/* * Copyright (c) 2018 naehrwert * Copyright (c) 2018 st4rk * Copyright (c) 2018 Ced2911 * Copyright (c) 2018 CTCaer * Copyright (c) 2018 balika011 * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "hos.h" #include "hos_config.h" #include "../config/config.h" #include "../gfx/di.h" #include "../mem/heap.h" #include "../mem/mc.h" #include "../sec/se.h" #include "../sec/se_t210.h" #include "../sec/tsec.h" #include "../soc/cluster.h" #include "../soc/fuse.h" #include "../soc/pmc.h" #include "../soc/t210.h" #include "../storage/nx_emmc.h" #include "../storage/sdmmc.h" #include "../utils/util.h" #include "../gfx/gfx.h" extern gfx_ctxt_t gfx_ctxt; extern gfx_con_t gfx_con; extern hekate_config h_cfg; extern void sd_unmount(); //#define DPRINTF(...) gfx_printf(&gfx_con, __VA_ARGS__) #define DPRINTF(...) #define KB_FIRMWARE_VERSION_100_200 0 #define KB_FIRMWARE_VERSION_300 1 #define KB_FIRMWARE_VERSION_301 2 #define KB_FIRMWARE_VERSION_400 3 #define KB_FIRMWARE_VERSION_500 4 #define KB_FIRMWARE_VERSION_600 5 #define KB_FIRMWARE_VERSION_MAX KB_FIRMWARE_VERSION_600 // Exosphère magic "XBC0". #define MAGIC_EXOSPHERE 0x30434258 static const u8 keyblob_keyseeds[][0x10] = { { 0xDF, 0x20, 0x6F, 0x59, 0x44, 0x54, 0xEF, 0xDC, 0x70, 0x74, 0x48, 0x3B, 0x0D, 0xED, 0x9F, 0xD3 }, //1.0.0 { 0x0C, 0x25, 0x61, 0x5D, 0x68, 0x4C, 0xEB, 0x42, 0x1C, 0x23, 0x79, 0xEA, 0x82, 0x25, 0x12, 0xAC }, //3.0.0 { 0x33, 0x76, 0x85, 0xEE, 0x88, 0x4A, 0xAE, 0x0A, 0xC2, 0x8A, 0xFD, 0x7D, 0x63, 0xC0, 0x43, 0x3B }, //3.0.1 { 0x2D, 0x1F, 0x48, 0x80, 0xED, 0xEC, 0xED, 0x3E, 0x3C, 0xF2, 0x48, 0xB5, 0x65, 0x7D, 0xF7, 0xBE }, //4.0.0 { 0xBB, 0x5A, 0x01, 0xF9, 0x88, 0xAF, 0xF5, 0xFC, 0x6C, 0xFF, 0x07, 0x9E, 0x13, 0x3C, 0x39, 0x80 }, //5.0.0 { 0xD8, 0xCC, 0xE1, 0x26, 0x6A, 0x35, 0x3F, 0xCC, 0x20, 0xF3, 0x2D, 0x3B, 0x51, 0x7D, 0xE9, 0xC0 } //6.0.0 }; static const u8 cmac_keyseed[0x10] = { 0x59, 0xC7, 0xFB, 0x6F, 0xBE, 0x9B, 0xBE, 0x87, 0x65, 0x6B, 0x15, 0xC0, 0x53, 0x73, 0x36, 0xA5 }; static const u8 master_keyseed_retail[0x10] = { 0xD8, 0xA2, 0x41, 0x0A, 0xC6, 0xC5, 0x90, 0x01, 0xC6, 0x1D, 0x6A, 0x26, 0x7C, 0x51, 0x3F, 0x3C }; static const u8 console_keyseed[0x10] = { 0x4F, 0x02, 0x5F, 0x0E, 0xB6, 0x6D, 0x11, 0x0E, 0xDC, 0x32, 0x7D, 0x41, 0x86, 0xC2, 0xF4, 0x78 }; static const u8 key8_keyseed[] = { 0xFB, 0x8B, 0x6A, 0x9C, 0x79, 0x00, 0xC8, 0x49, 0xEF, 0xD2, 0x4D, 0x85, 0x4D, 0x30, 0xA0, 0xC7 }; static const u8 master_keyseed_4xx_5xx[0x10] = { 0x2D, 0xC1, 0xF4, 0x8D, 0xF3, 0x5B, 0x69, 0x33, 0x42, 0x10, 0xAC, 0x65, 0xDA, 0x90, 0x46, 0x66 }; static const u8 console_keyseed_4xx_5xx[0x10] = { 0x0C, 0x91, 0x09, 0xDB, 0x93, 0x93, 0x07, 0x81, 0x07, 0x3C, 0xC4, 0x16, 0x22, 0x7C, 0x6C, 0x28 }; static void _se_lock() { for (u32 i = 0; i < 