/* * Copyright (c) 2018 naehrwert * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include "clock.h" #include "uart.h" #include "i2c.h" #include "sdram.h" #include "di.h" #include "mc.h" #include "t210.h" #include "pmc.h" #include "pinmux.h" #include "fuse.h" #include "util.h" #include "gfx.h" #include "btn.h" #include "tsec.h" #include "kfuse.h" #include "max77620.h" #include "max7762x.h" #include "gpio.h" #include "sdmmc.h" #include "ff.h" #include "tui.h" #include "heap.h" #include "list.h" #include "nx_emmc.h" #include "se.h" #include "se_t210.h" #include "hos.h" #include "pkg1.h" void panic(u32 val) { //Set panic code. PMC(APBDEV_PMC_SCRATCH200) = val; //PMC(APBDEV_PMC_CRYPTO_OP) = 1; //Disable SE. TMR(0x18C) = 0xC45A; TMR(0x80) = 0xC0000000; TMR(0x180) = 0x8019; TMR(0x188) = 1; while (1) ; } void config_oscillators() { CLOCK(CLK_RST_CONTROLLER_SPARE_REG0) = CLOCK(CLK_RST_CONTROLLER_SPARE_REG0) & 0xFFFFFFF3 | 4; SYSCTR0(SYSCTR0_CNTFID0) = 19200000; TMR(0x14) = 0x45F; CLOCK(CLK_RST_CONTROLLER_OSC_CTRL) = 0x50000071; PMC(APBDEV_PMC_OSC_EDPD_OVER) = PMC(APBDEV_PMC_OSC_EDPD_OVER) & 0xFFFFFF81 | 0xE; PMC(APBDEV_PMC_OSC_EDPD_OVER) = PMC(APBDEV_PMC_OSC_EDPD_OVER) & 0xFFBFFFFF | 0x400000; PMC(APBDEV_PMC_CNTRL2) = PMC(APBDEV_PMC_CNTRL2) & 0xFFFFEFFF | 0x1000; PMC(APBDEV_PMC_SCRATCH188) = PMC(APBDEV_PMC_SCRATCH188) & 0xFCFFFFFF | 0x2000000; CLOCK(CLK_RST_CONTROLLER_CLK_SYSTEM_RATE) = 0x10; CLOCK(CLK_RST_CONTROLLER_PLLMB_BASE) &= 0xBFFFFFFF; PMC(APBDEV_PMC_TSC_MULT) = PMC(APBDEV_PMC_TSC_MULT) & 0xFFFF0000 | 0x249F; //0x249F = 19200000 * (16 / 32.768 kHz) CLOCK(CLK_RST_CONTROLLER_SCLK_BURST_POLICY) = 0x20004444; CLOCK(CLK_RST_CONTROLLER_SUPER_SCLK_DIVIDER) = 0x80000000; CLOCK(CLK_RST_CONTROLLER_CLK_SYSTEM_RATE) = 2; } void config_gpios() { PINMUX_AUX(PINMUX_AUX_UART2_TX) = 0; PINMUX_AUX(PINMUX_AUX_UART3_TX) = 0; PINMUX_AUX(PINMUX_AUX_GPIO_PE6) = 0x40; PINMUX_AUX(PINMUX_AUX_GPIO_PH6) = 0x40; gpio_config(GPIO_PORT_G, GPIO_PIN_0, GPIO_MODE_GPIO); gpio_config(GPIO_PORT_D, GPIO_PIN_1, GPIO_MODE_GPIO); gpio_config(GPIO_PORT_E, GPIO_PIN_6, GPIO_MODE_GPIO); gpio_config(GPIO_PORT_H, GPIO_PIN_6, GPIO_MODE_GPIO); gpio_output_enable(GPIO_PORT_G, GPIO_PIN_0, GPIO_OUTPUT_DISABLE); gpio_output_enable(GPIO_PORT_D, GPIO_PIN_1, GPIO_OUTPUT_DISABLE); gpio_output_enable(GPIO_PORT_E, GPIO_PIN_6, GPIO_OUTPUT_DISABLE); gpio_output_enable(GPIO_PORT_H, GPIO_PIN_6, GPIO_OUTPUT_DISABLE); pinmux_config_i2c(I2C_1); pinmux_config_i2c(I2C_5); pinmux_config_uart(UART_A); //Configure volume up/down as inputs. gpio_config(GPIO_PORT_X, GPIO_PIN_6, GPIO_MODE_GPIO); gpio_config(GPIO_PORT_X, GPIO_PIN_7, GPIO_MODE_GPIO); gpio_output_enable(GPIO_PORT_X, GPIO_PIN_6, GPIO_OUTPUT_DISABLE); gpio_output_enable(GPIO_PORT_X, GPIO_PIN_7, GPIO_OUTPUT_DISABLE); } void