/* * Copyright (c) 2018 naehrwert * Copyright (c) 2018-2020 CTCaer * Copyright (c) 2018 Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "hos.h" #include "pkg2.h" #include "pkg2_ini_kippatch.h" #include "../config.h" #include #include #include #include #include "../storage/emummc.h" #include #include #include extern hekate_config h_cfg; extern const u8 package2_keyseed[]; u32 pkg2_newkern_ini1_val; u32 pkg2_newkern_ini1_start; u32 pkg2_newkern_ini1_end; #ifdef KIP1_PATCH_DEBUG #include #define DPRINTF(...) gfx_printf(__VA_ARGS__) #define DEBUG_PRINTING #else #define DPRINTF(...) #endif //TODO: Replace hardcoded AArch64 instructions with instruction macros. //TODO: Reduce hardcoded values without searching kernel for patterns? // The process ID send/receive kernel patches were taken from Atmosphère's kernel patches. // They should only be used when running Atmosphère. #define FREE_CODE_OFF_1ST_100 0x4797C #define FREE_CODE_OFF_1ST_200 0x6486C #define FREE_CODE_OFF_1ST_300 0x494A4 #define FREE_CODE_OFF_1ST_302 0x494BC #define FREE_CODE_OFF_1ST_400 0x52890 #define FREE_CODE_OFF_1ST_500 0x5C020 #define FREE_CODE_OFF_1ST_600 0x5EE00 #define FREE_CODE_OFF_1ST_700 0x5FEC0 #define FREE_CODE_OFF_1ST_800 0x607F0 #define FREE_CODE_OFF_1ST_900 0x65780 #define FREE_CODE_OFF_1ST_1000 0x67790 #define ID_SND_OFF_100 0x23CC0 #define ID_SND_OFF_200 0x3F134 #define ID_SND_OFF_300 0x26080 #define ID_SND_OFF_302 0x26080 #define ID_SND_OFF_400 0x2AF64 #define ID_SND_OFF_500 0x2AD34 #define ID_SND_OFF_600 0x2BB8C #define ID_SND_OFF_700 0x2D044 #define ID_SND_OFF_800 0x2F1FC #define ID_SND_OFF_900 0x329A0 #define ID_SND_OFF_1000 0x34404 #define ID_RCV_OFF_100 0x219F0 #define ID_RCV_OFF_200 0x3D1A8 #define ID_RCV_OFF_300 0x240F0 #define ID_RCV_OFF_302 0x240F0 #define ID_RCV_OFF_400 0x28F6C #define ID_RCV_OFF_500 0x28DAC #define ID_RCV_OFF_600 0x29B6C #define ID_RCV_OFF_700 0x2B23C #define ID_RCV_OFF_800 0x2D424 #define ID_RCV_OFF_900 0x309B4 #define ID_RCV_OFF_1000 0x322F8 static u32 PRC_ID_SND_100[] = { 0xA9BF2FEA, 0x2A0E03EB, 0xD37EF56B, 0xF86B6B8B, 0x92FFFFE9, 0x8A090168, 0xD2FFFFE9, 0x8A09016B, 0xD2FFFFC9, 0xEB09017F, 0x54000040, 0xF9412948, 0xA8C12FEA }; #define FREE_CODE_OFF_2ND_100 (FREE_CODE_OFF_1ST_100 + sizeof(PRC_ID_SND_100) + sizeof(u32)) static u32 PRC_ID_RCV_100[] = { 0xA9BF2FEA, 0x2A1C03EA, 0xD37EF54A, 0xF86A69AA, 0x92FFFFE9, 0x8A090148, 0xD2FFFFE9, 0x8A09014A, 0xD2FFFFC9, 0xEB09015F, 0x54000040, 0xF9412968, 0xA8C12FEA }; static u32 PRC_ID_SND_200[] = { 0xA9BF2FEA, 0x2A1803EB, 0xD37EF56B, 0xF86B6B8B, 0x92FFFFE9, 0x8A090168, 0xD2FFFFE9, 0x8A09016B, 0xD2FFFFC9, 0xEB09017F, 0x54000040, 0xF9413148, 0xA8C12FEA }; #define FREE_CODE_OFF_2ND_200 (FREE_CODE_OFF_1ST_200 + sizeof(PRC_ID_SND_200) + sizeof(u32)) static u32 PRC_ID_RCV_200[] = { 0xA9BF2FEA, 0x2A0F03EA, 0xD37EF54A, 0xF9405FEB, 0xF86A696A, 0xF9407BEB, 0x92FFFFE9, 0x8A090148, 0xD2FFFFE9, 0x8A09014A, 0xD2FFFFC9, 0xEB09015F, 0x54000040, 0xF9413168, 0xA8C12FEA }; static u32 PRC_ID_SND_300[] = { 0xA9BF2FEA, 0x2A1803EB, 0xD37EF56B, 0xF86B6B8B, 0x92FFFFE9, 0x8A090168, 0xD2FFFFE9, 0x8A09016B, 0xD2FFFFC9, 0xEB09017F, 0x54000040, 0xF9415548, 0xA8C12FEA }; #define FREE_CODE_OFF_2ND_300 (FREE_CODE_OFF_1ST_300 + sizeof(PRC_ID_SND_300) + sizeof(u32)) static u32 PRC_ID_RCV_300[] = { 0xA9BF2FEA, 0x2A0F03EA, 0xD37EF54A, 0xF9405FEB, 0xF86A696A, 0xF9407BEB, 0x92FFFFE9, 0x8A090148, 0xD2FFFFE9, 0x8A09014A, 0xD2FFFFC9, 0xEB09015F, 0x54000040, 0xF9415568, 0xA8C12FEA }; #define FREE_CODE_OFF_2ND_302 (FREE_CODE_OFF_1ST_302 + sizeof(PRC_ID_SND_300) + sizeof(u32)) static u32 PRC_ID_SND_400[] = { 0x2A1703EA, 0xD37EF54A, 0xF86A6B8A, 0x92FFFFE9, 0x8A090148, 0xD2FFFFE9, 0x8A09014A, 0xD2FFFFC9, 0xEB09015F, 0x54000060, 0xF94053EA, 0xF9415948, 0xF94053EA }; #define FREE_CODE_OFF_2ND_400 (FREE_CODE_OFF_1ST_400 + sizeof(PRC_ID_SND_400) + sizeof(u32)) static u32 PRC_ID_RCV_400[] = { 0xF9403BED, 0x2A0E03EA, 0xD37EF54A, 0xF86A69AA, 0x92FFFFE9, 0x8A090148, 0xD2FFFFE9, 0x8A09014A, 0xD2FFFFC9, 0xEB09015F, 0x54000040, 0xF9415B28, 0xD503201F }; static u32 PRC_ID_SND_500[] = { 0x2A1703EA, 0xD37EF54A, 0xF86A6B6A, 0x92FFFFE9, 0x8A090148, 0xD2FFFFE9, 0x8A09014A, 0xD2FFFFC9, 0xEB09015F, 0x54000060, 0xF94043EA, 0xF9415948, 0xF94043EA }; #define FREE_CODE_OFF_2ND_500 (FREE_CODE_OFF_1ST_500 + sizeof(PRC_ID_SND_500) + sizeof(u32)) static u32 PRC_ID_RCV_500[] = { 0xF9403BED, 0x2A1503EA, 0xD37EF54A, 0xF86A69AA, 0x92FFFFE9, 0x8A090148, 0xD2FFFFE9, 0x8A09014A, 0xD2FFFFC9, 0xEB09015F, 0x54000040, 0xF9415B08, 0xF9406FEA }; static u32 PRC_ID_SND_600[] = { 0xA9BF2FEA, 0xF94037EB, 0x2A1503EA, 0xD37EF54A, 0xF86A696A, 0x92FFFFE9, 0x8A090148, 0xD2FFFFE9, 0x8A09014A, 0xD2FFFFC9, 0xEB09015F, 0x54000100, 0xA9BF27E8, 0xF9400308, 0xF9401D08, 0xAA1803E0, 0xD63F0100, 0xA8C127E8, 0xAA0003E8, 0xA8C12FEA, 0xAA0803E0 }; #define FREE_CODE_OFF_2ND_600 (FREE_CODE_OFF_1ST_600 + sizeof(PRC_ID_SND_600) + sizeof(u32)) static u32 PRC_ID_RCV_600[] = { 0xA9BF2FEA, 0xF94043EB, 0x2A1503EA, 0xD37EF54A, 0xF86A696A, 0x92FFFFE9, 0x8A090148, 0xD2FFFFE9, 0x8A09014A, 0xD2FFFFC9, 0xEB09015F, 0x54000100, 0xA9BF27E8, 0xF9400308, 0xF9401D08, 0xAA1803E0, 0xD63F0100, 0xA8C127E8, 0xAA0003E8, 0xA8C12FEA, 0xAA0803E0 }; static u32 PRC_ID_SND_700[] = { 0xA9BF2FEA, 0xF9403BEB, 0x2A1903EA, 0xD37EF54A, 0xF86A696A, 0x92FFFFE9, 0x8A090148, 0xD2FFFFE9, 0x8A09014A, 0xD2FFFFC9, 0xEB09015F, 0x54000100, 0xA9BF27E8, 0xF94002A8, 0xF9401D08, 0xAA1503E0, 0xD63F0100, 0xA8C127E8, 0xAA0003E8, 0xA8C12FEA, 0xAA0803E0 }; #define FREE_CODE_OFF_2ND_700 (FREE_CODE_OFF_1ST_700 + sizeof(PRC_ID_SND_700) + sizeof(u32)) static u32 PRC_ID_RCV_700[] = { 0xA9BF2FEA, 0xF9404FEB, 0x2A1603EA, 0xD37EF54A, 0xF86A696A, 0x92FFFFE9, 0x8A090148, 0xD2FFFFE9, 0x8A09014A, 0xD2FFFFC9, 0xEB09015F, 0x54000100, 0xA9BF27E8, 0xF9400368, 0xF9401D08, 0xAA1B03E0, 0xD63F0100, 0xA8C127E8, 0xAA0003E8, 0xA8C12FEA, 0xAA0803E0 }; #define FREE_CODE_OFF_2ND_800 (FREE_CODE_OFF_1ST_800 + sizeof(PRC_ID_SND_700) + sizeof(u32)) static u32 PRC_ID_SND_900[] = { 0xA9BF2FEA, 0xF94037EB, 0x2A1603EA, 0xD37EF54A, 0xF86A696A, 0x92FFFFE9, 0x8A090148, 0xD2FFFFE9, 0x8A09014A, 0xD2FFFFC9, 0xEB09015F, 0x54000100, 0xA9BF27E8, 0xF94002E8, 0xF9401D08, 0xAA1703E0, 0xD63F0100, 0xA8C127E8, 0xAA0003E8, 0xA8C12FEA, 0xAA0803E0 }; #define FREE_CODE_OFF_2ND_900 (FREE_CODE_OFF_1ST_900 + sizeof(PRC_ID_SND_900) + sizeof(u32)) static u32 PRC_ID_RCV_900[] = { 0xA9BF2FEA, 0xF9404BEB, 0x2A1703EA, 0xD37EF54A, 0xF86A696A, 0x92FFFFE9, 