16; i++) se_key_acc_ctrl(i, 0x15); for (u32 i = 0; i < 2; i++) se_rsa_acc_ctrl(i, 1); SE(0x4) = 0; // Make this reg secure only. SE(SE_KEY_TABLE_ACCESS_LOCK_OFFSET) = 0; // Make all key access regs secure only. SE(SE_RSA_KEYTABLE_ACCESS_LOCK_OFFSET) = 0; // Make all RSA access regs secure only. SE(SE_SECURITY_0) &= 0xFFFFFFFB; // Make access lock regs secure only. memset((void *)IPATCH_BASE, 0, 13); SB(SB_CSR) = 0x10; // Protected IROM enable. // This is useful for documenting the bits in the SE config registers, so we can keep it around. /*gfx_printf(&gfx_con, "SE(SE_SECURITY_0) = %08X\n", SE(SE_SECURITY_0)); gfx_printf(&gfx_con, "SE(0x4) = %08X\n", SE(0x4)); gfx_printf(&gfx_con, "SE(SE_KEY_TABLE_ACCESS_LOCK_OFFSET) = %08X\n", SE(SE_KEY_TABLE_ACCESS_LOCK_OFFSET)); gfx_printf(&gfx_con, "SE(SE_RSA_KEYTABLE_ACCESS_LOCK_OFFSET) = %08X\n", SE(SE_RSA_KEYTABLE_ACCESS_LOCK_OFFSET)); for(u32 i = 0; i < 16; i++) gfx_printf(&gfx_con, "%02X ", SE(SE_KEY_TABLE_ACCESS_REG_OFFSET + i * 4) & 0xFF); gfx_putc(&gfx_con, '\n'); for(u32 i = 0; i < 2; i++) gfx_printf(&gfx_con, "%02X ", SE(SE_RSA_KEYTABLE_ACCESS_REG_OFFSET + i * 4) & 0xFF); gfx_putc(&gfx_con, '\n'); gfx_hexdump(&gfx_con, SE_BASE, (void *)SE_BASE, 0x400);*/ } void _pmc_scratch_lock(u32 kb) { switch (kb) { case KB_FIRMWARE_VERSION_100_200: case KB_FIRMWARE_VERSION_300: case KB_FIRMWARE_VERSION_301: PMC(APBDEV_PMC_SEC_DISABLE) = 0x7FFFF3; PMC(APBDEV_PMC_SEC_DISABLE2) = 0xFFFFFFFF; PMC(APBDEV_PMC_SEC_DISABLE3) = 0xFFAFFFFF; PMC(APBDEV_PMC_SEC_DISABLE4) = 0xFFFFFFFF; PMC(APBDEV_PMC_SEC_DISABLE5) = 0xFFFFFFFF; PMC(APBDEV_PMC_SEC_DISABLE6) = 0xFFFFFFFF; PMC(APBDEV_PMC_SEC_DISABLE7) = 0xFFFFFFFF; PMC(APBDEV_PMC_SEC_DISABLE8) = 0xFFAAFFFF; break; case KB_FIRMWARE_VERSION_400: case KB_FIRMWARE_VERSION_500: case KB_FIRMWARE_VERSION_600: default: PMC(APBDEV_PMC_SEC_DISABLE2) |= 0x3FCFFFF; PMC(APBDEV_PMC_SEC_DISABLE4) |= 0x3F3FFFFF; PMC(APBDEV_PMC_SEC_DISABLE5) = 0xFFFFFFFF; PMC(APBDEV_PMC_SEC_DISABLE6) |= 0xF3FFC00F; PMC(APBDEV_PMC_SEC_DISABLE7) |= 0x3FFFFF; PMC(APBDEV_PMC_SEC_DISABLE8) |= 0xFF; break; } } int keygen(u8 *keyblob, u32 kb, void *tsec_fw) { u8 tmp[0x10]; if (kb > KB_FIRMWARE_VERSION_MAX) return 0; se_key_acc_ctrl(13, 0x15); se_key_acc_ctrl(14, 0x15); // Get TSEC key. if (tsec_query(tmp, 1, tsec_fw) < 0) return 0; se_aes_key_set(13, tmp, 0x10); // Derive keyblob keys from TSEC+SBK. se_aes_crypt_block_ecb(13, 0, tmp, keyblob_keyseeds[0]); se_aes_unwrap_key(15, 14, tmp); se_aes_crypt_block_ecb(13, 0, tmp, keyblob_keyseeds[kb]); se_aes_unwrap_key(13, 14, tmp); // Clear SBK. se_aes_key_clear(14); //TODO: verify keyblob CMAC. //se_aes_unwrap_key(11, 13, cmac_keyseed); //se_aes_cmac(tmp, 0x10, 11, keyblob + 0x10, 0xA0); //if (!memcmp(keyblob, tmp, 0x10)) // return 