/* * Copyright (c) 2018 naehrwert * Copyright (c) 2018-2020 CTCaer * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "../soc/clock.h" #include "../soc/t210.h" #include "../utils/util.h" #include "../storage/sdmmc.h" /* * CLOCK Peripherals: * L 0 - 31 * H 32 - 63 * U 64 - 95 * V 96 - 127 * W 128 - 159 * X 160 - 191 * Y 192 - 223 */ /* clock_t: reset, enable, source, index, clk_src, clk_div */ static const clock_t _clock_uart[] = { /* UART A */ { CLK_RST_CONTROLLER_RST_DEVICES_L, CLK_RST_CONTROLLER_CLK_OUT_ENB_L, CLK_RST_CONTROLLER_CLK_SOURCE_UARTA, 6, 0, 2 }, /* UART B */ { CLK_RST_CONTROLLER_RST_DEVICES_L, CLK_RST_CONTROLLER_CLK_OUT_ENB_L, CLK_RST_CONTROLLER_CLK_SOURCE_UARTB, 7, 0, 2 }, /* UART C */ { CLK_RST_CONTROLLER_RST_DEVICES_H, CLK_RST_CONTROLLER_CLK_OUT_ENB_H, CLK_RST_CONTROLLER_CLK_SOURCE_UARTC, 23, 0, 2 }, /* UART D */ { CLK_RST_CONTROLLER_RST_DEVICES_U, CLK_RST_CONTROLLER_CLK_OUT_ENB_U, CLK_RST_CONTROLLER_CLK_SOURCE_UARTD, 1, 0, 2 }, /* UART E */ { CLK_RST_CONTROLLER_RST_DEVICES_Y, CLK_RST_CONTROLLER_CLK_OUT_ENB_Y, CLK_RST_CONTROLLER_CLK_SOURCE_UARTAPE, 20, 0, 2 } }; //I2C default parameters - TLOW: 4, THIGH: 2, DEBOUNCE: 0, FM_DIV: 26. static const clock_t _clock_i2c[] = { /* I2C1 */ { CLK_RST_CONTROLLER_RST_DEVICES_L, CLK_RST_CONTROLLER_CLK_OUT_ENB_L, CLK_RST_CONTROLLER_CLK_SOURCE_I2C1, 12, 0, 19 }, //20.4MHz -> 100KHz /* I2C2 */ { CLK_RST_CONTROLLER_RST_DEVICES_H, CLK_RST_CONTROLLER_CLK_OUT_ENB_H, CLK_RST_CONTROLLER_CLK_SOURCE_I2C2, 22, 0, 4 }, //81.6MHz -> 400KHz /* I2C3 */ { CLK_RST_CONTROLLER_RST_DEVICES_U, CLK_RST_CONTROLLER_CLK_OUT_ENB_U, CLK_RST_CONTROLLER_CLK_SOURCE_I2C3, 3, 0, 4 }, //81.6MHz -> 400KHz /* I2C4 */ { CLK_RST_CONTROLLER_RST_DEVICES_V, CLK_RST_CONTROLLER_CLK_OUT_ENB_V, CLK_RST_CONTROLLER_CLK_SOURCE_I2C4, 7, 0, 19 }, //20.4MHz -> 100KHz /* I2C5 */ { CLK_RST_CONTROLLER_RST_DEVICES_H, CLK_RST_CONTROLLER_CLK_OUT_ENB_H, CLK_RST_CONTROLLER_CLK_SOURCE_I2C5, 15, 0, 4 }, //81.6MHz -> 400KHz /* I2C6 */ { CLK_RST_CONTROLLER_RST_DEVICES_X, CLK_RST_CONTROLLER_CLK_OUT_ENB_X, CLK_RST_CONTROLLER_CLK_SOURCE_I2C6, 6, 0, 19 } //20.4MHz -> 100KHz }; static clock_t _clock_se = { CLK_RST_CONTROLLER_RST_DEVICES_V, CLK_RST_CONTROLLER_CLK_OUT_ENB_V, CLK_RST_CONTROLLER_CLK_SOURCE_SE, 31, 0, 0 }; static clock_t _clock_tzram = { CLK_RST_CONTROLLER_RST_DEVICES_V, CLK_RST_CONTROLLER_CLK_OUT_ENB_V, CLK_NO_SOURCE, 30, 0, 0 }; static clock_t _clock_host1x = { CLK_RST_CONTROLLER_RST_DEVICES_L, CLK_RST_CONTROLLER_CLK_OUT_ENB_L, CLK_RST_CONTROLLER_CLK_SOURCE_HOST1X, 28, 4, 3 }; static clock_t _clock_tsec = { CLK_RST_CONTROLLER_RST_DEVICES_U, CLK_RST_CONTROLLER_CLK_OUT_ENB_U, CLK_RST_CONTROLLER_CLK_SOURCE_TSEC, 19, 0, 2 }; static clock_t _clock_sor_safe = { CLK_RST_CONTROLLER_RST_DEVICES_Y, CLK_RST_CONTROLLER_CLK_OUT_ENB_Y, CLK_NO_SOURCE, 30, 0, 0 }; static clock_t _clock_sor0 = { CLK_RST_CONTROLLER_RST_DEVICES_X, CLK_RST_CONTROLLER_CLK_OUT_ENB_X, CLK_NO_SOURCE, 22, 0, 0 }; static clock_t _clock_sor1 = { CLK_RST_CONTROLLER_RST_DEVICES_X, CLK_RST_CONTROLLER_CLK_OUT_ENB_X, CLK_RST_CONTROLLER_CLK_SOURCE_SOR1, 23, 0, 2 }; static clock_t _clock_kfuse = { CLK_RST_CONTROLLER_RST_DEVICES_H, CLK_RST_CONTROLLER_CLK_OUT_ENB_H, CLK_NO_SOURCE, 8, 0, 0 }; static clock_t _clock_cl_dvfs = { CLK_RST_CONTROLLER_RST_DEVICES_W, CLK_RST_CONTROLLER_CLK_OUT_ENB_W, CLK_NO_SOURCE, 27, 0, 0 }; static clock_t _clock_coresight = { CLK_RST_CONTROLLER_RST_DEVICES_U, CLK_RST_CONTROLLER_CLK_OUT_ENB_U, CLK_RST_CONTROLLER_CLK_SOURCE_CSITE, 9, 0, 4 }; static clock_t _clock_pwm = { CLK_RST_CONTROLLER_RST_DEVICES_L, CLK_RST_CONTROLLER_CLK_OUT_ENB_L, CLK_RST_CONTROLLER_CLK_SOURCE_PWM, 17, 6, 4 // Fref: 6.2MHz. }; static clock_t _clock_sdmmc_legacy_tm = { CLK_RST_CONTROLLER_RST_DEVICES_Y, CLK_RST_CONTROLLER_CLK_OUT_ENB_Y, CLK_RST_CONTROLLER_CLK_SOURCE_SDMMC_LEGACY_TM, 1, 4, 66 }; void clock_enable(const clock_t *clk) { // Put clock into reset. CLOCK(clk->reset) = (CLOCK(clk->reset) & ~(1 << clk->index)) | (1 << clk->index); // Disable. CLOCK(clk->enable) &= ~(1 << clk->index); // Configure clock source if required. if (clk->source) CLOCK(clk->source) = clk->clk_div | (clk->clk_src << 29); // Enable. CLOCK(clk->enable) = (CLOCK(clk->enable) & ~(1 << clk->index)) | (1 << clk->index); usleep(2); // Take clock off reset. CLOCK(clk->reset) &= ~(1 << clk->index); } void clock_disable(const clock_t *clk) { // Put clock into reset. CLOCK(clk->reset) = (CLOCK(clk->reset) & ~(1 << clk->index)) | (1 << clk->index); // Disable. CLOCK(clk->enable) &= ~(1 << clk->index); } void clock_enable_fuse(bool enable) { CLOCK(CLK_RST_CONTROLLER_MISC_CLK_ENB) = (CLOCK(CLK_RST_CONTROLLER_MISC_CLK_ENB) & 0xEFFFFFFF) | ((enable & 1) << 28); } void clock_enable_uart(u32 idx) { clock_enable(&_clock_uart[idx]); } void clock_disable_uart(u32 idx) { clock_disable(&_clock_uart[idx]); } #define UART_SRC_CLK_DIV_EN (1 << 24) int clock_uart_use_src_div(u32 idx, u32 baud) { u32 clk_src_div = CLOCK(_clock_uart[idx].source) & 0xE0000000; if (baud == 1000000) CLOCK(_clock_uart[idx].source) = clk_src_div | UART_SRC_CLK_DIV_EN | 49; else { CLOCK(_clock_uart[idx].source) = clk_src_div | 2; return 1; } return 0; } void clock_enable_i2c(u32 idx) { clock_enable(&_clock_i2c[idx]); } void