0x8A090148, 0xD2FFFFE9, 0x8A09014A, 0xD2FFFFC9, 0xEB09015F, 0x54000100, 0xA9BF27E8, 0xF9400368, 0xF9401D08, 0xAA1B03E0, 0xD63F0100, 0xA8C127E8, 0xAA0003E8, 0xA8C12FEA, 0xAA0803E0 }; static u32 PRC_ID_SND_1000[] = { 0xA9BF2FEA, 0xF94063EB, 0x2A1603EA, 0xD37EF54A, 0xF86A696A, 0x92FFFFE9, 0x8A090148, 0xD2FFFFE9, 0x8A09014A, 0xD2FFFFC9, 0xEB09015F, 0x54000100, 0xA9BF27E8, 0xF94002E8, 0xF9401D08, 0xAA1703E0, 0xD63F0100, 0xA8C127E8, 0xAA0003E8, 0xA8C12FEA, 0xAA0803E0 }; #define FREE_CODE_OFF_2ND_1000 (FREE_CODE_OFF_1ST_1000 + sizeof(PRC_ID_SND_1000) + sizeof(u32)) static u32 PRC_ID_RCV_1000[] = { 0xA9BF2FEA, 0xF94067EB, 0x2A1A03EA, 0xD37EF54A, 0xF86A696A, 0x92FFFFE9, 0x8A090148, 0xD2FFFFE9, 0x8A09014A, 0xD2FFFFC9, 0xEB09015F, 0x54000100, 0xA9BF27E8, 0xF9400388, 0xF9401D08, 0xAA1C03E0, 0xD63F0100, 0xA8C127E8, 0xAA0003E8, 0xA8C12FEA, 0xAA0803E0 }; // Include kernel patches here, so we can utilize pkg1 id KERNEL_PATCHSET_DEF(_kernel_1_patchset, { SVC_VERIFY_DS, 0x3764C, _NOP(), NULL }, // Disable SVC verifications { DEBUG_MODE_EN, 0x44074, _MOVZX(8, 1, 0), NULL }, // Enable Debug Patch // Atmosphère kernel patches. { ATM_GEN_PATCH, ID_SND_OFF_100, _B(ID_SND_OFF_100, FREE_CODE_OFF_1ST_100), NULL}, // Send process id branch. { ATM_ARR_PATCH, FREE_CODE_OFF_1ST_100, sizeof(PRC_ID_SND_100) >> 2, PRC_ID_SND_100}, // Send process id code. { ATM_GEN_PATCH, FREE_CODE_OFF_1ST_100 + sizeof(PRC_ID_SND_100), // Branch back and skip 1 instruction. _B(FREE_CODE_OFF_1ST_100 + sizeof(PRC_ID_SND_100), ID_SND_OFF_100 + sizeof(u32)), NULL}, { ATM_GEN_PATCH, ID_RCV_OFF_100, _B(ID_RCV_OFF_100, FREE_CODE_OFF_2ND_100), NULL}, // Receive process id branch. { ATM_ARR_PATCH, FREE_CODE_OFF_2ND_100, sizeof(PRC_ID_RCV_100) >> 2, PRC_ID_RCV_100}, // Receive process id code. { ATM_GEN_PATCH, FREE_CODE_OFF_2ND_100 + sizeof(PRC_ID_RCV_100), // Branch back and skip 1 instruction. _B(FREE_CODE_OFF_2ND_100 + sizeof(PRC_ID_RCV_100), ID_RCV_OFF_100 + sizeof(u32)), NULL} ); KERNEL_PATCHSET_DEF(_kernel_2_patchset, { SVC_VERIFY_DS, 0x54834, _NOP(), NULL }, // Disable SVC verifications { DEBUG_MODE_EN, 0x6086C, _MOVZX(8, 1, 0), NULL }, // Enable Debug Patch // Atmosphère kernel patches. { ATM_GEN_PATCH, ID_SND_OFF_200, _B(ID_SND_OFF_200, FREE_CODE_OFF_1ST_200), NULL}, // Send process id branch. { ATM_ARR_PATCH, FREE_CODE_OFF_1ST_200, sizeof(PRC_ID_SND_200) >> 2, PRC_ID_SND_200}, // Send process id code. { ATM_GEN_PATCH, FREE_CODE_OFF_1ST_200 + sizeof(PRC_ID_SND_200), // Branch back and skip 1 instruction. _B(FREE_CODE_OFF_1ST_200 + sizeof(PRC_ID_SND_200), ID_SND_OFF_200 + sizeof(u32)), NULL}, { ATM_GEN_PATCH, ID_RCV_OFF_200, _B(ID_RCV_OFF_200, FREE_CODE_OFF_2ND_200), NULL}, // Receive process id branch. { ATM_ARR_PATCH, FREE_CODE_OFF_2ND_200, sizeof(PRC_ID_RCV_200) >> 2, PRC_ID_RCV_200}, // Receive process id code. { ATM_GEN_PATCH, FREE_CODE_OFF_2ND_200 + sizeof(PRC_ID_RCV_200), // Branch back and skip 1 instruction. _B(FREE_CODE_OFF_2ND_200 + sizeof(PRC_ID_RCV_200), ID_RCV_OFF_200 + sizeof(u32)), NULL} ); KERNEL_PATCHSET_DEF(_kernel_3_patchset, { SVC_VERIFY_DS, 0x3BD24, _NOP(), NULL }, // Disable SVC verifications { DEBUG_MODE_EN, 0x483FC, _MOVZX(8, 1, 0), NULL }, // Enable Debug Patch // Atmosphère kernel patches. { ATM_GEN_PATCH, ID_SND_OFF_300, _B(ID_SND_OFF_300, FREE_CODE_OFF_1ST_300), NULL}, // Send process id branch. { ATM_ARR_PATCH, FREE_CODE_OFF_1ST_300, sizeof(PRC_ID_SND_300) >> 2, PRC_ID_SND_300}, // Send process id code. { ATM_GEN_PATCH, FREE_CODE_OFF_1ST_300 + sizeof(PRC_ID_SND_300), // Branch back and skip 1 instruction. _B(FREE_CODE_OFF_1ST_300 + sizeof(PRC_ID_SND_300), ID_SND_OFF_300 + sizeof(u32)), NULL}, { ATM_GEN_PATCH, ID_RCV_OFF_300, _B(ID_RCV_OFF_300, FREE_CODE_OFF_2ND_300), NULL}, // Receive process id branch. { ATM_ARR_PATCH, FREE_CODE_OFF_2ND_300, sizeof(PRC_ID_RCV_300) >> 2, PRC_ID_RCV_300}, // Receive process id code. { ATM_GEN_PATCH, FREE_CODE_OFF_2ND_300 + sizeof(PRC_ID_RCV_300), // Branch back and skip 1 instruction. _B(FREE_CODE_OFF_2ND_300 + sizeof(PRC_ID_RCV_300), ID_RCV_OFF_300 + sizeof(u32)), NULL} ); KERNEL_PATCHSET_DEF(_kernel_302_patchset, { SVC_VERIFY_DS, 0x3BD24, _NOP(), NULL }, // Disable SVC verifications { DEBUG_MODE_EN, 0x48414, _MOVZX(8, 1, 0), NULL }, // Enable Debug Patch // Atmosphère kernel patches. { ATM_GEN_PATCH, ID_SND_OFF_302, _B(ID_SND_OFF_302, FREE_CODE_OFF_1ST_302), NULL}, // Send process id branch. { ATM_ARR_PATCH, FREE_CODE_OFF_1ST_302, sizeof(PRC_ID_SND_300) >> 2, PRC_ID_SND_300}, // Send process id code. { ATM_GEN_PATCH, FREE_CODE_OFF_1ST_302 + sizeof(PRC_ID_SND_300), // Branch back and skip 1 instruction. _B(FREE_CODE_OFF_1ST_302 + sizeof(PRC_ID_SND_300), ID_SND_OFF_302 + sizeof(u32)), NULL}, { ATM_GEN_PATCH, ID_RCV_OFF_302, _B(ID_RCV_OFF_302, FREE_CODE_OFF_2ND_302), NULL}, // Receive process id branch. { ATM_ARR_PATCH, FREE_CODE_OFF_2ND_302, sizeof(PRC_ID_RCV_300) >> 2, PRC_ID_RCV_300}, // Receive process id code. { ATM_GEN_PATCH, FREE_CODE_OFF_2ND_302 + sizeof(PRC_ID_RCV_300), // Branch back and skip 1 instruction. _B(FREE_CODE_OFF_2ND_302 + sizeof(PRC_ID_RCV_300), ID_RCV_OFF_302 + sizeof(u32)), NULL} ); KERNEL_PATCHSET_DEF(_kernel_4_patchset, { SVC_VERIFY_DS, 0x41EB4, _NOP(), NULL }, // Disable SVC verifications { DEBUG_MODE_EN, 0x4EBFC, _MOVZX(8, 1, 0), NULL }, // Enable Debug Patch // Atmosphère kernel patches. { ATM_GEN_PATCH, ID_SND_OFF_400, _B(ID_SND_OFF_400, FREE_CODE_OFF_1ST_400), NULL}, // Send process id branch. { ATM_ARR_PATCH, FREE_CODE_OFF_1ST_400, sizeof(PRC_ID_SND_400) >> 2, PRC_ID_SND_400}, // Send process id code. { ATM_GEN_PATCH, FREE_CODE_OFF_1ST_400 + sizeof(PRC_ID_SND_400), // Branch back and skip 2 instructions. _B(FREE_CODE_OFF_1ST_400 + sizeof(PRC_ID_SND_400), ID_SND_OFF_400 + sizeof(u32) * 2), NULL}, { ATM_GEN_PATCH, ID_RCV_OFF_400, _B(ID_RCV_OFF_400, FREE_CODE_OFF_2ND_400), NULL}, // Receive process id branch. { ATM_ARR_PATCH, FREE_CODE_OFF_2ND_400, sizeof(PRC_ID_RCV_400) >> 2, PRC_ID_RCV_400}, // Receive process id code. { ATM_GEN_PATCH, FREE_CODE_OFF_2ND_400 + sizeof(PRC_ID_RCV_400), // Branch back and skip 1 instruction. _B(FREE_CODE_OFF_2ND_400 + sizeof(PRC_ID_RCV_400), ID_RCV_OFF_400 + sizeof(u32)), NULL} ); KERNEL_PATCHSET_DEF(_kernel_5_patchset, { SVC_GENERIC, 0x38C2C, _NOP(), NULL }, // Allow same process on svcControlCodeMemory. { SVC_VERIFY_DS, 0x45E6C, _NOP(), NULL }, // Disable SVC verifications { DEBUG_MODE_EN, 0x5513C, _MOVZX(8, 