0; se_aes_crypt_block_ecb(13, 0, tmp, cmac_keyseed); se_aes_unwrap_key(11, 13, cmac_keyseed); // Decrypt keyblob and set keyslots. se_aes_crypt_ctr(13, keyblob + 0x20, 0x90, keyblob + 0x20, 0x90, keyblob + 0x10); se_aes_key_set(11, keyblob + 0x20 + 0x80, 0x10); // Package1 key. se_aes_key_set(12, keyblob + 0x20, 0x10); se_aes_key_set(13, keyblob + 0x20, 0x10); se_aes_crypt_block_ecb(12, 0, tmp, master_keyseed_retail); switch (kb) { case KB_FIRMWARE_VERSION_100_200: case KB_FIRMWARE_VERSION_300: case KB_FIRMWARE_VERSION_301: se_aes_unwrap_key(13, 15, console_keyseed); se_aes_unwrap_key(12, 12, master_keyseed_retail); break; case KB_FIRMWARE_VERSION_400: se_aes_unwrap_key(13, 15, console_keyseed_4xx_5xx); se_aes_unwrap_key(15, 15, console_keyseed); se_aes_unwrap_key(14, 12, master_keyseed_4xx_5xx); se_aes_unwrap_key(12, 12, master_keyseed_retail); break; case KB_FIRMWARE_VERSION_500: case KB_FIRMWARE_VERSION_600: default: se_aes_unwrap_key(10, 15, console_keyseed_4xx_5xx); se_aes_unwrap_key(15, 15, console_keyseed); se_aes_unwrap_key(14, 12, master_keyseed_4xx_5xx); se_aes_unwrap_key(12, 12, master_keyseed_retail); break; } // Package2 key. se_key_acc_ctrl(8, 0x15); se_aes_unwrap_key(8, 12, key8_keyseed); return 1; } static int _read_emmc_pkg1(launch_ctxt_t *ctxt) { int res = 0; sdmmc_storage_t storage; sdmmc_t sdmmc; sdmmc_storage_init_mmc(&storage, &sdmmc, SDMMC_4, SDMMC_BUS_WIDTH_8, 4); // Read package1. ctxt->pkg1 = (void *)malloc(0x40000); sdmmc_storage_set_mmc_partition(&storage, 1); sdmmc_storage_read(&storage, 0x100000 / NX_EMMC_BLOCKSIZE, 0x40000 / NX_EMMC_BLOCKSIZE, ctxt->pkg1); ctxt->pkg1_id = pkg1_identify(ctxt->pkg1); if (!ctxt->pkg1_id) { gfx_printf(&gfx_con, "%kUnknown package1,\nVersion (= '%s').%k\n", 0xFFFF0000, (char *)ctxt->pkg1 + 0x10, 0xFFCCCCCC); goto out; } gfx_printf(&gfx_con, "Identified package1 ('%s'),\nKeyblob version %d\n\n", (char *)(ctxt->pkg1 + 0x10), ctxt->pkg1_id->kb); // Read the correct keyblob. ctxt->keyblob = (u8 *)calloc(NX_EMMC_BLOCKSIZE, 1); sdmmc_storage_read(&storage, 0x180000 / NX_EMMC_BLOCKSIZE + ctxt->pkg1_id->kb, 1, ctxt->keyblob); res = 1; out:; sdmmc_storage_end(&storage); return res; } static u8 *_read_emmc_pkg2(launch_ctxt_t *ctxt) { u8 *bctBuf = NULL; sdmmc_storage_t storage; sdmmc_t sdmmc; if (!sdmmc_storage_init_mmc(&storage, &sdmmc, SDMMC_4, SDMMC_BUS_WIDTH_8, 4)) return NULL; sdmmc_storage_set_mmc_partition(&storage, 0); // Parse eMMC GPT. LIST_INIT(gpt); nx_emmc_gpt_parse(&gpt, &storage); DPRINTF("Parsed GPT\n"); // Find package2 partition. emmc_part_t *pkg2_part = nx_emmc_part_find(&gpt, "BCPKG2-1-Normal-Main"); if (!pkg2_part) goto out; // Read in package2 header and get package2 real size. //TODO: implement memalign for DMA buffers. static