clock_disable_i2c(u32 idx) { clock_disable(&_clock_i2c[idx]); } void clock_enable_se() { clock_enable(&_clock_se); } void clock_enable_tzram() { clock_enable(&_clock_tzram); } void clock_enable_host1x() { clock_enable(&_clock_host1x); } void clock_disable_host1x() { clock_disable(&_clock_host1x); } void clock_enable_tsec() { clock_enable(&_clock_tsec); } void clock_disable_tsec() { clock_disable(&_clock_tsec); } void clock_enable_sor_safe() { clock_enable(&_clock_sor_safe); } void clock_disable_sor_safe() { clock_disable(&_clock_sor_safe); } void clock_enable_sor0() { clock_enable(&_clock_sor0); } void clock_disable_sor0() { clock_disable(&_clock_sor0); } void clock_enable_sor1() { clock_enable(&_clock_sor1); } void clock_disable_sor1() { clock_disable(&_clock_sor1); } void clock_enable_kfuse() { //clock_enable(&_clock_kfuse); CLOCK(CLK_RST_CONTROLLER_RST_DEVICES_H) = (CLOCK(CLK_RST_CONTROLLER_RST_DEVICES_H) & 0xFFFFFEFF) | 0x100; CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_H) &= 0xFFFFFEFF; CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_H) = (CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_H) & 0xFFFFFEFF) | 0x100; usleep(10); CLOCK(CLK_RST_CONTROLLER_RST_DEVICES_H) &= 0xFFFFFEFF; usleep(20); } void clock_disable_kfuse() { clock_disable(&_clock_kfuse); } void clock_enable_cl_dvfs() { clock_enable(&_clock_cl_dvfs); } void clock_disable_cl_dvfs() { clock_disable(&_clock_cl_dvfs); } void clock_enable_coresight() { clock_enable(&_clock_coresight); } void clock_disable_coresight() { clock_disable(&_clock_coresight); } void clock_enable_pwm() { clock_enable(&_clock_pwm); } void clock_disable_pwm() { clock_disable(&_clock_pwm); } void clock_enable_pllc(u32 divn) { u8 pll_divn_curr = (CLOCK(CLK_RST_CONTROLLER_PLLC_BASE) >> 10) & 0xFF; // Check if already enabled and configured. if ((CLOCK(CLK_RST_CONTROLLER_PLLC_BASE) & PLLCX_BASE_ENABLE) && (pll_divn_curr == divn)) return; // Take PLLC out of reset and set basic misc parameters. CLOCK(CLK_RST_CONTROLLER_PLLC_MISC) = ((CLOCK(CLK_RST_CONTROLLER_PLLC_MISC) & 0xFFF0000F) & ~PLLC_MISC_RESET) | (0x80000 << 4); // PLLC_EXT_FRU. CLOCK(CLK_RST_CONTROLLER_PLLC_MISC_2) |= 0xF0 << 8; // PLLC_FLL_LD_MEM. // Disable PLL and IDDQ in case they are on. CLOCK(CLK_RST_CONTROLLER_PLLC_BASE) &= ~PLLCX_BASE_ENABLE; CLOCK(CLK_RST_CONTROLLER_PLLC_MISC_1) &= ~PLLC_MISC1_IDDQ; usleep(10); // Set PLLC dividers. CLOCK(CLK_RST_CONTROLLER_PLLC_BASE) = (divn << 10) | 4; // DIVM: 4, DIVP: 1. // Enable PLLC and wait for Phase and Frequency lock. CLOCK(CLK_RST_CONTROLLER_PLLC_BASE) |= PLLCX_BASE_ENABLE; while (!