1, 0), NULL }, // Enable Debug Patch // Atmosphère kernel patches. { ATM_SYSM_INCR, 0x54E30, _MOVZW(8, 0x1E00, LSL16), NULL }, // System memory pool increase. { ATM_GEN_PATCH, ID_SND_OFF_500, _B(ID_SND_OFF_500, FREE_CODE_OFF_1ST_500), NULL}, // Send process id branch. { ATM_ARR_PATCH, FREE_CODE_OFF_1ST_500, sizeof(PRC_ID_SND_500) >> 2, PRC_ID_SND_500}, // Send process id code. { ATM_GEN_PATCH, FREE_CODE_OFF_1ST_500 + sizeof(PRC_ID_SND_500), // Branch back and skip 2 instructions. _B(FREE_CODE_OFF_1ST_500 + sizeof(PRC_ID_SND_500), ID_SND_OFF_500 + sizeof(u32) * 2), NULL}, { ATM_GEN_PATCH, ID_RCV_OFF_500, _B(ID_RCV_OFF_500, FREE_CODE_OFF_2ND_500), NULL}, // Receive process id branch. { ATM_ARR_PATCH, FREE_CODE_OFF_2ND_500, sizeof(PRC_ID_RCV_500) >> 2, PRC_ID_RCV_500}, // Receive process id code. { ATM_GEN_PATCH, FREE_CODE_OFF_2ND_500 + sizeof(PRC_ID_RCV_500), // Branch back and skip 2 instructions. _B(FREE_CODE_OFF_2ND_500 + sizeof(PRC_ID_RCV_500), ID_RCV_OFF_500 + sizeof(u32) * 2), NULL} ); KERNEL_PATCHSET_DEF(_kernel_6_patchset, { SVC_GENERIC, 0x3A8CC, _NOP(), NULL }, // Allow same process on svcControlCodeMemory. { SVC_VERIFY_DS, 0x47EA0, _NOP(), NULL }, // Disable SVC verifications { DEBUG_MODE_EN, 0x57548, _MOVZX(8, 1, 0), NULL }, // Enable Debug Patch // Atmosphère kernel patches. { ATM_SYSM_INCR, 0x57330, _MOVZW(8, 0x1D80, LSL16), NULL }, // System memory pool increase. { ATM_GEN_PATCH, ID_SND_OFF_600, _B(ID_SND_OFF_600, FREE_CODE_OFF_1ST_600), NULL}, // Send process id branch. { ATM_ARR_PATCH, FREE_CODE_OFF_1ST_600, sizeof(PRC_ID_SND_600) >> 2, PRC_ID_SND_600}, // Send process id code. { ATM_GEN_PATCH, FREE_CODE_OFF_1ST_600 + sizeof(PRC_ID_SND_600), // Branch back and skip 4 instructions. _B(FREE_CODE_OFF_1ST_600 + sizeof(PRC_ID_SND_600), ID_SND_OFF_600 + sizeof(u32) * 4), NULL}, { ATM_GEN_PATCH, ID_RCV_OFF_600, _B(ID_RCV_OFF_600, FREE_CODE_OFF_2ND_600), NULL}, // Receive process id branch. { ATM_ARR_PATCH, FREE_CODE_OFF_2ND_600, sizeof(PRC_ID_RCV_600) >> 2, PRC_ID_RCV_600}, // Receive process id code. { ATM_GEN_PATCH, FREE_CODE_OFF_2ND_600 + sizeof(PRC_ID_RCV_600), // Branch back and skip 4 instructions. _B(FREE_CODE_OFF_2ND_600 + sizeof(PRC_ID_RCV_600), ID_RCV_OFF_600 + sizeof(u32) * 4), NULL} ); KERNEL_PATCHSET_DEF(_kernel_7_patchset, { SVC_GENERIC, 0x3C6E0, _NOP(), NULL }, // Allow same process on svcControlCodeMemory. { SVC_VERIFY_DS, 0x49E5C, _NOP(), NULL }, // Disable SVC verifications { DEBUG_MODE_EN, 0x581B0, _MOVZX(8, 1, 0), NULL }, // Enable Debug Patch // Atmosphère kernel patches. { ATM_SYSM_INCR, 0x57F98, _MOVZW(8, 0x1D80, LSL16), NULL }, // System memory pool increase. { ATM_GEN_PATCH, ID_SND_OFF_700, _B(ID_SND_OFF_700, FREE_CODE_OFF_1ST_700), NULL}, // Send process id branch. { ATM_ARR_PATCH, FREE_CODE_OFF_1ST_700, sizeof(PRC_ID_SND_700) >> 2, PRC_ID_SND_700}, // Send process id code. { ATM_GEN_PATCH, FREE_CODE_OFF_1ST_700 + sizeof(PRC_ID_SND_700), // Branch back and skip 4 instructions. _B(FREE_CODE_OFF_1ST_700 + sizeof(PRC_ID_SND_700), ID_SND_OFF_700 + sizeof(u32) * 4), NULL}, { ATM_GEN_PATCH, ID_RCV_OFF_700, _B(ID_RCV_OFF_700, FREE_CODE_OFF_2ND_700), NULL}, // Receive process id branch. { ATM_ARR_PATCH, FREE_CODE_OFF_2ND_700, sizeof(PRC_ID_RCV_700) >> 2, PRC_ID_RCV_700}, // Receive process id code. { ATM_GEN_PATCH, FREE_CODE_OFF_2ND_700 + sizeof(PRC_ID_RCV_700), // Branch back and skip 4 instructions. _B(FREE_CODE_OFF_2ND_700 + sizeof(PRC_ID_RCV_700), ID_RCV_OFF_700 + sizeof(u32) * 4), NULL} ); KERNEL_PATCHSET_DEF(_kernel_8_patchset, { SVC_GENERIC, 0x3FAD0, _NOP(), NULL }, // Allow same process on svcControlCodeMemory. { SVC_VERIFY_DS, 0x4D15C, _NOP(), NULL }, // Disable SVC verifications { DEBUG_MODE_EN, 0x5BFAC, _MOVZX(8, 1, 0), NULL }, // Enable Debug Patch // Atmosphère kernel patches. { ATM_SYSM_INCR, 0x5F9A4, _MOVZW(19, 0x1D80, LSL16), NULL }, // System memory pool increase. { ATM_GEN_PATCH, ID_SND_OFF_800, _B(ID_SND_OFF_800, FREE_CODE_OFF_1ST_800), NULL}, // Send process id branch. { ATM_ARR_PATCH, FREE_CODE_OFF_1ST_800, sizeof(PRC_ID_SND_700) >> 2, PRC_ID_SND_700}, // Send process id code. { ATM_GEN_PATCH, FREE_CODE_OFF_1ST_800 + sizeof(PRC_ID_SND_700), // Branch back and skip 4 instructions. _B(FREE_CODE_OFF_1ST_800 + sizeof(PRC_ID_SND_700), ID_SND_OFF_800 + sizeof(u32) * 4), NULL}, { ATM_GEN_PATCH, ID_RCV_OFF_800, _B(ID_RCV_OFF_800, FREE_CODE_OFF_2ND_800), NULL}, // Receive process id branch. { ATM_ARR_PATCH, FREE_CODE_OFF_2ND_800, sizeof(PRC_ID_RCV_700) >> 2, PRC_ID_RCV_700}, // Receive process id code. { ATM_GEN_PATCH, FREE_CODE_OFF_2ND_800 + sizeof(PRC_ID_RCV_700), // Branch back and skip 4 instructions. _B(FREE_CODE_OFF_2ND_800 + sizeof(PRC_ID_RCV_700), ID_RCV_OFF_800 + sizeof(u32) * 4), NULL} ); KERNEL_PATCHSET_DEF(_kernel_9_patchset, { SVC_GENERIC, 0x43DFC, _NOP(), NULL }, // Allow same process on svcControlCodeMemory. { SVC_VERIFY_DS, 0x50628, _NOP(), NULL }, // Disable SVC verifications { DEBUG_MODE_EN, 0x609E8, _MOVZX(8, 1, 0), NULL }, // Enable Debug Patch // Atmosphère kernel patches. { ATM_SYSM_INCR, 0x6493C, _MOVZW(19, 0x1D80, LSL16), NULL }, // System memory pool increase. { ATM_GEN_PATCH, ID_SND_OFF_900, _B(ID_SND_OFF_900, FREE_CODE_OFF_1ST_900), NULL}, // Send process id branch. { ATM_ARR_PATCH, FREE_CODE_OFF_1ST_900, sizeof(PRC_ID_SND_900) >> 2, PRC_ID_SND_900}, // Send process id code. { ATM_GEN_PATCH, FREE_CODE_OFF_1ST_900 + sizeof(PRC_ID_SND_900), // Branch back and skip 4 instructions. _B(FREE_CODE_OFF_1ST_900 + sizeof(PRC_ID_SND_900), ID_SND_OFF_900 + sizeof(u32) * 4), NULL}, { ATM_GEN_PATCH, ID_RCV_OFF_900, _B(ID_RCV_OFF_900, FREE_CODE_OFF_2ND_900), NULL}, // Receive process id branch. { ATM_ARR_PATCH, FREE_CODE_OFF_2ND_900, sizeof(PRC_ID_RCV_900) >> 2, PRC_ID_RCV_900}, // Receive process id code. { ATM_GEN_PATCH, FREE_CODE_OFF_2ND_900 + sizeof(PRC_ID_RCV_900), // Branch back and skip 4 instructions. _B(FREE_CODE_OFF_2ND_900 + sizeof(PRC_ID_RCV_900), ID_RCV_OFF_900 + sizeof(u32) * 4), NULL} ); KERNEL_PATCHSET_DEF(_kernel_10_patchset, { SVC_GENERIC, 0x45DAC, _NOP(), NULL }, // Allow same process on svcControlCodeMemory. { SVC_VERIFY_DS, 0x523E4, _NOP(), NULL }, // Disable SVC verifications. { DEBUG_MODE_EN, 0x62B14, _MOVZX(8, 1, 0), NULL }, // Enable Debug Patch. // Atmosphère kernel patches. { ATM_SYSM_INCR, 0x66950, _MOVZW(19, 0x1D80, LSL16), NULL }, // System memory pool