE_OP_START, dst, 16, NULL, 0);
|
|
}
|
|
|
|
void se_get_aes_keys(u8 *buf, u8 *keys, u32 keysize)
|
|
{
|
|
u8 *aligned_buf = (u8 *)ALIGN((u32)buf, 0x40);
|
|
|
|
// Set Secure Random Key.
|
|
SE(SE_CONFIG_REG) = SE_CONFIG_ENC_MODE(MODE_KEY128) | SE_CONFIG_ENC_ALG(ALG_RNG) | SE_CONFIG_DST(DST_SRK);
|
|
SE(SE_CRYPTO_CONFIG_REG) = SE_CRYPTO_KEY_INDEX(0) | SE_CRYPTO_CORE_SEL(CORE_ENCRYPT) | SE_CRYPTO_INPUT_SEL(INPUT_RANDOM);
|
|
SE(SE_RNG_CONFIG_REG) = SE_RNG_CONFIG_SRC(SRC_ENTROPY) | SE_RNG_CONFIG_MODE(MODE_FORCE_RESEED);
|
|
SE(SE_CRYPTO_LAST_BLOCK) = 0;
|
|
_se_execute_oneshot(SE_OP_START, NULL, 0, NULL, 0);
|
|
|
|
// Save AES keys.
|
|
SE(SE_CONFIG_REG) = SE_CONFIG_ENC_MODE(MODE_KEY128) | SE_CONFIG_ENC_ALG(ALG_AES_ENC) | SE_CONFIG_DST(DST_MEMORY);
|
|
|
|
for (u32 i = 0; i < SE_AES_KEYSLOT_COUNT; i++)
|
|
{
|
|
SE(SE_CONTEXT_SAVE_CONFIG_REG) = SE_CONTEXT_SRC(AES_KEYTABLE) | SE_KEYTABLE_DST_KEY_INDEX(i) |
|
|
SE_CONTEXT_AES_KEY_INDEX(0) | SE_CONTEXT_AES_WORD_QUAD(KEYS_0_3);
|
|
|
|
SE(SE_CRYPTO_LAST_BLOCK) = 0;
|
|
_se_execute_oneshot(SE_OP_CTX_SAVE, aligned_buf, SE_AES_BLOCK_SIZE, NULL, 0);
|
|
memcpy(keys + i * keysize, aligned_buf, SE_AES_BLOCK_SIZE);
|
|
|
|
if (keysize > SE_KEY_128_SIZE)
|
|
{
|
|
SE(SE_CONTEXT_SAVE_CONFIG_REG) = SE_CONTEXT_SRC(AES_KEYTABLE) | SE_KEYTABLE_DST_KEY_INDEX(i) |
|
|
SE_CONTEXT_AES_KEY_INDEX(0) | SE_CONTEXT_AES_WORD_QUAD(KEYS_4_7);
|
|
|
|
SE(SE_CRYPTO_LAST_BLOCK) = 0;
|
|
_se_execute_oneshot(SE_OP_CTX_SAVE, aligned_buf, SE_AES_BLOCK_SIZE, NULL, 0);
|
|
memcpy(keys + i * keysize + SE_AES_BLOCK_SIZE, aligned_buf, SE_AES_BLOCK_SIZE);
|
|
}
|
|
}
|
|
|
|
// Save SRK to PMC secure scratches.
|
|
SE(SE_CONTEXT_SAVE_CONFIG_REG) = SE_CONTEXT_SRC(SRK);
|
|
SE(SE_CRYPTO_LAST_BLOCK) = 0;
|
|
_se_execute_oneshot(SE_OP_CTX_SAVE, NULL, 0, NULL, 0);
|
|
|
|
// End context save.
|
|
SE(SE_CONFIG_REG) = 0;
|
|
_se_execute_oneshot(SE_OP_CTX_SAVE, NULL, 0, NULL, 0);
|
|
|
|
// Get SRK.