config_pmc_scratch() { PMC(APBDEV_PMC_SCRATCH20) &= 0xFFF3FFFF; PMC(APBDEV_PMC_SCRATCH190) &= 0xFFFFFFFE; PMC(APBDEV_PMC_SECURE_SCRATCH21) |= 0x10; } void mbist_workaround() { CLOCK(0x410) = (CLOCK(0x410) | 0x8000) & 0xFFFFBFFF; CLOCK(0xD0) |= 0x40800000u; CLOCK(0x2AC) = 0x40; CLOCK(0x294) = 0x40000; CLOCK(0x304) = 0x18000000; sleep(2); I2S(0x0A0) |= 0x400; I2S(0x088) &= 0xFFFFFFFE; I2S(0x1A0) |= 0x400; I2S(0x188) &= 0xFFFFFFFE; I2S(0x2A0) |= 0x400; I2S(0x288) &= 0xFFFFFFFE; I2S(0x3A0) |= 0x400; I2S(0x388) &= 0xFFFFFFFE; I2S(0x4A0) |= 0x400; I2S(0x488) &= 0xFFFFFFFE; DISPLAY_A(0xCF8) |= 4; VIC(0x8C) = 0xFFFFFFFF; sleep(2); CLOCK(0x2A8) = 0x40; CLOCK(0x300) = 0x18000000; CLOCK(0x290) = 0x40000; CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_H) = 0xC0; CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_L) = 0x80000130; CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_U) = 0x1F00200; CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_V) = 0x80400808; CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_W) = 0x402000FC; CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_X) = 0x23000780; CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_Y) = 0x300; CLOCK(0xF8) = 0; CLOCK(0xFC) = 0; CLOCK(0x3A0) = 0; CLOCK(0x3A4) = 0; CLOCK(0x554) = 0; CLOCK(0xD0) &= 0x1F7FFFFF; CLOCK(0x410) &= 0xFFFF3FFF; CLOCK(0x148) = CLOCK(0x148) & 0x1FFFFFFF | 0x80000000; CLOCK(0x180) = CLOCK(0x180) & 0x1FFFFFFF | 0x80000000; CLOCK(0x6A0) = CLOCK(0x6A0) & 0x1FFFFFFF | 0x80000000; } void config_se_brom() { //Bootrom part we skipped. u32 sbk[4] = { FUSE(0x1A4), FUSE(0x1A8), FUSE(0x1AC), FUSE(0x1B0) }; se_aes_key_set(14, sbk, 0x10); //Lock SBK from being read. SE(SE_KEY_TABLE_ACCESS_REG_OFFSET + 14 * 4) = 0x7E; //This memset needs to happen here, else TZRAM will behave weirdly later on. memset((void *)0x7C010000, 0, 0x10000); PMC(APBDEV_PMC_CRYPTO_OP) = 0; SE(SE_INT_STATUS_REG_OFFSET) = 0x1F; //Lock SSK (although it's not set and unused anyways). SE(SE_KEY_TABLE_ACCESS_REG_OFFSET + 15 * 4) = 0x7E; } void config_hw() { //Bootrom stuff we skipped by going thru rcm. config_se_brom(); //FUSE(FUSE_PRIVATEKEYDISABLE) = 0x11; SYSREG(0x110) &= 0xFFFFFF9F; PMC(0x244) = ((PMC(0x244) >> 1) << 1) & 0xFFFFFFFD; mbist_workaround(); clock_enable_se(); //Enable fuse clock. clock_enable_fuse(1); //Disable fuse programming. fuse_disable_program(); mc_enable(); config_oscillators(); APB_MISC(0x40) = 0; config_gpios(); //clock_enable_uart(UART_C); //uart_init(UART_C, 115200); clock_enable_cl_dvfs(); clock_enable_i2c(I2C_1); clock_enable_i2c(I2C_5); static const clock_t clock_unk1 = { 0x358, 0x360, 0x42C, 0x1F, 0, 0 }; static const clock_t clock_unk2 = { 0x358, 0x360, 0, 0x1E, 0, 0 }; clock_enable(&clock_unk1); clock_enable(&clock_unk2); i2c_init(I2C_1); i2c_init(I2C_5); i2c_send_byte(I2C_5, 0x3C, MAX77620_REG_CNFGBBC, 0x40); i2c_send_byte(I2C_5, 0x3C, MAX77620_REG_ONOFFCNFG1, 0x78); i2c_send_byte(I2C_5, 0x3C, MAX77620_REG_FPS_CFG0, 0x38); i2c_send_byte(I2C_5, 0x3C, MAX77620_REG_FPS_CFG1, 0x3A); i2c_send_byte(I2C_5, 0x3C, MAX77620_REG_FPS_CFG2, 0x38); i2c_send_byte(I2C_5, 0x3C, MAX77620_REG_FPS_LDO4, 0xF); i2c_send_byte(I2C_5, 0x3C, MAX77620_REG_FPS_LDO8, 0xC7); i2c_send_byte(I2C_5, 0x3C, MAX77620_REG_FPS_SD0, 0x4F); i2c_send_byte(I2C_5, 0x3C, MAX77620_REG_FPS_SD1, 0x29); i2c_send_byte(I2C_5, 0x3C, MAX77620_REG_FPS_SD3, 0x1B); i2c_send_byte(I2C_5, 0x3C, MAX77620_REG_SD0, 42); //42 = (1125000 - 600000) / 12500 -> 1.125V config_pmc_scratch(); CLOCK(CLK_RST_CONTROLLER_SCLK_BURST_POLICY) = CLOCK(CLK_RST_CONTROLLER_SCLK_BURST_POLICY) & 0xFFFF8888 | 0x3333; mc_config_carveout(); sdram_init(); //TODO: test this with LP0 wakeup. sdram_lp0_save_params(sdram_get_params()); } //TODO: ugly. gfx_ctxt_t gfx_ctxt; gfx_con_t gfx_con; void print_fuseinfo() { gfx_clear(&gfx_ctxt, 0xFF000000); gfx_con_setpos(&gfx_con, 0, 0); gfx_printf(&gfx_con, "%k(Unlocked) fuse cache:\n\n%k", 0xFFFF9955, 0xFFFFFFFF); gfx_hexdump(&gfx_con, 0x7000F900, (u8 *)0x7000F900, 0x2FC); sleep(100000); btn_wait(); } void print_kfuseinfo() { gfx_clear(&gfx_ctxt, 0xFF000000); gfx_con_setpos(&gfx_con, 0, 0); gfx_printf(&gfx_con, "%kKFuse contents:\n\n%k", 0xFFFF9955, 0xFFFFFFFF); u32 buf[KFUSE_NUM_WORDS]; if (!kfuse_read(buf)) gfx_printf(&gfx_con, "%kCRC fail.\n", 0xFF0000FF); else gfx_hexdump(&gfx_con, 0, (u8 *)buf, KFUSE_NUM_WORDS * 4); sleep(100000); btn_wait(); } void print_tsec_key() { gfx_clear(&gfx_ctxt, 0xFF000000); gfx_con_setpos(&gfx_con, 0, 0); sdmmc_storage_t storage; sdmmc_t sdmmc; sdmmc_storage_init_mmc(&storage, &sdmmc, SDMMC_4, SDMMC_BUS_WIDTH_8, 4); //Read package1. u8 *pkg1 = (u8 *)malloc(0x40000); sdmmc_storage_set_mmc_partition(&storage, 1); sdmmc_storage_read(&storage, 0x100000 / NX_EMMC_BLOCKSIZE, 0x40000 / NX_EMMC_BLOCKSIZE, pkg1); const pkg1_id_t *pkg1_id = pkg1_identify(pkg1); if (!pkg1_id) { gfx_printf(&gfx_con, "%kCould not identify package 1 version to read TSEC firmware (= '%s').