increase. { ATM_GEN_PATCH, ID_SND_OFF_1000, _B(ID_SND_OFF_1000, FREE_CODE_OFF_1ST_1000), NULL}, // Send process id branch. { ATM_ARR_PATCH, FREE_CODE_OFF_1ST_1000, sizeof(PRC_ID_SND_1000) >> 2, PRC_ID_SND_1000}, // Send process id code. { ATM_GEN_PATCH, FREE_CODE_OFF_1ST_1000 + sizeof(PRC_ID_SND_1000), // Branch back and skip 4 instructions. _B(FREE_CODE_OFF_1ST_1000 + sizeof(PRC_ID_SND_1000), ID_SND_OFF_1000 + sizeof(u32) * 4), NULL}, { ATM_GEN_PATCH, ID_RCV_OFF_1000, _B(ID_RCV_OFF_1000, FREE_CODE_OFF_2ND_1000), NULL}, // Receive process id branch. { ATM_ARR_PATCH, FREE_CODE_OFF_2ND_1000, sizeof(PRC_ID_RCV_1000) >> 2, PRC_ID_RCV_1000}, // Receive process id code. { ATM_GEN_PATCH, FREE_CODE_OFF_2ND_1000 + sizeof(PRC_ID_RCV_1000), // Branch back and skip 4 instructions. _B(FREE_CODE_OFF_2ND_1000 + sizeof(PRC_ID_RCV_1000), ID_RCV_OFF_1000 + sizeof(u32) * 4), NULL} ); // Kernel sha256 hashes. static const pkg2_kernel_id_t _pkg2_kernel_ids[] = { { "\xb8\xc5\x0c\x68\x25\xa9\xb9\x5b", _kernel_1_patchset }, //1.0.0 { "\x64\x0b\x51\xff\x28\x01\xb8\x30", _kernel_2_patchset }, //2.0.0 - 2.3.0 { "\x50\x84\x23\xac\x6f\xa1\x5d\x3b", _kernel_3_patchset }, //3.0.0 - 3.0.1 { "\x81\x9d\x08\xbe\xe4\x5e\x1f\xbb", _kernel_302_patchset }, //3.0.2 { "\xe6\xc0\xb7\xe3\x2f\xf9\x44\x51", _kernel_4_patchset }, //4.0.0 - 4.1.0 { "\xb2\x38\x61\xa8\xe1\xe2\xe4\xe4", _kernel_5_patchset }, //5.0.0 - 5.1.0 { "\x85\x97\x40\xf6\xc0\x3e\x3d\x44", _kernel_6_patchset }, //6.0.0 - 6.2.0 { "\xa2\x5e\x47\x0c\x8e\x6d\x2f\xd7", _kernel_7_patchset }, //7.0.0 - 7.0.1 { "\xf1\x5e\xc8\x34\xfd\x68\xf0\xf0", _kernel_8_patchset }, //8.0.0 - 8.1.0. Kernel only. { "\x69\x00\x39\xdf\x21\x56\x70\x6b", _kernel_9_patchset }, //9.0.0 - 9.1.0. Kernel only. { "\xa2\xe3\xad\x1c\x98\xd8\x7a\x62", _kernel_9_patchset }, //9.2.0. Kernel only. { "\x21\xc1\xd7\x24\x8e\xcd\xbd\xa8", _kernel_10_patchset }, //10.0.0. Kernel only. }; enum kip_offset_section { KIP_TEXT = 0, KIP_RODATA = 1, KIP_DATA = 2, KIP_BSS = 3, KIP_UNKSEC1 = 4, KIP_UNKSEC2 = 5 }; #define KIP_PATCH_SECTION_SHIFT (29) #define KIP_PATCH_SECTION_MASK (7 << KIP_PATCH_SECTION_SHIFT) #define KIP_PATCH_OFFSET_MASK (~KIP_PATCH_SECTION_MASK) #define GET_KIP_PATCH_SECTION(x) ((x >> KIP_PATCH_SECTION_SHIFT) & 7) #define GET_KIP_PATCH_OFFSET(x) (x & KIP_PATCH_OFFSET_MASK) #define KPS(x) ((u32)(x) << KIP_PATCH_SECTION_SHIFT) static kip1_patch_t _fs_emummc[] = { { KPS(KIP_TEXT) | 1, 0, "", "" }, { 0, 0, NULL, NULL } }; static kip1_patchset_t _fs_patches_100[] = { { "nogc", NULL }, { "emummc", _fs_emummc }, { NULL, NULL } }; static kip1_patch_t _fs_nogc_40x[] = { { KPS(KIP_TEXT) | 0xA3458, 4, "\x14\x40\x80\x72", "\x14\x80\x80\x72" }, { KPS(KIP_TEXT) | 0xAAB44, 8, "\xF4\x4F\xBE\xA9\xFD\x7B\x01\xA9", "\xE0\x03\x1F\x2A\xC0\x03\x5F\xD6" }, { 0, 0, NULL, NULL } }; static kip1_patchset_t _fs_patches_40x[] = { { "nogc", _fs_nogc_40x }, { "emummc", _fs_emummc }, { NULL, NULL } }; static kip1_patch_t _fs_nogc_410[] = { { KPS(KIP_TEXT) | 0xA34BC, 4, "\x14\x40\x80\x72", "\x14\x80\x80\x72" }, { KPS(KIP_TEXT) | 0xAABA8, 8, "\xF4\x4F\xBE\xA9\xFD\x7B\x01\xA9", "\xE0\x03\x1F\x2A\xC0\x03\x5F\xD6" }, { 0, 0, NULL, NULL } }; static kip1_patchset_t _fs_patches_410[] = { { "nogc", _fs_nogc_410 }, { "emummc", _fs_emummc }, { NULL, NULL } }; static kip1_patch_t _fs_nogc_50x[] = { { KPS(KIP_TEXT) | 0xCF3C4, 4, "\x14\x40\x80\x52", "\x14\x80\x80\x52" }, { KPS(KIP_TEXT) | 0xD73A0, 8, "\xF4\x4F\xBE\xA9\xFD\x7B\x01\xA9", "\xE0\x03\x1F\x2A\xC0\x03\x5F\xD6" }, { 0, 0, NULL, NULL } }; static kip1_patchset_t _fs_patches_50x[] = { { "nogc", _fs_nogc_50x }, { "emummc", _fs_emummc }, { NULL, NULL } }; static kip1_patch_t _fs_nogc_510[] = { { KPS(KIP_TEXT) | 0xCF794, 4, "\x14\x40\x80\x52", "\x14\x80\x80\x52" }, { KPS(KIP_TEXT) | 0xD7770, 8, "\xF4\x4F\xBE\xA9\xFD\x7B\x01\xA9", "\xE0\x03\x1F\x2A\xC0\x03\x5F\xD6" }, { 0, 0, NULL, NULL } }; static kip1_patchset_t _fs_patches_510[] = { { "nogc", _fs_nogc_510 }, { "emummc", _fs_emummc }, { NULL, NULL } }; static kip1_patch_t _fs_nogc_600[] = { { KPS(KIP_TEXT) | 0x12CC20, 8, "\xF4\x4F\xBE\xA9\xFD\x7B\x01\xA9", "\xE0\x03\x1F\x2A\xC0\x03\x5F\xD6" }, { KPS(KIP_TEXT) | 0x1538F4, 4, "\x14\x40\x80\x52", "\x14\x80\x80\x52" }, { 0, 0, NULL, NULL } }; static kip1_patch_t _fs_nogc_600_exfat[] = { { KPS(KIP_TEXT) | 0x138320, 8, "\xF4\x4F\xBE\xA9\xFD\x7B\x01\xA9", "\xE0\x03\x1F\x2A\xC0\x03\x5F\xD6" }, { KPS(KIP_TEXT) | 0x15EFF4, 4, "\x14\x40\x80\x52", "\x14\x80\x80\x52" }, { 0, 0, NULL, NULL } }; static kip1_patchset_t _fs_patches_600[] = { { "nogc", _fs_nogc_600 }, { "emummc", _fs_emummc }, { NULL, NULL } }; static kip1_patchset_t _fs_patches_600_exfat[] = { { "nogc", _fs_nogc_600_exfat }, { "emummc", _fs_emummc }, { NULL, NULL } }; static kip1_patch_t _fs_nogc_700[] = { { KPS(KIP_TEXT) | 0x134160, 8, "\xF4\x4F\xBE\xA9\xFD\x7B\x01\xA9", "\xE0\x03\x1F\x2A\xC0\x03\x5F\xD6" }, { KPS(KIP_TEXT) | 0x15BF04, 4, "\x14\x40\x80\x52", "\x14\x80\x80\x52" }, { 0, 0, NULL, NULL } }; static kip1_patch_t _fs_nogc_700_exfat[] = { { KPS(KIP_TEXT) | 0x13F710, 8, "\xF4\x4F\xBE\xA9\xFD\x7B\x01\xA9", "\xE0\x03\x1F\x2A\xC0\x03\x5F\xD6" }, { KPS(KIP_TEXT) | 0x1674B4, 4, "\x14\x40\x80\x52", "\x14\x80\x80\x52" }, { 0, 0, NULL, NULL } }; static kip1_patchset_t _fs_patches_700[] = { { "nogc", _fs_nogc_700 }, { "emummc", _fs_emummc }, { NULL, NULL } }; static kip1_patchset_t _fs_patches_700_exfat[] = { { "nogc", _fs_nogc_700_exfat }, { "emummc", _fs_emummc }, { NULL, NULL } }; static kip1_patch_t _fs_nogc_800[] = { { KPS(KIP_TEXT) | 0x136800, 8, "\xF4\x4F\xBE\xA9\xFD\x7B\x01\xA9", "\xE0\x03\x1F\x2A\xC0\x03\x5F\xD6" }, { KPS(KIP_TEXT) | 0x15EB94, 4, "\x14\x40\x80\x52", "\x14\x80\x80\x52" }, { 0, 0, NULL, NULL } }; static kip1_patch_t _fs_nogc_800_exfat[] = { { KPS(KIP_TEXT) | 0x141DB0, 8, "\xF4\x4F\xBE\xA9\xFD\x7B\x01\xA9", "\xE0\x03\x1F\x2A\xC0\x03\x5F\xD6" }, { KPS(KIP_TEXT) | 0x16A144, 4, "\x14\x40\x80\x52", "\x14\x80\x80\x52" }, { 0, 0, NULL, NULL } }; static kip1_patchset_t _fs_patches_800[] = { { "nogc", _fs_nogc_800 }, { "emummc", _fs_emummc }, { NULL, NULL } }; static kip1_patchset_t _fs_patches_800_exfat[] = { { "nogc", _fs_nogc_800_exfat }, { "emummc", _fs_emummc }, { NULL, NULL } }; static kip1_patch_t _fs_nogc_900[] = { { KPS(KIP_TEXT) | 0x129420, 8, "\xF4\x4F\xBE\xA9\xFD\x7B\x01\xA9", "\xE0\x03\x1F\x2A\xC0\x03\x5F\xD6" }, { KPS(KIP_TEXT) | 0x143268, 4, "\x14\x40\x80\x52", "\x14\x80\x80\x52" }, { 0, 0, NULL, NULL } }; static kip1_patchset_t _fs_patches_900[] = { { "nogc", _fs_nogc_900 }, { "emummc", _fs_emummc }, { NULL, NULL } }; static kip1_patch_t _fs_nogc_910[] = { { KPS(KIP_TEXT) | 0x129430, 8, "\xF4\x4F\xBE\xA9\xFD\x7B\x01\xA9", "\xE0\x03\x1F\x2A\xC0\x03\x5F\xD6" }, { KPS(KIP_TEXT) | 0x143278, 4, "\x14\x40\x80\x52", "\x14\x80\x80\x52" }, { 0, 0, NULL, NULL } }; static kip1_patchset_t _fs_patches_910[] = { { "nogc", _fs_nogc_910 }, { "emummc", _fs_emummc }, { NULL, NULL } }; static kip1_patch_t _fs_nogc_1000[] = { { KPS(KIP_TEXT) | 0x13BE90, 8, "\xF4\x4F\xBE\xA9\xFD\x7B\x01\xA9", "\xE0\x03\x1F\x2A\xC0\x03\x5F\xD6" }, { KPS(KIP_TEXT) | 0x14DE08, 4, "\x14\x40\x80\x52", "\x14\x80\x80\x52" }, { 0, 0, NULL, NULL } }; static kip1_patchset_t _fs_patches_1000[] = { { "nogc", _fs_nogc_1000 }, { "emummc", _fs_emummc }, { NULL, NULL } }; static kip1_patch_t _fs_nogc_1020[] = { { KPS(KIP_TEXT) | 0x13C2F0, 8, "\xF4\x4F\xBE\xA9\xFD\x7B\x01\xA9", "\xE0\x03\x1F\x2A\xC0\x03\x5F\xD6" }, { KPS(KIP_TEXT) | 0x14E268, 4, "\x14\x40\x80\x52", "\x14\x80\x80\x52" }, { 0, 0, NULL, NULL } }; static kip1_patchset_t _fs_patches_1020[] = { { "nogc", _fs_nogc_1020 }, { "emummc", _fs_emummc }, { NULL, NULL } }; // SHA256 hashes. static kip1_id_t _kip_ids[] = { { "FS", "\xde\x9f\xdd\xa4\x08\x5d\xd5\xfe", _fs_patches_100 }, // FS 1.0.0 { "FS", "\xfc\x3e\x80\x99\x1d\xca\x17\x96", _fs_patches_100 }, // FS 1.0.0 exfat { "FS", "\xcd\x7b\xbe\x18\xd6\x13\x0b\x28", _fs_patches_100 }, // FS 2.0.0 { "FS", "\xe7\x66\x92\xdf\xaa\x04\x20\xe9", _fs_patches_100 }, // FS 2.0.0 exfat { "FS", "\x0d\x70\x05\x62\x7b\x07\x76\x7c", _fs_patches_100 }, // FS 2.1.0 { "FS", "\xdb\xd8\x5f\xca\xcc\x19\x3d\xa8", _fs_patches_100 }, // FS 2.1.0 exfat { "FS", "\xa8\x6d\xa5\xe8\x7e\xf1\x09\x7b", _fs_patches_100 }, // FS 3.0.0 { "FS", "\x98\x1c\x57\xe7\xf0\x2f\x70\xf7", _fs_patches_100 }, // FS 3.0.0 exfat { "FS", "\x57\x39\x7c\x06\x3f\x10\xb6\x31", _fs_patches_100 }, // FS 3.0.1 { "FS", "\x07\x30\x99\xd7\xc6\xad\x7d\x89", _fs_patches_100 }, // FS 3.0.1 exfat { "FS", "\x06\xe9\x07\x19\x59\x5a\x01\x0c", _fs_patches_40x }, // FS 4.0.1 { "FS", "\x54\x9b\x0f\x8d\x6f\x72\xc4\xe9", _fs_patches_40x }, // FS 4.0.1 exfat { "FS", "\x80\x96\xaf\x7c\x6a\x35\xaa\x82", _fs_patches_410 }, // FS 4.1.0 { "FS", "\x02\xd5\xab\xaa\xfd\x20\xc8\xb0", _fs_patches_410 }, // FS 4.1.0 exfat { "FS", "\xa6\xf2\x7a\xd9\xac\x7c\x73\xad", _fs_patches_50x }, // FS 5.0.0 { "FS", "\xce\x3e\xcb\xa2\xf2\xf0\x62\xf5", _fs_patches_50x }, // FS 5.0.0 exfat { "FS", "\x76\xf8\x74\x02\xc9\x38\x7c\x0f", _fs_patches_510 }, // FS 5.1.0 { "FS", "\x10\xb2\xd8\x16\x05\x48\x85\x99", _fs_patches_510 }, // FS 5.1.0 exfat { "FS", "\x1b\x82\xcb\x22\x18\x67\xcb\x52", _fs_patches_600 }, // FS 6.0.0-4.0 { "FS", "\x96\x6a\xdd\x3d\x20\xb6\x27\x13", _fs_patches_600_exfat }, // FS 6.0.0-4.0 exfat { "FS", "\x3a\x57\x4d\x43\x61\x86\x19\x1d", _fs_patches_600 }, // FS 6.0.0-5.0 { "FS", "\x33\x05\x53\xf6\xb5\xfb\x55\xc4", _fs_patches_600_exfat }, // FS 6.0.0-5.0 exfat { "FS", "\x2A\xDB\xE9\x7E\x9B\x5F\x41\x77", _fs_patches_700 }, // FS 7.0.0 { "FS", "\x2C\xCE\x65\x9C\xEC\x53\x6A\x8E", _fs_patches_700_exfat }, // FS 7.0.0 exfat { "FS", "\xB2\xF5\x17\x6B\x35\x48\x36\x4D", _fs_patches_800 }, // FS 8.0.0 { "FS", "\xDB\xD9\x41\xC0\xC5\x3C\x52\xCC", _fs_patches_800_exfat }, // FS 8.0.0 exfat { "FS", "\x6B\x09\xB6\x7B\x29\xC0\x20\x24", _fs_patches_800 }, // FS 8.1.0 { "FS", "\xB4\xCA\xE1\xF2\x49\x65\xD9\x2E", _fs_patches_800_exfat }, // FS 8.1.0 exfat { "FS", "\x46\x87\x40\x76\x1E\x19\x3E\xB7", _fs_patches_900 }, // FS 9.0.0 { "FS", "\x7C\x95\x13\x76\xE5\xC1\x2D\xF8", _fs_patches_900 }, // FS 9.0.0 exfat { "FS", "\xB5\xE7\xA6\x4C\x6F\x5C\x4F\xE3", _fs_patches_910 }, // FS 9.1.0 { "FS", "\xF1\x96\xD1\x44\xD0\x44\x45\xB6", _fs_patches_910 }, // FS 9.1.0 exfat { "FS", "\x3E\xEB\xD9\xB7\xBC\xD1\xB5\xE0", _fs_patches_1000 }, // FS 10.0.0 { "FS", "\x81\x7E\xA2\xB0\xB7\x02\xC1\xF3", _fs_patches_1000 }, // FS 10.0.0 exfat { "FS", "\xA9\x52\xB6\x57\xAD\xF9\xC2\xBA", _fs_patches_1020 }, // FS 10.2.0 { "FS", "\x16\x0D\x3E\x10\x4E\xAD\x61\x76", _fs_patches_1020 }, // FS 10.2.0 exfat }; static kip1_id_t *_kip_id_sets = _kip_ids; static u32 _kip_id_sets_cnt = sizeof(_kip_ids) / sizeof(_kip_ids[0]); void pkg2_get_ids(kip1_id_t **ids, u32 *entries) { *ids = _kip_id_sets; *entries = _kip_id_sets_cnt; } static void parse_external_kip_patches() { static bool ext_patches_done = false; if (ext_patches_done) return; u32 curr_kip_idx = 0; char path[64]; strcpy(path, "bootloader/patches.ini"); LIST_INIT(ini_kip_sections); if (ini_patch_parse(&ini_kip_sections, path)) { // Copy ids into a new patchset. _kip_id_sets = calloc(sizeof(kip1_id_t), 256); // Max 256 kip ids. memcpy(_kip_id_sets, _kip_ids, sizeof(_kip_ids)); // Parse patchsets and glue them together. LIST_FOREACH_ENTRY(ini_kip_sec_t, ini_psec, &ini_kip_sections, link) { kip1_id_t* curr_kip = NULL; bool found = false; for (curr_kip_idx = 0; curr_kip_idx < _kip_id_sets_cnt + 1; curr_kip_idx++) { curr_kip = &_kip_id_sets[curr_kip_idx]; if (!curr_kip->name) break; if (!strcmp(curr_kip->name, ini_psec->name) && !memcmp(curr_kip->hash, ini_psec->hash, 8)) { found = true; break; } } if (!curr_kip) continue; // If not found, create a new empty entry. if (!found) { curr_kip->name = ini_psec->name; memcpy(curr_kip->hash, ini_psec->hash, 8); curr_kip->patchset = calloc(sizeof(kip1_patchset_t), 1); _kip_id_sets_cnt++; } kip1_patchset_t *patchsets = (kip1_patchset_t *)calloc(sizeof(kip1_patchset_t), 16); // Max 16 patchsets per kip. u32 curr_patchset_idx; for(curr_patchset_idx = 0; curr_kip->patchset[curr_patchset_idx].name != NULL; curr_patchset_idx++) { patchsets[curr_patchset_idx].name = curr_kip->patchset[curr_patchset_idx].name; patchsets[curr_patchset_idx].patches = curr_kip->patchset[curr_patchset_idx].patches; } curr_kip->patchset = patchsets; bool first_ext_patch = true; u32 curr_patch_idx = 0; // Parse patches and glue them together to a patchset. kip1_patch_t *patches = calloc(sizeof(kip1_patch_t), 32); // Max 32 patches per set. LIST_FOREACH_ENTRY(ini_patchset_t, pt, &ini_psec->pts, link) { if (first_ext_patch) { first_ext_patch = false; patchsets[curr_patchset_idx].name = malloc(strlen(pt->name) + 1); strcpy(patchsets[curr_patchset_idx].name, pt->name); patchsets[curr_patchset_idx].patches = patches; } else { // Check if new patchset name is found and create a new set. if (strcmp(pt->name, patchsets[curr_patchset_idx].name)) { curr_patchset_idx++; curr_patch_idx = 0; patches = calloc(sizeof(kip1_patch_t), 16); // Max 16 patches per set. patchsets[curr_patchset_idx].name = malloc(strlen(pt->name) + 1); strcpy(patchsets[curr_patchset_idx].name, pt->name); patchsets[curr_patchset_idx].patches = patches; } } if (pt->length) { patches[curr_patch_idx].offset = pt->offset; patches[curr_patch_idx].length = pt->length; patches[curr_patch_idx].srcData = malloc(pt->length); patches[curr_patch_idx].dstData = malloc(pt->length); memcpy(patches[curr_patch_idx].srcData, pt->srcData, pt->length); memcpy(patches[curr_patch_idx].dstData, pt->dstData, pt->length); } else patches[curr_patch_idx].srcData = malloc(1); // Empty patches check. Keep everything else as 0. curr_patch_idx++; } curr_patchset_idx++; patchsets[curr_patchset_idx].name = NULL; patchsets[curr_patchset_idx].patches = NULL; } } ext_patches_done = true; } const pkg2_kernel_id_t *pkg2_identify(u8 *hash) { for (u32 i = 0; i < (sizeof(_pkg2_kernel_ids) / sizeof(pkg2_kernel_id_t)); i++) { if (!memcmp(hash, _pkg2_kernel_ids[i].hash, sizeof(_pkg2_kernel_ids[0].hash))) return &_pkg2_kernel_ids[i]; } return NULL; } static u32 _pkg2_calc_kip1_size(pkg2_kip1_t *kip1) { u32 size = sizeof(pkg2_kip1_t); for (u32 j = 0; j < KIP1_NUM_SECTIONS; j++) size += kip1->sections[j].size_comp; return size; } void pkg2_get_newkern_info(u8 *kern_data) { u32 pkg2_newkern_ini1_off = 0; pkg2_newkern_ini1_start = 0; // Find static OP offset that is close to INI1 offset. u32 counter_ops = 0x100; while (counter_ops) { if (*(u32 *)(kern_data + 0x100 - counter_ops) == PKG2_NEWKERN_GET_INI1_HEURISTIC) { pkg2_newkern_ini1_off = 0x100 - counter_ops + 12; // OP found. Add 12 for the INI1 offset. break; } counter_ops -= 4; } // Offset not found? if (!counter_ops) return; u32 info_op = *(u32 *)(kern_data + pkg2_newkern_ini1_off); pkg2_newkern_ini1_val = ((info_op & 0xFFFF) >> 3) + pkg2_newkern_ini1_off; // Parse ADR and PC. pkg2_newkern_ini1_start = *(u32 *)(kern_data + pkg2_newkern_ini1_val); pkg2_newkern_ini1_end = *(u32 *)(kern_data + pkg2_newkern_ini1_val + 0x8); } bool pkg2_parse_kips(link_t *info, pkg2_hdr_t *pkg2, bool *new_pkg2) { u8 *ptr; // Check for new pkg2 type. if (!pkg2->sec_size[PKG2_SEC_INI1]) { pkg2_get_newkern_info(pkg2->data); if (!pkg2_newkern_ini1_start) return false; ptr = pkg2->data + pkg2_newkern_ini1_start; *new_pkg2 = true; } else ptr = pkg2->data + pkg2->sec_size[PKG2_SEC_KERNEL]; pkg2_ini1_t *ini1 = (pkg2_ini1_t *)ptr; ptr += sizeof(pkg2_ini1_t); for (u32 i = 0; i < ini1->num_procs; i++) { pkg2_kip1_t *kip1 = (pkg2_kip1_t *)ptr; pkg2_kip1_info_t *ki = (pkg2_kip1_info_t *)malloc(sizeof(pkg2_kip1_info_t)); ki->kip1 = kip1; ki->size = _pkg2_calc_kip1_size(kip1); list_append(info, &ki->link); ptr += ki->size; DPRINTF(" kip1 %d:%s @ %08X (%08X)\n", i, kip1->name, (u32)kip1, ki->size); } return true; } int pkg2_has_kip(link_t *info, u64 tid) { LIST_FOREACH_ENTRY(pkg2_kip1_info_t, ki, info, link) if(ki->kip1->tid == tid) return 1; return 0; } void pkg2_replace_kip(link_t *info, u64 tid, pkg2_kip1_t *kip1) { LIST_FOREACH_ENTRY(pkg2_kip1_info_t, ki, info, link) { if (ki->kip1->tid == tid) { ki->kip1 = kip1; ki->size = _pkg2_calc_kip1_size(kip1); DPRINTF("replaced kip %s (new size %08X)\n", kip1->name, ki->size); return; } } } void pkg2_add_kip(link_t *info, pkg2_kip1_t *kip1) { pkg2_kip1_info_t *ki = (pkg2_kip1_info_t *)malloc(sizeof(pkg2_kip1_info_t)); ki->kip1 = kip1; ki->size = _pkg2_calc_kip1_size(kip1); DPRINTF("added kip %s (size %08X)\n", kip1->name, ki->size); list_append(info, &ki->link); } void pkg2_merge_kip(link_t *info, pkg2_kip1_t *kip1) { if (pkg2_has_kip(info, kip1->tid)) pkg2_replace_kip(info, kip1->tid, kip1); else pkg2_add_kip(info, kip1); } int pkg2_decompress_kip(pkg2_kip1_info_t* ki, u32 sectsToDecomp) { u32 compClearMask = ~sectsToDecomp; if ((ki->kip1->flags & compClearMask) == ki->kip1->flags) return 0; // Already decompressed, nothing to do. pkg2_kip1_t hdr; memcpy(&hdr, ki->kip1, sizeof(hdr)); unsigned int newKipSize = sizeof(hdr); for (u32 sectIdx = 0; sectIdx < KIP1_NUM_SECTIONS; sectIdx++) { u32 sectCompBit = 1u << sectIdx; // For compressed, cant get actual decompressed size without doing it, so use safe "output size". if (sectIdx < 3 && (sectsToDecomp & sectCompBit) && (hdr.flags & sectCompBit)) newKipSize += hdr.sections[sectIdx].size_decomp; else newKipSize += hdr.sections[sectIdx].size_comp; } pkg2_kip1_t* newKip = malloc(newKipSize); unsigned char* dstDataPtr = newKip->data; const unsigned char* srcDataPtr = ki->kip1->data; for (u32 sectIdx = 0; sectIdx < KIP1_NUM_SECTIONS; sectIdx++) { u32 sectCompBit = 1u << sectIdx; // Easy copy path for uncompressed or ones we dont want to uncompress. if (sectIdx >= 3 || !(sectsToDecomp & sectCompBit) || !(hdr.flags & sectCompBit)) { unsigned int dataSize = hdr.sections[sectIdx].size_comp; if (dataSize == 0) continue; memcpy(dstDataPtr, srcDataPtr, dataSize); srcDataPtr += dataSize; dstDataPtr += dataSize; continue; } unsigned int compSize = hdr.sections[sectIdx].size_comp; unsigned int outputSize = hdr.sections[sectIdx].size_decomp; gfx_printf("Decomping %s KIP1 sect %d of size %d...\n", (const char*)hdr.name, sectIdx, compSize); if (blz_uncompress_srcdest(srcDataPtr, compSize, dstDataPtr, outputSize) == 0) { gfx_con.mute = false; gfx_printf("%kERROR decomping sect %d of %s KIP!%k\n", 0xFFFF0000, sectIdx, (char*)hdr.name, 0xFFCCCCCC); free(newKip); return 1; } else { DPRINTF("Done! Decompressed size is %d!