const u32 BCT_SIZE = 0x4000; bctBuf = (u8 *)malloc(BCT_SIZE); nx_emmc_part_read(&storage, pkg2_part, BCT_SIZE / NX_EMMC_BLOCKSIZE, 1, bctBuf); u32 *hdr = (u32 *)(bctBuf + 0x100); u32 pkg2_size = hdr[0] ^ hdr[2] ^ hdr[3]; DPRINTF("pkg2 size on emmc is %08X\n", pkg2_size); // Read in Boot Config. memset(bctBuf, 0, BCT_SIZE); nx_emmc_part_read(&storage, pkg2_part, 0, BCT_SIZE / NX_EMMC_BLOCKSIZE, bctBuf); // Read in package2. u32 pkg2_size_aligned = ALIGN(pkg2_size, NX_EMMC_BLOCKSIZE); DPRINTF("pkg2 size aligned is %08X\n", pkg2_size_aligned); ctxt->pkg2 = malloc(pkg2_size_aligned); ctxt->pkg2_size = pkg2_size; nx_emmc_part_read(&storage, pkg2_part, BCT_SIZE / NX_EMMC_BLOCKSIZE, pkg2_size_aligned / NX_EMMC_BLOCKSIZE, ctxt->pkg2); out:; nx_emmc_gpt_free(&gpt); sdmmc_storage_end(&storage); return bctBuf; } static void _free_launch_components(launch_ctxt_t *ctxt) { free(ctxt->keyblob); free(ctxt->pkg1); free(ctxt->pkg2); free(ctxt->warmboot); free(ctxt->secmon); free(ctxt->kernel); free(ctxt->kip1_patches); } int hos_launch(ini_sec_t *cfg) { int bootStateDramPkg2 = 0; int bootStatePkg2Continue = 0; int exoFwNumber = 0; launch_ctxt_t ctxt; memset(&ctxt, 0, sizeof(launch_ctxt_t)); list_init(&ctxt.kip1_list); if (!gfx_con.mute) gfx_clear_grey(&gfx_ctxt, 0x1B); gfx_con_setpos(&gfx_con, 0, 0); // Try to parse config if present. if (cfg && !_parse_boot_config(&ctxt, cfg)) return 0; gfx_printf(&gfx_con, "Initializing...\n\n"); // Read package1 and the correct keyblob. if (!_read_emmc_pkg1(&ctxt)) return 0; gfx_printf(&gfx_con, "Loaded package1 and keyblob\n"); // Generate keys. if (!h_cfg.se_keygen_done) { keygen(ctxt.keyblob, ctxt.pkg1_id->kb, (u8 *)ctxt.pkg1 + ctxt.pkg1_id->tsec_off); h_cfg.se_keygen_done = 1; DPRINTF("Generated keys\n"); } // Decrypt and unpack package1 if we require parts of it. if (!ctxt.warmboot || !ctxt.secmon) { pkg1_decrypt(ctxt.pkg1_id, ctxt.pkg1); pkg1_unpack((void *)ctxt.pkg1_id->warmboot_base, (void *)ctxt.pkg1_id->secmon_base, NULL, ctxt.pkg1_id, ctxt.pkg1); gfx_printf(&gfx_con, "Decrypted and unpacked package1\n"); } // Replace 'warmboot.bin' if requested. if (ctxt.warmboot) memcpy((void *)ctxt.pkg1_id->warmboot_base, ctxt.warmboot, ctxt.warmboot_size); // Set warmboot address in PMC if required. if (ctxt.pkg1_id->set_warmboot) PMC(APBDEV_PMC_SCRATCH1) = ctxt.pkg1_id->warmboot_base; // Replace 'SecureMonitor' if requested. if (ctxt.secmon) memcpy((void *)ctxt.pkg1_id->secmon_base, ctxt.secmon, ctxt.secmon_size); else { // Else we patch it to allow for an unsigned package2 and patched kernel. patch_t *secmon_patchset = ctxt.pkg1_id->secmon_patchset; gfx_printf(&gfx_con, "%kPatching Security Monitor%k\n", 0xFFFFBA00, 0xFFCCCCCC); for (u32 i = 0; secmon_patchset[i].off != 