%k\n", 0xFF0000FF, (char *)pkg1 + 0x10, 0xFFFFFFFF); goto out; } for(u32 i = 1; i <= 3; i++) { u8 key[0x10]; int res = tsec_query(key, i, pkg1 + pkg1_id->tsec_off); gfx_printf(&gfx_con, "%kTSEC key %d: %k", 0xFFFF9955, i, 0xFFFFFFFF); if (res >= 0) { for (u32 i = 0; i < 0x10; i++) gfx_printf(&gfx_con, "%02X", key[i]); } else gfx_printf(&gfx_con, "%kERROR %X", 0xFF0000FF, res); gfx_putc(&gfx_con, '\n'); } out:; free(pkg1); sdmmc_storage_end(&storage); sleep(100000); btn_wait(); } void reboot_normal() { panic(0x21); //Bypass fuse programming in package1. } void reboot_rcm() { PMC(APBDEV_PMC_SCRATCH0) = 2; //Reboot into rcm. PMC(0) |= 0x10; while (1) sleep(1); } void power_off() { //TODO: we should probably make sure all regulators are powered off properly. i2c_send_byte(I2C_5, 0x3C, MAX77620_REG_ONOFFCNFG1, MAX77620_ONOFFCNFG1_PWR_OFF); } //TODO: ugly. sdmmc_t sd_sdmmc; sdmmc_storage_t sd_storage; FATFS sd_fs; int sd_mounted; int sd_mount() { if (sd_mounted) return 1; if (sdmmc_storage_init_sd(&sd_storage, &sd_sdmmc, SDMMC_1, SDMMC_BUS_WIDTH_4, 11) && f_mount(&sd_fs, "", 1) == FR_OK) { sd_mounted = 1; return 1; } return 0; } void *sd_file_read(char *path) { FIL fp; if (f_open(&fp, path, FA_READ) != FR_OK) return NULL; u32 size = f_size(&fp); void *buf = malloc(size); u8 *ptr = buf; while (size > 0) { u32 rsize = MIN(size, 512); if (f_read(&fp, ptr, rsize, NULL) != FR_OK) { free(buf); return NULL; } ptr += rsize; size -= rsize; } f_close(&fp); return buf; } int dump_emmc_part(char *sd_path, sdmmc_storage_t *storage, emmc_part_t *part) { static const u32 FAT32_FILESIZE_LIMIT = 0xFFFFFFFF; static const u32 MULTIPART_SPLIT_SIZE = (1u << 31); static const u32 SECTORS_TO_MB_COEFF = 0x800; u32 totalSectors = part->lba_end - part->lba_start + 1; u32 currPartIdx = 0; u32 numSplitParts = 0; u32 maxSplitParts = 0; int isSmallSdCard = 0; int partialDumpInProgress = 0; char* outFilename = sd_path; u32 sdPathLen = strlen(sd_path); FIL partialIdxFp; char partialIdxFilename[12]; memcpy(partialIdxFilename, "partial.idx", 11); partialIdxFilename[11] = 0; gfx_printf(&gfx_con, "SD Card free space: %dMB, Total dump size %dMB\n", sd_fs.free_clst * sd_fs.csize / SECTORS_TO_MB_COEFF, totalSectors / SECTORS_TO_MB_COEFF); // Check if the USER partition or the RAW eMMC fits the sd card free space if (totalSectors > (sd_fs.free_clst * sd_fs.csize)) { isSmallSdCard = 1; gfx_printf(&gfx_con, "%kSD card free space is smaller than dump total size.%k\n", 0xFF00BAFF, 0xFFFFFFFF); maxSplitParts = (sd_fs.free_clst * sd_fs.csize) / (MULTIPART_SPLIT_SIZE / 512); if (!maxSplitParts) { gfx_printf(&gfx_con, "%kNot enough free space for partial dumping.%k\n", 0xFF0000FF, 0xFFFFFFFF); return 0; } } // Check if we continueing a previous raw eMMC dump in progress. if (isSmallSdCard) { if (f_open(&partialIdxFp, partialIdxFilename, FA_READ) == FR_OK) { gfx_printf(&gfx_con, "%kFound partial dump in progress. Continuing...