\n", outputSize); } hdr.sections[sectIdx].size_comp = outputSize; srcDataPtr += compSize; dstDataPtr += outputSize; } hdr.flags &= compClearMask; memcpy(newKip, &hdr, sizeof(hdr)); newKipSize = dstDataPtr-(unsigned char*)(newKip); free(ki->kip1); ki->kip1 = newKip; ki->size = newKipSize; return 0; } static int _kipm_inject(const char *kipm_path, char *target_name, pkg2_kip1_info_t* ki) { if (!strcmp((const char *)ki->kip1->name, target_name)) { u32 size = 0; u8 *kipm_data = (u8 *)sd_file_read(kipm_path, &size); if (!kipm_data) return 1; u32 inject_size = size - sizeof(ki->kip1->caps); u8 *kip_patched_data = (u8 *)malloc(ki->size + inject_size); // Copy headers. memcpy(kip_patched_data, ki->kip1, sizeof(pkg2_kip1_t)); pkg2_kip1_t *fs_kip = ki->kip1; ki->kip1 = (pkg2_kip1_t *)kip_patched_data; ki->size = ki->size + inject_size; // Patch caps. memcpy(&ki->kip1->caps, kipm_data, sizeof(ki->kip1->caps)); // Copy our .text data. memcpy(&ki->kip1->data, kipm_data + sizeof(ki->kip1->caps), inject_size); u32 new_offset = 0; for (u32 currSectIdx = 0; currSectIdx < KIP1_NUM_SECTIONS - 2; currSectIdx++) { if(!currSectIdx) // .text. { memcpy(ki->kip1->data + inject_size, fs_kip->data, fs_kip->sections[0].size_comp); ki->kip1->sections[0].size_decomp += inject_size; ki->kip1->sections[0].size_comp += inject_size; } else // Others. { if (currSectIdx < 3) memcpy(ki->kip1->data + new_offset + inject_size, fs_kip->data + new_offset, fs_kip->sections[currSectIdx].size_comp); ki->kip1->sections[currSectIdx].offset += inject_size; } new_offset += fs_kip->sections[currSectIdx].size_comp; } // Patch PMC capabilities for 1.0.0. if (!emu_cfg.fs_ver) { for (u32 i = 0; i < 0x20; i++) { if (ki->kip1->caps[i] == 0xFFFFFFFF) { ki->kip1->caps[i] = 0x07000E7F; break; } } } free(kipm_data); return 0; } return 1; } static bool ext_patches_parsed = false; const char* pkg2_patch_kips(link_t *info, char* patchNames) { if (patchNames == NULL || patchNames[0] == 0) return NULL; if (!ext_patches_parsed) { parse_external_kip_patches(); ext_patches_parsed = true; } static const u32 MAX_NUM_PATCHES_REQUESTED = sizeof(u32) * 8; char* patches[MAX_NUM_PATCHES_REQUESTED]; u32 numPatches = 1; patches[0] = patchNames; { for (char* p = patchNames; *p != 0; p++) { if (*p == ',') { *p = 0; patches[numPatches++] = p + 1; if (numPatches >= MAX_NUM_PATCHES_REQUESTED) return "too_many_patches"; } else if (*p >= 'A' && *p <= 'Z') *p += 0x20; } } u32 patchesApplied = 0; // Bitset over patches. for (u32 i = 0; i < numPatches; i++) { // Eliminate leading spaces. for (const char* p = patches[i]; *p != 0; p++) { if (*p == ' ' || *p == '\t' || *p == '\r' || *p == '\n') patches[i]++; else break; } int valueLen = strlen(patches[i]); if (valueLen == 0) continue; // Eliminate trailing spaces. for (int chIdx = valueLen - 1; chIdx >= 0; chIdx--) { const char* p = patches[i] + chIdx; if (*p == ' ' || *p == '\t' || *p == '\r' || *p == '\n') valueLen = chIdx; else break; } patches[i][valueLen] = 0; DPRINTF("Requested patch: '%s'\n", patches[i]); } u32 shaBuf[32 / sizeof(u32)]; LIST_FOREACH_ENTRY(pkg2_kip1_info_t, ki, info, link) { shaBuf[0] = 0; // sha256 for this kip not yet calculated. for (u32 currKipIdx = 0; currKipIdx < _kip_id_sets_cnt; currKipIdx++) { if (strncmp((const char*)ki->kip1->name, _kip_id_sets[currKipIdx].name, sizeof(ki->kip1->name)) != 0) continue; u32 bitsAffected = 0; kip1_patchset_t* currPatchset = _kip_id_sets[currKipIdx].patchset; while (currPatchset != NULL && currPatchset->name != NULL) { for (u32 i = 0; i < numPatches; i++) { // Continue if patch name does not match. if (strcmp(currPatchset->name, patches[i]) != 0) continue; bitsAffected = i + 1; break; } currPatchset++; } // Dont bother even hashing this KIP if we dont have any patches enabled for it. if (bitsAffected == 0) continue; if (shaBuf[0] == 0) { if (!se_calc_sha256_oneshot(shaBuf, ki->kip1, ki->size)) memset(shaBuf, 0, sizeof(shaBuf)); } if (memcmp(shaBuf, _kip_id_sets[currKipIdx].hash, sizeof(_kip_id_sets[0].hash)) != 0) continue; // Find out which sections are affected by the enabled patches, to know which to decompress. bitsAffected = 0; currPatchset = _kip_id_sets[currKipIdx].patchset; while (currPatchset != NULL && currPatchset->name != NULL) { if (currPatchset->patches != NULL) { for (u32 currEnabIdx = 0; currEnabIdx < numPatches; currEnabIdx++) { if (strcmp(currPatchset->name, patches[currEnabIdx])) continue; if (!strcmp(currPatchset->name, "emummc")) bitsAffected |= 1u << GET_KIP_PATCH_SECTION(currPatchset->patches->offset); for (const kip1_patch_t* currPatch=currPatchset->patches; currPatch != NULL && (currPatch->length != 0); currPatch++) bitsAffected |= 1u << GET_KIP_PATCH_SECTION(currPatch->offset); } } currPatchset++; } // Got patches to apply to this kip, have to decompress it. #ifdef DEBUG_PRINTING u32 preDecompTime = get_tmr_us(); #endif if (pkg2_decompress_kip(ki, bitsAffected)) return (const char*)ki->kip1->name; // Failed to decompress. #ifdef DEBUG_PRINTING u32 postDecompTime = get_tmr_us(); if (!se_calc_sha256_oneshot(shaBuf, ki->kip1, ki->size)) memset(shaBuf, 0, sizeof(shaBuf)); DPRINTF("%dms %s KIP1 size %d hash %08X\n", (postDecompTime-preDecompTime) / 1000, ki->kip1->name, (int)ki->size, __builtin_bswap32(shaBuf[0])); #endif currPatchset = _kip_id_sets[currKipIdx].patchset; bool emummc_patch_selected = false; while (currPatchset != NULL && currPatchset->name != NULL) { for (u32 currEnabIdx = 0; currEnabIdx < numPatches; currEnabIdx++) { if (strcmp(currPatchset->name, patches[currEnabIdx])) continue; u32 appliedMask = 1u << currEnabIdx; if (!strcmp(currPatchset->name, "emummc")) { emummc_patch_selected = true; patchesApplied |= appliedMask; break; } if (currPatchset->patches == NULL) { gfx_printf("Patch '%s' not necessary for %s KIP1\n", currPatchset->name, (const char*)ki->kip1->name); patchesApplied |= appliedMask; break; } unsigned char* kipSectData = ki->kip1->data; for (u32 currSectIdx = 0; currSectIdx < KIP1_NUM_SECTIONS; currSectIdx++) { if (bitsAffected & (1u << currSectIdx)) { gfx_printf("Applying patch '%s' on %s KIP1 sect %d\n", currPatchset->name, (const char*)ki->kip1->name, currSectIdx); for (const kip1_patch_t* currPatch = currPatchset->patches; currPatch != NULL && currPatch->srcData != 0; currPatch++) { if (GET_KIP_PATCH_SECTION(currPatch->offset) != currSectIdx) continue; if (!currPatch->length) { gfx_con.mute = false; gfx_printf("%kPatch is empty!%k\n", 0xFFFF0000, 0xFFCCCCCC); return currPatchset->name; // MUST stop here as it's not probably intended. } u32 currOffset = GET_KIP_PATCH_OFFSET(currPatch->offset); // If source is does not match and is not already patched, throw an error. if ((memcmp(&kipSectData[currOffset], currPatch->srcData, currPatch->length) != 0) && (memcmp(&kipSectData[currOffset], currPatch->dstData, currPatch->length) != 0)) { gfx_con.mute = false; gfx_printf("%kPatch data mismatch at 0x%x!