|
|
u32 srk[4];
|
|
srk[0] = PMC(APBDEV_PMC_SECURE_SCRATCH4);
|
|
srk[1] = PMC(APBDEV_PMC_SECURE_SCRATCH5);
|
|
srk[2] = PMC(APBDEV_PMC_SECURE_SCRATCH6);
|
|
srk[3] = PMC(APBDEV_PMC_SECURE_SCRATCH7);
|
|
|
|
// Decrypt context.
|
|
se_aes_key_clear(3);
|
|
se_aes_key_set(3, srk, SE_KEY_128_SIZE);
|
|
se_aes_crypt_cbc(3, DECRYPT, keys, SE_AES_KEYSLOT_COUNT * keysize, keys, SE_AES_KEYSLOT_COUNT * keysize);
|
|
se_aes_key_clear(3);
|
|
}
|
|
|
|
int se_aes_cmac_128(u32 ks, void *dst, const void *src, u32 src_size)
|
|
{
|
|
int res = 0;
|
|
u8 *key = (u8 *)calloc(1, SE_KEY_128_SIZE);
|
|
u8 *last_block = (u8 *)calloc(1, SE_AES_BLOCK_SIZE);
|
|
|
|
se_aes_iv_clear(ks);
|
|
se_aes_iv_updated_clear(ks);
|
|
|
|
// Generate sub key
|
|
if (!se_aes_crypt_hash(ks, ENCRYPT, key, SE_KEY_128_SIZE, key, SE_KEY_128_SIZE))
|
|
goto out;
|
|
|
|
_gf256_mul_x(key);
|
|
if (src_size & 0xF)
|
|
_gf256_mul_x(key);
|
|
|
|
SE(SE_CONFIG_REG) = SE_CONFIG_ENC_MODE(MODE_KEY128) | SE_CONFIG_ENC_ALG(ALG_AES_ENC) | SE_CONFIG_DST(DST_HASHREG);
|
|
SE(SE_CRYPTO_CONFIG_REG) = SE_CRYPTO_KEY_INDEX(ks) | SE_CRYPTO_INPUT_SEL(INPUT_MEMORY) |
|
|
SE_CRYPTO_XOR_POS(XOR_TOP) | SE_CRYPTO_VCTRAM_SEL(VCTRAM_AESOUT) | SE_CRYPTO_HASH(HASH_ENABLE) |
|
|
SE_CRYPTO_CORE_SEL(CORE_ENCRYPT);
|
|
se_aes_iv_clear(ks);
|
|
se_aes_iv_updated_clear(ks);
|
|
|
|
u32 num_blocks = (src_size + 0xf) >> 4;
|
|
if (num_blocks > 1)
|
|
{
|
|
SE(SE_CRYPTO_BLOCK_COUNT_REG) = num_blocks - 2;
|
|
if (!_se_execute_oneshot(SE_OP_START, NULL, 0, src, src_size))
|
|
goto out;
|
|
SE(SE_CRYPTO_CONFIG_REG) |= SE_CRYPTO_IV_SEL(IV_UPDATED);
|
|
}
|
|
|
|
if (src_size & 0xf)
|
|
{
|
|
memcpy(last_block, src + (src_size & ~0xf), src_size & 0xf);
|
|
last_block[src_size & 0xf] = 0x80;
|
|
}
|
|
else if (src_size >= SE_AES_BLOCK_SIZE)
|
|
{
|
|
memcpy(last_block, src + src_size - SE_AES_BLOCK_SIZE, SE_AES_BLOCK_SIZE);
|
|
}
|
|
|
|
for (u32 i = 0; i < SE_KEY_128_SIZE; i++)
|
|
last_block[i] ^= key[i];
|
|
|
|
SE(SE_CRYPTO_BLOCK_COUNT_REG) = 0;
|
|
res = _se_execute_oneshot(SE_OP_START, NULL, 0, last_block, SE_AES_BLOCK_SIZE);
|
|
|
|
u32 *dst32 = (u32 *)dst;
|
|
for (u32 i = 0; i < (SE_KEY_128_SIZE / 4); i++)
|
|
dst32[i] = SE(SE_HASH_RESULT_REG + (i * 4));
|
|
|
|
out:;
|
|
free(key);
|
|
free(last_block);
|
|
return res;
|
|
}
|