%k\n", 0xFF14FDAE, 0xFFFFFFFF); partialDumpInProgress = 1; f_read(&partialIdxFp, &currPartIdx, 4, NULL); f_close(&partialIdxFp); // Increase maxSplitParts to accommodate previously dumped parts maxSplitParts += currPartIdx; } else gfx_printf(&gfx_con, "%kContinuing with partial dumping...%k\n", 0xFF00BAFF, 0xFFFFFFFF); } // Check if filesystem is FAT32 or the free space is smaller and dump in parts if (((sd_fs.fs_type != FS_EXFAT) || isSmallSdCard) && totalSectors > (FAT32_FILESIZE_LIMIT/NX_EMMC_BLOCKSIZE)) { static const u32 MULTIPART_SPLIT_SECTORS = MULTIPART_SPLIT_SIZE/NX_EMMC_BLOCKSIZE; numSplitParts = (totalSectors+MULTIPART_SPLIT_SECTORS-1)/MULTIPART_SPLIT_SECTORS; outFilename = alloca(sdPathLen+4); memcpy(outFilename, sd_path, sdPathLen); outFilename[sdPathLen++] = '.'; if (!partialDumpInProgress) { outFilename[sdPathLen] = '0'; if (numSplitParts >= 10) { outFilename[sdPathLen+1] = '0'; outFilename[sdPathLen+2] = 0; } else outFilename[sdPathLen+1] = 0; } // Continue from where we left, if partial dump in proggress. else { if (numSplitParts >= 10 && currPartIdx < 10) { outFilename[sdPathLen] = '0'; itoa(currPartIdx, &outFilename[sdPathLen+1], 10); } else itoa(currPartIdx, &outFilename[sdPathLen], 10); } } FIL fp; if (f_open(&fp, outFilename, FA_CREATE_ALWAYS | FA_WRITE) != FR_OK) return 0; static const u32 NUM_SECTORS_PER_ITER = 512; u8 *buf = (u8 *)malloc(NX_EMMC_BLOCKSIZE * NUM_SECTORS_PER_ITER); u32 lba_curr = part->lba_start; u32 bytesWritten = 0; u32 prevPct=200; // Continue from where we left, if partial dump in proggress. if (partialDumpInProgress) { lba_curr += currPartIdx * (MULTIPART_SPLIT_SIZE / NX_EMMC_BLOCKSIZE); totalSectors -= currPartIdx * (MULTIPART_SPLIT_SIZE / NX_EMMC_BLOCKSIZE); } while(totalSectors > 0) { if (numSplitParts != 0 && bytesWritten >= MULTIPART_SPLIT_SIZE) { f_close(&fp); memset(&fp, 0, sizeof(fp)); currPartIdx++; if (numSplitParts >= 10 && currPartIdx < 10) { outFilename[sdPathLen] = '0'; itoa(currPartIdx, &outFilename[sdPathLen+1], 10); } else itoa(currPartIdx, &outFilename[sdPathLen], 10); // More parts to dump that do not currently fit the sd card free space if (isSmallSdCard && currPartIdx >= maxSplitParts) { // Create partial dump index file if (f_open(&partialIdxFp, partialIdxFilename, FA_CREATE_ALWAYS | FA_WRITE) == FR_OK) { f_write(&partialIdxFp, &currPartIdx, 4, NULL); f_close(&partialIdxFp); } else { gfx_printf(&gfx_con, "%k\nError creating partial.idx file.%k\n", 0xFF0000FF, 0xFFFFFFFF); free(buf); return 0; } gfx_puts(&gfx_con, "\n1. Press any key and Power Switch from main menu.\n\ 2. Move the files from SD card to free space.\n \ Don\'t move the partial.idx file!\n\ 3. Unplug and re-plug USB while pressing Vol+.