%k\n", 0xFFFF0000, currOffset, 0xFFCCCCCC); return currPatchset->name; // MUST stop here as kip is likely corrupt. } else { DPRINTF("Patching %d bytes at offset 0x%x\n", currPatch->length, currOffset); memcpy(&kipSectData[currOffset], currPatch->dstData, currPatch->length); } } } kipSectData += ki->kip1->sections[currSectIdx].size_comp; } patchesApplied |= appliedMask; break; } currPatchset++; } if (emummc_patch_selected && !strncmp(_kip_id_sets[currKipIdx].name, "FS", 2)) { emummc_patch_selected = false; emu_cfg.fs_ver = currKipIdx; if (currKipIdx) emu_cfg.fs_ver--; if (currKipIdx > 17) emu_cfg.fs_ver -= 2; gfx_printf("Injecting emuMMC. FS ver: %d\n", emu_cfg.fs_ver); if (_kipm_inject("/bootloader/sys/emummc.kipm", "FS", ki)) return "emummc"; } } } for (u32 i = 0; i < numPatches; i++) { if ((patchesApplied & (1u << i)) == 0) return patches[i]; } return NULL; } static const u8 mkey_vector_8xx[][0x10] = { // Master key 8 encrypted with 9. (8.1.0 with 9.0.0) { 0x4D, 0xD9, 0x98, 0x42, 0x45, 0x0D, 0xB1, 0x3C, 0x52, 0x0C, 0x9A, 0x44, 0xBB, 0xAD, 0xAF, 0x80 }, // Master key 9 encrypted with 10. (9.0.0 with 9.1.0) { 0xB8, 0x96, 0x9E, 0x4A, 0x00, 0x0D, 0xD6, 0x28, 0xB3, 0xD1, 0xDB, 0x68, 0x5F, 0xFB, 0xE1, 0x2A } }; static bool _pkg2_key_unwrap_validate(pkg2_hdr_t *tmp_test, pkg2_hdr_t *hdr, u8 src_slot, u8 *mkey, const u8 *key_seed) { // Decrypt older encrypted mkey. se_aes_crypt_ecb(src_slot, 0, mkey, 0x10, key_seed, 0x10); // Set and unwrap pkg2 key. se_aes_key_clear(9); se_aes_key_set(9, mkey, 0x10); se_aes_unwrap_key(9, 9, package2_keyseed); // Decrypt header. se_aes_crypt_ctr(9, tmp_test, sizeof(pkg2_hdr_t), hdr, sizeof(pkg2_hdr_t), hdr); // Return if header is valid. return (tmp_test->magic == PKG2_MAGIC); } u8 pkg2_keyslot; pkg2_hdr_t *pkg2_decrypt(void *data, u8 kb) { pkg2_hdr_t mkey_test; u8 *pdata = (u8 *)data; pkg2_keyslot = 8; // Skip signature. pdata += 0x100; pkg2_hdr_t *hdr = (pkg2_hdr_t *)pdata; // Skip header. pdata += sizeof(pkg2_hdr_t); // Check if we need to decrypt with newer mkeys. Valid for sept for 8.1.0 and up. se_aes_crypt_ctr(8, &mkey_test, sizeof(pkg2_hdr_t), hdr, sizeof(pkg2_hdr_t), hdr); if (mkey_test.magic == PKG2_MAGIC) goto key_found; // Decrypt older pkg2 via new mkeys. if ((kb >= KB_FIRMWARE_VERSION_810) && (kb < KB_FIRMWARE_VERSION_MAX)) { u8 tmp_mkey[0x10]; u8 decr_slot = !h_cfg.aes_slots_new ? 12 : 13; // Sept mkey. u8 mkey_seeds_cnt = sizeof(mkey_vector_8xx) / 0x10; u8 mkey_seeds_idx = mkey_seeds_cnt; // Real index + 1. u8 mkey_seeds_min_idx = mkey_seeds_cnt - (KB_FIRMWARE_VERSION_MAX - kb); while (mkey_seeds_cnt) { // Decrypt and validate mkey. int res = _pkg2_key_unwrap_validate(&mkey_test, hdr, decr_slot, tmp_mkey, mkey_vector_8xx[mkey_seeds_idx - 1]); if (res) { pkg2_keyslot = 9; goto key_found; } else { // Set current mkey in order to decrypt a lower mkey. mkey_seeds_idx--; se_aes_key_clear(9); se_aes_key_set(9, tmp_mkey, 0x10); decr_slot = 9; // Temp key. // Check if we tried last key for that pkg2 version. // And start with a lower mkey in case sept is older. if (mkey_seeds_idx == mkey_seeds_min_idx) { mkey_seeds_cnt--; mkey_seeds_idx = mkey_seeds_cnt; decr_slot = !h_cfg.aes_slots_new ? 12 : 13; // Sept mkey. } // Out of keys. pkg2 is latest or process failed. if (!mkey_seeds_cnt) se_aes_key_clear(9); } } } key_found: // Decrypt header. se_aes_crypt_ctr(pkg2_keyslot, hdr, sizeof(pkg2_hdr_t), hdr, sizeof(pkg2_hdr_t), hdr); //gfx_hexdump((u32)hdr, hdr, 0x100); if (hdr->magic != PKG2_MAGIC) return NULL; for (u32 i = 0; i < 4; i++) { DPRINTF("sec %d has size %08X\n", i, hdr->sec_size[i]); if (!hdr->sec_size[i]) continue; se_aes_crypt_ctr(pkg2_keyslot, pdata, hdr->sec_size[i], pdata, hdr->sec_size[i], &hdr->sec_ctr[i * 0x10]); //gfx_hexdump((u32)pdata, pdata, 0x100); pdata += hdr->sec_size[i]; } return hdr; } static u32 _pkg2_ini1_build(u8 *pdst, pkg2_hdr_t *hdr, link_t *kips_info, bool new_pkg2) { u32 ini1_size = sizeof(pkg2_ini1_t); pkg2_ini1_t *ini1 = (pkg2_ini1_t *)pdst; memset(ini1, 0, sizeof(pkg2_ini1_t)); ini1->magic = INI1_MAGIC; pdst += sizeof(pkg2_ini1_t); LIST_FOREACH_ENTRY(pkg2_kip1_info_t, ki, kips_info, link) { DPRINTF("adding kip1 '%s' @ %08X (%08X)\n", ki->kip1->name, (u32)ki->kip1, ki->size); memcpy(pdst, ki->kip1, ki->size); pdst += ki->size; ini1_size += ki->size; ini1->num_procs++; } ini1_size = ALIGN(ini1_size, 4); ini1->size = ini1_size; if (!new_pkg2) { hdr->sec_size[PKG2_SEC_INI1] = ini1_size; hdr->sec_off[PKG2_SEC_INI1] = 0x14080000; se_aes_crypt_ctr(8, ini1, ini1_size, ini1, ini1_size, &hdr->sec_ctr[PKG2_SEC_INI1 * 0x10]); } else { hdr->sec_size[PKG2_SEC_INI1] = 0; hdr->sec_off[PKG2_SEC_INI1] = 0; } return ini1_size; } void pkg2_build_encrypt(void *dst, void *hos_ctxt, link_t *kips_info) { u8 *pdst = (u8 *)dst; launch_ctxt_t * ctxt = (launch_ctxt_t *)hos_ctxt; u32 kernel_size = ctxt->kernel_size; // Signature. memset(pdst, 0, 0x100); pdst += 0x100; // Header. pkg2_hdr_t *hdr = (pkg2_hdr_t *)pdst; memset(hdr, 0, sizeof(pkg2_hdr_t)); // Set initial header values. hdr->magic = PKG2_MAGIC; hdr->bl_ver = 0; hdr->pkg2_ver = 0xFF; if (!ctxt->new_pkg2) hdr->base = 0x10000000; else hdr->base = 0x60000; DPRINTF("kernel @ %08X (%08X)\n", (u32)ctxt->kernel, kernel_size); pdst += sizeof(pkg2_hdr_t); // Kernel. memcpy(pdst, ctxt->kernel, kernel_size); if (!ctxt->new_pkg2) hdr->sec_off[PKG2_SEC_KERNEL] = 0x10000000; else { // Set new INI1 offset to kernel. *(u32 *)(pdst + pkg2_newkern_ini1_val) = kernel_size; // Build INI1 for new Package2. kernel_size += _pkg2_ini1_build(pdst + kernel_size, hdr, kips_info, ctxt->new_pkg2); hdr->sec_off[PKG2_SEC_KERNEL] = 0x60000; } hdr->sec_size[PKG2_SEC_KERNEL] = kernel_size; se_aes_crypt_ctr(pkg2_keyslot, pdst, kernel_size, pdst, kernel_size, &hdr->sec_ctr[PKG2_SEC_KERNEL * 0x10]); pdst += kernel_size; DPRINTF("kernel encrypted\n"); /// Build INI1 for old Package2. u32 ini1_size = 0; if (!ctxt->new_pkg2) ini1_size = _pkg2_ini1_build(pdst, hdr, kips_info, false); DPRINTF("INI1 encrypted\n"); // Calculate SHA256 over encrypted Kernel and INI1. u8 *pk2_hash_data = (u8 *)dst + 0x100 + sizeof(pkg2_hdr_t); se_calc_sha256_oneshot(&hdr->sec_sha256[0x20 * PKG2_SEC_KERNEL], (void *)pk2_hash_data, hdr->sec_size[PKG2_SEC_KERNEL]); pk2_hash_data += hdr->sec_size[PKG2_SEC_KERNEL]; se_calc_sha256_oneshot(&hdr->sec_sha256[0x20 * PKG2_SEC_INI1], (void *)pk2_hash_data, hdr->sec_size[PKG2_SEC_INI1]); //Encrypt header. u8 key_ver = ctxt->pkg1_id->kb ? ctxt->pkg1_id->kb + 1 : 0; *(u32 *)hdr->ctr = 0x100 + sizeof(pkg2_hdr_t) + kernel_size + ini1_size; hdr->ctr[4] = key_ver; se_aes_crypt_ctr(pkg2_keyslot, hdr, sizeof(pkg2_hdr_t), hdr, sizeof(pkg2_hdr_t), hdr); memset(hdr->ctr, 0 , 0x10); *(u32 *)hdr->ctr = 0x100 + sizeof(pkg2_hdr_t) + kernel_size + ini1_size; hdr->ctr[4] = key_ver; if (pkg2_keyslot != 8) se_aes_key_clear(9); }