0xFFFFFFFF; i++) *(vu32 *)(ctxt.pkg1_id->secmon_base + secmon_patchset[i].off) = secmon_patchset[i].val; } gfx_printf(&gfx_con, "Loaded warmboot.bin and secmon\n"); // Read package2. u8 *bootConfigBuf = _read_emmc_pkg2(&ctxt); if (!bootConfigBuf) return 0; gfx_printf(&gfx_con, "Read package2\n"); // Decrypt package2 and parse KIP1 blobs in INI1 section. pkg2_hdr_t *pkg2_hdr = pkg2_decrypt(ctxt.pkg2); LIST_INIT(kip1_info); pkg2_parse_kips(&kip1_info, pkg2_hdr); gfx_printf(&gfx_con, "Parsed ini1\n"); // Use the kernel included in package2 in case we didn't load one already. if (!ctxt.kernel) { ctxt.kernel = pkg2_hdr->data; ctxt.kernel_size = pkg2_hdr->sec_size[PKG2_SEC_KERNEL]; if (ctxt.svcperm || ctxt.debugmode || ctxt.atmosphere) { u32 kernel_crc32 = crc32c(ctxt.kernel, ctxt.kernel_size); ctxt.pkg2_kernel_id = pkg2_identify(kernel_crc32); // In case a kernel patch option is set; allows to disable SVC verification or/and enable debug mode. kernel_patch_t *kernel_patchset = ctxt.pkg2_kernel_id->kernel_patchset; if (kernel_patchset != NULL) { gfx_printf(&gfx_con, "%kPatching kernel%k\n", 0xFFFFBA00, 0xFFCCCCCC); u32 *temp; for (u32 i = 0; kernel_patchset[i].id != 0xFFFFFFFF; i++) { if ((ctxt.svcperm && kernel_patchset[i].id == SVC_VERIFY_DS) || (ctxt.debugmode && kernel_patchset[i].id == DEBUG_MODE_EN) || (ctxt.atmosphere && kernel_patchset[i].id == ATM_GEN_PATCH)) *(vu32 *)(ctxt.kernel + kernel_patchset[i].off) = kernel_patchset[i].val; else if (ctxt.atmosphere && kernel_patchset[i].id == ATM_ARR_PATCH) { temp = (u32 *)kernel_patchset[i].ptr; for (u32 j = 0; j < kernel_patchset[i].val; j++) *(vu32 *)(ctxt.kernel + kernel_patchset[i].off + (j << 2)) = temp[j]; } } } } } // Merge extra KIP1s into loaded ones. gfx_printf(&gfx_con, "%kPatching kernel initial processes%k\n", 0xFFFFBA00, 0xFFCCCCCC); LIST_FOREACH_ENTRY(merge_kip_t, mki, &ctxt.kip1_list, link) pkg2_merge_kip(&kip1_info, (pkg2_kip1_t *)mki->kip1); // Patch kip1s in memory if needed. const char* unappliedPatch = pkg2_patch_kips(&kip1_info, ctxt.kip1_patches); if (unappliedPatch != NULL) { gfx_printf(&gfx_con, "%kREQUESTED PATCH '%s' NOT APPLIED!%k\n", 0xFFFF0000, unappliedPatch, 0xFFCCCCCC); sd_unmount(); // Just exiting is not enough until pkg2_patch_kips stops modifying the string passed into it. while(1) {} // MUST stop here, because if user requests 'nogc' but it's not applied, their GC controller gets updated! } // Rebuild and encrypt package2. pkg2_build_encrypt((void *)0xA9800000, ctxt.kernel, ctxt.kernel_size, &kip1_info); gfx_printf(&gfx_con, "Rebuilt and loaded package2\n"); // Unmount SD card. sd_unmount(); gfx_printf(&gfx_con, "\n%kBooting...