(CLOCK(CLK_RST_CONTROLLER_PLLC_BASE) & PLLCX_BASE_LOCK)) ; // Disable PLLC_OUT1, enable reset and set div to 1.5. CLOCK(CLK_RST_CONTROLLER_PLLC_OUT) = (1 << 8); // Enable PLLC_OUT1 and bring it out of reset. CLOCK(CLK_RST_CONTROLLER_PLLC_OUT) |= (PLLC_OUT1_CLKEN | PLLC_OUT1_RSTN_CLR); msleep(1); // Wait a bit for PLL to stabilize. } void clock_disable_pllc() { // Disable PLLC and PLLC_OUT1. CLOCK(CLK_RST_CONTROLLER_PLLC_OUT) &= ~(PLLC_OUT1_CLKEN | PLLC_OUT1_RSTN_CLR); CLOCK(CLK_RST_CONTROLLER_PLLC_BASE) &= ~PLLCX_BASE_ENABLE; CLOCK(CLK_RST_CONTROLLER_PLLC_BASE) |= PLLCX_BASE_REF_DIS; CLOCK(CLK_RST_CONTROLLER_PLLC_MISC_1) |= PLLC_MISC1_IDDQ; CLOCK(CLK_RST_CONTROLLER_PLLC_MISC) |= PLLC_MISC_RESET; usleep(10); } #define L_SWR_SDMMC1_RST (1 << 14) #define L_SWR_SDMMC2_RST (1 << 9) #define L_SWR_SDMMC4_RST (1 << 15) #define U_SWR_SDMMC3_RST (1 << 5) #define L_CLK_ENB_SDMMC1 (1 << 14) #define L_CLK_ENB_SDMMC2 (1 << 9) #define L_CLK_ENB_SDMMC4 (1 << 15) #define U_CLK_ENB_SDMMC3 (1 << 5) #define L_SET_SDMMC1_RST (1 << 14) #define L_SET_SDMMC2_RST (1 << 9) #define L_SET_SDMMC4_RST (1 << 15) #define U_SET_SDMMC3_RST (1 << 5) #define L_CLR_SDMMC1_RST (1 << 14) #define L_CLR_SDMMC2_RST (1 << 9) #define L_CLR_SDMMC4_RST (1 << 15) #define U_CLR_SDMMC3_RST (1 << 5) #define L_SET_CLK_ENB_SDMMC1 (1 << 14) #define L_SET_CLK_ENB_SDMMC2 (1 << 9) #define L_SET_CLK_ENB_SDMMC4 (1 << 15) #define U_SET_CLK_ENB_SDMMC3 (1 << 5) #define L_CLR_CLK_ENB_SDMMC1 (1 << 14) #define L_CLR_CLK_ENB_SDMMC2 (1 << 9) #define L_CLR_CLK_ENB_SDMMC4 (1 << 15) #define U_CLR_CLK_ENB_SDMMC3 (1 << 5) static int _clock_sdmmc_is_reset(u32 id) { switch (id) { case SDMMC_1: return CLOCK(CLK_RST_CONTROLLER_RST_DEVICES_L) & L_SWR_SDMMC1_RST; case SDMMC_2: return CLOCK(CLK_RST_CONTROLLER_RST_DEVICES_L) & L_SWR_SDMMC2_RST; case SDMMC_3: return CLOCK(CLK_RST_CONTROLLER_RST_DEVICES_U) & U_SWR_SDMMC3_RST; case SDMMC_4: return CLOCK(CLK_RST_CONTROLLER_RST_DEVICES_L) & L_SWR_SDMMC4_RST; } return 0; } static void _clock_sdmmc_set_reset(u32 id) { switch (id) { case SDMMC_1: CLOCK(CLK_RST_CONTROLLER_RST_DEV_L_SET) = L_SET_SDMMC1_RST; break; case SDMMC_2: CLOCK(CLK_RST_CONTROLLER_RST_DEV_L_SET) = L_SET_SDMMC2_RST; break; case SDMMC_3: CLOCK(CLK_RST_CONTROLLER_RST_DEV_U_SET) = U_SET_SDMMC3_RST; break; case SDMMC_4: CLOCK(CLK_RST_CONTROLLER_RST_DEV_L_SET) = L_SET_SDMMC4_RST; break; } } static void _clock_sdmmc_clear_reset(u32 id) { switch (id) { case SDMMC_1: CLOCK(CLK_RST_CONTROLLER_RST_DEV_L_CLR) = L_CLR_SDMMC1_RST; break; case SDMMC_2: CLOCK(CLK_RST_CONTROLLER_RST_DEV_L_CLR) = L_CLR_SDMMC2_RST; break; case SDMMC_3: CLOCK(CLK_RST_CONTROLLER_RST_DEV_U_CLR) = U_CLR_SDMMC3_RST; break; case SDMMC_4: CLOCK(CLK_RST_CONTROLLER_RST_DEV_L_CLR) = L_CLR_SDMMC4_RST; break; } } static int _clock_sdmmc_is_enabled(u32 id) { switch (id) { case SDMMC_1: return CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_L) & L_CLK_ENB_SDMMC1; case SDMMC_2: return CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_L) & L_CLK_ENB_SDMMC2; case SDMMC_3: return CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_U) & U_CLK_ENB_SDMMC3; case SDMMC_4: return CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_L) & L_CLK_ENB_SDMMC4; } return 0; } static void _clock_sdmmc_set_enable(u32 id) { switch (id) { case SDMMC_1: CLOCK(CLK_RST_CONTROLLER_CLK_ENB_L_SET) = L_SET_CLK_ENB_SDMMC1; break; case SDMMC_2: CLOCK(CLK_RST_CONTROLLER_CLK_ENB_L_SET) = L_SET_CLK_ENB_SDMMC2; break; case SDMMC_3: CLOCK(CLK_RST_CONTROLLER_CLK_ENB_U_SET) = U_SET_CLK_ENB_SDMMC3; break; case SDMMC_4: CLOCK(CLK_RST_CONTROLLER_CLK_ENB_L_SET) = L_SET_CLK_ENB_SDMMC4; break; } } static void _clock_sdmmc_clear_enable(u32 id) { switch (id) { case SDMMC_1: CLOCK(CLK_RST_CONTROLLER_CLK_ENB_L_CLR) = L_CLR_CLK_ENB_SDMMC1; break; case SDMMC_2: CLOCK(CLK_RST_CONTROLLER_CLK_ENB_L_CLR) = L_CLR_CLK_ENB_SDMMC2; break; case SDMMC_3: CLOCK(CLK_RST_CONTROLLER_CLK_ENB_U_CLR) = U_CLR_CLK_ENB_SDMMC3; break; case SDMMC_4: CLOCK(CLK_RST_CONTROLLER_CLK_ENB_L_CLR) = L_CLR_CLK_ENB_SDMMC4; break; } } static void _clock_sdmmc_config_legacy_tm() { clock_t *clk = &_clock_sdmmc_legacy_tm; if (!(CLOCK(clk->enable) & (1 << clk->index))) clock_enable(clk); } typedef struct _clock_sdmmc_t { u32 clock; u32 real_clock; } clock_sdmmc_t; static clock_sdmmc_t _clock_sdmmc_table[4] = { 0 }; #define SDMMC_CLOCK_SRC_PLLP_OUT0 0x0 #define SDMMC_CLOCK_SRC_PLLC4_OUT2 0x3 #define SDMMC4_CLOCK_SRC_PLLC4_OUT2_LJ 0x1 static int _clock_sdmmc_config_clock_host(u32 *pclock, u32 id, u32 val) { u32 divisor = 0; u32 source = SDMMC_CLOCK_SRC_PLLP_OUT0; if (id > SDMMC_4) return 0; // Get IO clock divisor. switch (val) { case 25000: *pclock = 24728; divisor = 31; // 16.5 div. break; case 26000: *pclock = 25500; divisor = 30; // 16 div. break; case 40800: *pclock = 40800; divisor = 18; // 10 div. break; case 50000: *pclock = 48000; divisor = 15; // 8.5 div. break; case 52000: *pclock = 51000; divisor = 14; // 8 div. break; case 100000: *pclock = 90667; divisor = 7; // 4.5 div. break; case 164000: *pclock = 163200; divisor = 3; // 2.5 div. break; case 200000: *pclock = 204000; divisor = 2; // 2 div. break; default: *pclock = 24728; divisor = 31; // 16.5 div. } _clock_sdmmc_table[id].clock = val; _clock_sdmmc_table[id].real_clock = *pclock; // Set SDMMC legacy timeout clock. _clock_sdmmc_config_legacy_tm(); // Set SDMMC clock. switch (id) { case SDMMC_1: CLOCK(CLK_RST_CONTROLLER_CLK_SOURCE_SDMMC1) = (source << 29) | divisor; break; case SDMMC_2: CLOCK(CLK_RST_CONTROLLER_CLK_SOURCE_SDMMC2) = (source << 29) | divisor; break; case SDMMC_3: CLOCK(CLK_RST_CONTROLLER_CLK_SOURCE_SDMMC3) = (source << 29) | divisor; break; case SDMMC_4: CLOCK(CLK_RST_CONTROLLER_CLK_SOURCE_SDMMC4) = (source << 29) | divisor; break; } return 1; } void clock_sdmmc_config_clock_source(u32 *pclock, u32 id, u32 val) { if (_clock_sdmmc_table[id].clock == val) { *pclock = _clock_sdmmc_table[id].real_clock; } else { int is_enabled = _clock_sdmmc_is_enabled(id); if (is_enabled) _clock_sdmmc_clear_enable(id); _clock_sdmmc_config_clock_host(pclock, id, val); if (is_enabled) _clock_sdmmc_set_enable(id); _clock_sdmmc_is_reset(id); } } void clock_sdmmc_get_card_clock_div(u32 *pclock, u16 *pdivisor, u32 type) { // Get Card clock divisor. switch (type) { case SDHCI_TIMING_MMC_ID: // Actual IO Freq: 380.59 KHz. *pclock = 26000; *pdivisor = 66; break; case SDHCI_TIMING_MMC_LS26: *pclock = 26000; *pdivisor = 1; break; case SDHCI_TIMING_MMC_HS52: *pclock = 52000; *pdivisor = 1; break; case SDHCI_TIMING_MMC_HS200: case SDHCI_TIMING_MMC_HS400: case SDHCI_TIMING_UHS_SDR104: *pclock = 200000; *pdivisor = 1; break; case SDHCI_TIMING_SD_ID: // Actual IO Freq: 380.43 KHz. *pclock = 25000; *pdivisor = 64; break; case SDHCI_TIMING_SD_DS12: case SDHCI_TIMING_UHS_SDR12: *pclock = 25000; *pdivisor = 1; break; case SDHCI_TIMING_SD_HS25: case SDHCI_TIMING_UHS_SDR25: *pclock = 50000; *pdivisor = 1; break; case SDHCI_TIMING_UHS_SDR50: *pclock = 100000; *pdivisor = 1; break; case SDHCI_TIMING_UHS_SDR82: *pclock = 164000; *pdivisor = 1; break; case SDHCI_TIMING_UHS_DDR50: *pclock = 40800; *pdivisor = 1; break; case SDHCI_TIMING_MMC_DDR52: // Actual IO Freq: 49.92 MHz. *pclock = 200000; *pdivisor = 2; break; } } int clock_sdmmc_is_not_reset_and_enabled(u32 id) { return !_clock_sdmmc_is_reset(id) && _clock_sdmmc_is_enabled(id); } void clock_sdmmc_enable(u32 id, u32 val) { u32 clock = 0; if (_clock_sdmmc_is_enabled(id)) _clock_sdmmc_clear_enable(id); _clock_sdmmc_set_reset(id); _clock_sdmmc_config_clock_host(&clock, id, val); _clock_sdmmc_set_enable(id); _clock_sdmmc_is_reset(id); usleep((100000 + clock - 1) / clock); _clock_sdmmc_clear_reset(id); _clock_sdmmc_is_reset(id); } void clock_sdmmc_disable(u32 id) { _clock_sdmmc_set_reset(id); _clock_sdmmc_clear_enable(id); _clock_sdmmc_is_reset(id); }