\n\ 4. Run hekate - ipl again and press Dump RAW eMMC to continue"); free(buf); return 1; } if (f_open(&fp, outFilename, FA_CREATE_ALWAYS | FA_WRITE) != FR_OK) { free(buf); return 0; } bytesWritten = 0; } int retryCount=0; u32 num = MIN(totalSectors, NUM_SECTORS_PER_ITER); while(!sdmmc_storage_read(storage, lba_curr, num, buf)) { gfx_printf(&gfx_con, "%kError reading %d blocks @ LBA %08X from eMMC (try %d)%k\n", 0xFF0000FF, num, lba_curr, ++retryCount, 0xFFFFFFFF); sleep(500000); if (retryCount >= 6) goto out; } retryCount=0; while (f_write(&fp, buf, NX_EMMC_BLOCKSIZE * num, NULL)){ gfx_printf(&gfx_con, "%kError writing %d blocks from eMMC LBA %08X to SD Card (try %d)%k\n", 0xFF0000FF, num, lba_curr, ++retryCount, 0xFFFFFFFF); sleep(500000); if (retryCount >= 6) goto out; } u32 pct = (u64)((u64)(lba_curr - part->lba_start) * 100u) / (u64)(part->lba_end - part->lba_start); if (pct != prevPct) { tui_pbar(&gfx_con, 0, gfx_con.y, pct); prevPct = pct; } lba_curr += num; totalSectors -= num; bytesWritten += num * NX_EMMC_BLOCKSIZE; //force a flush after a lot of data if not splitting if (numSplitParts == 0 && bytesWritten >= MULTIPART_SPLIT_SIZE) { f_sync(&fp); bytesWritten = 0; } } tui_pbar(&gfx_con, 0, gfx_con.y, 100); out:; free(buf); f_close(&fp); // Partial dump done. Remove partial dump index file. if(partialDumpInProgress) { f_unlink(partialIdxFilename); gfx_printf(&gfx_con, "\n\nYou can now join the files and get the complete raw eMMC dump.\n"); } return 1; } typedef enum { DUMP_BOOT = 1, DUMP_SYSTEM = 2, DUMP_USER = 4, DUMP_RAW = 8 } dumpType_t; static void dump_emmc_selected(dumpType_t dumpType) { gfx_clear(&gfx_ctxt, 0xFF000000); gfx_con_setpos(&gfx_con, 0, 0); if (!sd_mount()) { gfx_printf(&gfx_con, "%kFailed to mount SD card (make sure that it is inserted).%k\n", 0xFF0000FF, 0xFFFFFFFF); goto out; } else { // Get SD Card free space for partial dumping f_getfree("", &sd_fs.free_clst, NULL); } sdmmc_storage_t storage; sdmmc_t sdmmc; if(!sdmmc_storage_init_mmc(&storage, &sdmmc, SDMMC_4, SDMMC_BUS_WIDTH_8, 4)) { gfx_printf(&gfx_con, "%kFailed to init eMMC.%k\n", 0xFF0000FF, 0xFFFFFFFF); goto out; } int i = 0; if (dumpType & DUMP_BOOT) { static const u32 BOOT_PART_SIZE = 0x400000; emmc_part_t bootPart; memset(&bootPart, 0, sizeof(bootPart)); bootPart.lba_start = 0; bootPart.lba_end = (BOOT_PART_SIZE/NX_EMMC_BLOCKSIZE)-1; for (i=0; i<2; i++) { memcpy(bootPart.name, "BOOT", 4); bootPart.name[4] = (u8)('0' + i); bootPart.name[5] = 0; gfx_printf(&gfx_con, "%k%02d: %s (%08X-%08X)%k\n", 0xFFFFDD00, i, bootPart.name, bootPart.lba_start, bootPart.lba_end, 0xFFFFFFFF); sdmmc_storage_set_mmc_partition(&storage, i+1); dump_emmc_part(bootPart.name, &storage, &bootPart); gfx_putc(&gfx_con, '\n'); } } if ((dumpType & DUMP_SYSTEM) || (dumpType & DUMP_USER) || (dumpType & DUMP_RAW)) { sdmmc_storage_set_mmc_partition(&storage, 0); if ((dumpType & DUMP_SYSTEM) || (dumpType & DUMP_USER)) { LIST_INIT(gpt); nx_emmc_gpt_parse(&gpt, &storage); LIST_FOREACH_ENTRY(emmc_part_t, part, &gpt, link) { if ((dumpType & DUMP_USER) == 0 && !strcmp(part->name, "USER")) continue; if ((dumpType & DUMP_SYSTEM) == 0 && strcmp(part->name, "USER")) continue; gfx_printf(&gfx_con, "%k%02d: %s (%08X-%08X)%k\n", 0xFFFFDD00, i++, part->name, part->lba_start, part->lba_end, 0xFFFFFFFF); dump_emmc_part(part->name, &storage, part); gfx_putc(&gfx_con, '\n'); } } if (dumpType & DUMP_RAW) { static const u32 RAW_AREA_NUM_SECTORS = 0x3A3E000; emmc_part_t rawPart; memset(&rawPart, 0, sizeof(rawPart)); rawPart.lba_start = 0; rawPart.lba_end = RAW_AREA_NUM_SECTORS-1; strcpy(rawPart.name, "rawnand.bin"); { gfx_printf(&gfx_con, "%k%02d: %s (%08X-%08X)%k\n", 0xFFFFDD00, i++, rawPart.name, rawPart.lba_start, rawPart.lba_end, 0xFFFFFFFF); dump_emmc_part(rawPart.name, &storage, &rawPart); gfx_putc(&gfx_con, '\n'); } } } sdmmc_storage_end(&storage); gfx_puts(&gfx_con, "Done. Press any key.\n"); out:; sleep(100000); btn_wait(); } void dump_emmc_system() { dump_emmc_selected(DUMP_SYSTEM); } void dump_emmc_user() { dump_emmc_selected(DUMP_USER); } void dump_emmc_boot() { dump_emmc_selected(DUMP_BOOT); } void dump_emmc_rawnand() { dump_emmc_selected(DUMP_RAW); } void launch_firmware() { ini_sec_t *cfg_sec = NULL; LIST_INIT(ini_sections); gfx_clear(&gfx_ctxt, 0xFF000000); gfx_con_setpos(&gfx_con, 0, 0); if (sd_mount()) { if (ini_parse(&ini_sections, "hekate_ipl.ini")) { //Build configuration menu. ment_t *ments = (ment_t *)malloc(sizeof(ment_t) * 16); ments[0].type = MENT_BACK; ments[0].caption = "Back"; u32 i = 1; LIST_FOREACH_ENTRY(ini_sec_t, ini_sec, &ini_sections, link) { if (!strcmp(ini_sec->name, "config")) continue; ments[i].type = MENT_CHOICE; ments[i].caption = ini_sec->name; ments[i].data = ini_sec; i++; } if (i > 1) { memset(&ments[i], 0, sizeof(ment_t)); menu_t menu = { ments, "Launch configurations", 0, 0 }; cfg_sec = (ini_sec_t *)tui_do_menu(&gfx_con, &menu); if (!cfg_sec) return; } else gfx_printf(&gfx_con, "%kNo launch configurations found.%k\n", 0xFF0000FF, 0xFFFFFFFF); free(ments); } else gfx_printf(&gfx_con, "%kFailed to load 'hekate_ipl.ini'.%k\n", 0xFF0000FF, 0xFFFFFFFF); } else gfx_printf(&gfx_con, "%kFailed to mount SD card (make sure that it is inserted).%k\n", 0xFF0000FF, 0xFFFFFFFF); if (!cfg_sec) gfx_printf(&gfx_con, "Using default launch configuration.\n"); if (!hos_launch(cfg_sec)) gfx_printf(&gfx_con, "%kFailed to launch firmware.