%k\n", 0xFF96FF00, 0xFFCCCCCC); se_aes_key_clear(8); se_aes_key_clear(11); // Final per firmware configuration. switch (ctxt.pkg1_id->kb) { case KB_FIRMWARE_VERSION_100_200: if (!exoFwNumber) { if (!strcmp(ctxt.pkg1_id->id, "20161121183008")) exoFwNumber = 1; else exoFwNumber = 2; } case KB_FIRMWARE_VERSION_300: case KB_FIRMWARE_VERSION_301: if (ctxt.pkg1_id->kb == KB_FIRMWARE_VERSION_300) PMC(APBDEV_PMC_SECURE_SCRATCH32) = 0xE3; // Warmboot 3.0.0 PA address id. else if (ctxt.pkg1_id->kb == KB_FIRMWARE_VERSION_301) PMC(APBDEV_PMC_SECURE_SCRATCH32) = 0x104; // Warmboot 3.0.1/.2 PA address id. se_key_acc_ctrl(12, 0xFF); se_key_acc_ctrl(13, 0xFF); bootStateDramPkg2 = 2; bootStatePkg2Continue = 3; if (!exoFwNumber) exoFwNumber = 3; break; case KB_FIRMWARE_VERSION_400: if (!exoFwNumber) exoFwNumber = 4; case KB_FIRMWARE_VERSION_500: if (!exoFwNumber) exoFwNumber = 5; case KB_FIRMWARE_VERSION_600: default: se_key_acc_ctrl(12, 0xFF); se_key_acc_ctrl(15, 0xFF); bootStateDramPkg2 = 2; bootStatePkg2Continue = 4; if (!exoFwNumber) exoFwNumber = 6; break; } // Clear BCT area for retail units and copy it over if dev unit. if (ctxt.pkg1_id->kb < KB_FIRMWARE_VERSION_600) { memset((void *)0x4003D000, 0, 0x3000); if ((fuse_read_odm(4) & 3) == 3) memcpy((void *)0x4003D000, bootConfigBuf, 0x1000); } else { memset((void *)0x4003F000, 0, 0x1000); if ((fuse_read_odm(4) & 3) == 3) memcpy((void *)0x4003F800, bootConfigBuf, 0x800); } free(bootConfigBuf); // Config Exosphère if booting Atmosphère. if (ctxt.atmosphere) { vu32 *mb_exo_magic = (vu32 *)0x40002E40; vu32 *mb_exo_fw_no = (vu32 *)0x40002E44; *mb_exo_magic = MAGIC_EXOSPHERE; *mb_exo_fw_no = exoFwNumber; } // Finalize MC carveout. if (ctxt.pkg1_id->kb <= KB_FIRMWARE_VERSION_301) mc_config_carveout(); // Lock SE before starting 'SecureMonitor'. _se_lock(); // Free allocated memory. ini_free_section(cfg); _free_launch_components(&ctxt); // < 4.0.0 pkg1.1 locks PMC scratches. //_pmc_scratch_lock(ctxt.pkg1_id->kb); // < 4.0.0 Signals - 0: Not ready, 1: BCT ready, 2: DRAM and pkg2 ready, 3: Continue boot. // >= 4.0.0 Signals - 0: Not ready, 1: BCT ready, 2: DRAM ready, 4: pkg2 ready and continue boot. vu32 *mb_in = (vu32 *)0x40002EF8; // Non-zero: Secmon ready. vu32 *mb_out = (vu32 *)0x40002EFC; // Start from DRAM ready signal. *mb_in = bootStateDramPkg2; *mb_out = 0; // Disable display. This must be executed before secmon to provide support for all fw versions. display_end(); // Wait for secmon to get ready. cluster_boot_cpu0(ctxt.pkg1_id->secmon_base); while (!*mb_out) usleep(1); // This only works when in IRAM or with a trained DRAM. // Signal pkg2 ready and continue boot. *mb_in = bootStatePkg2Continue; // Halt ourselves in waitevent state and resume if there's JTAG activity. while (1) FLOW_CTLR(FLOW_CTLR_HALT_COP_EVENTS) = 0x50000000; return 0; }