%k\n", 0xFF0000FF, 0xFFFFFFFF); //TODO: free ini. out:; sleep(200000); btn_wait(); } void about() { static const char octopus[] = "hekate (c) 2018 naehrwert, st4rk\n\n" "Thanks to: %kderrek, nedwill, plutoo, shuffle2, smea, thexyz, yellows8%k\n\n" "Greetings to: fincs, hexkyz, SciresM, Shiny Quagsire, WinterMute\n\n" "Open source and free packages used:\n" " - FatFs R0.13a (Copyright (C) 2017, ChaN)\n" " - bcl-1.2.0 (Copyright (c) 2003-2006 Marcus Geelnard)\n\n" " %k___\n" " .-' `'.\n" " / \\\n" " | ;\n" " | | ___.--,\n" " _.._ |0) = (0) | _.---'`__.-( (_.\n" " __.--'`_.. '.__.\\ '--. \\_.-' ,.--'` `\"\"`\n" " ( ,.--'` ',__ /./; ;, '.__.'` __\n" " _`) ) .---.__.' / | |\\ \\__..--\"\" \"\"\"--.,_\n" " `---' .'.''-._.-'`_./ /\\ '. \\ _.--''````'''--._`-.__.'\n" " | | .' _.-' | | \\ \\ '. `----`\n" " \\ \\/ .' \\ \\ '. '-._)\n" " \\/ / \\ \\ `=.__`'-.\n" " / /\\ `) ) / / `\"\".`\\\n" " , _.-'.'\\ \\ / / ( ( / /\n" " `--'` ) ) .-'.' '.'. | (\n" " (/` ( (` ) ) '-; %k[switchbrew]%k\n" " ` '-; (-'%k"; gfx_clear(&gfx_ctxt, 0xFF000000); gfx_con_setpos(&gfx_con, 0, 0); gfx_printf(&gfx_con, octopus, 0xFFFFCC00, 0xFFFFFFFF, 0xFFFFCC00, 0xFFCCFF00, 0xFFFFCC00, 0xFFFFFFFF); sleep(1000000); btn_wait(); } ment_t ment_cinfo[] = { MDEF_BACK(), MDEF_HANDLER("Print fuse info", print_fuseinfo), MDEF_HANDLER("Print kfuse info", print_kfuseinfo), MDEF_HANDLER("Print TSEC keys", print_tsec_key), MDEF_END() }; menu_t menu_cinfo = { ment_cinfo, "Console info", 0, 0 }; ment_t ment_tools[] = { MDEF_BACK(), MDEF_HANDLER("Dump RAW eMMC", dump_emmc_rawnand), MDEF_HANDLER("Dump eMMC SYS", dump_emmc_system), MDEF_HANDLER("Dump eMMC USER", dump_emmc_user), MDEF_HANDLER("Dump eMMC BOOT", dump_emmc_boot), MDEF_END() }; menu_t menu_tools = { ment_tools, "Tools", 0, 0 }; ment_t ment_top[] = { MDEF_HANDLER("Launch firmware", launch_firmware), MDEF_MENU("Tools", &menu_tools), MDEF_MENU("Console info", &menu_cinfo), MDEF_HANDLER("Reboot (normal)", reboot_normal), MDEF_HANDLER("Reboot (rcm)", reboot_rcm), MDEF_HANDLER("Power off", power_off), MDEF_HANDLER("About", about), MDEF_END() }; menu_t menu_top = { ment_top, "hekate - ipl", 0, 0 }; extern void pivot_stack(u32 stack_top); void ipl_main() { config_hw(); //Pivot the stack so we have enough space. pivot_stack(0x90010000); //Tegra/Horizon configuration goes to 0x80000000+, package2 goes to 0xA9800000, we place our heap in between. heap_init(0x90020000); //uart_send(UART_C, (u8 *)0x40000000, 0x10000); //uart_wait_idle(UART_C, UART_TX_IDLE); display_init(); //display_color_screen(0xAABBCCDD); u32 *fb = display_init_framebuffer(); gfx_init_ctxt(&gfx_ctxt, fb, 720, 1280, 768); gfx_clear(&gfx_ctxt, 0xFF000000); gfx_con_init(&gfx_con, &gfx_ctxt); while (1) tui_do_menu(&gfx_con, &menu_top); while (1) ; }