/* * Copyright (c) 2018 naehrwert * Copyright (c) 2018 st4rk * Copyright (c) 2018 Ced2911 * Copyright (c) 2018-2022 CTCaer * Copyright (c) 2018 balika011 * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include "hos.h" #include "hos_config.h" #include "secmon_exo.h" #include "../config.h" #include "../storage/emummc.h" extern hekate_config h_cfg; //#define DPRINTF(...) gfx_printf(__VA_ARGS__) #define DPRINTF(...) #define EHPRINTFARGS(text, args...) \ ({ gfx_con.mute = false; \ gfx_printf("%k"text"%k\n", TXT_CLR_ERROR, args, TXT_CLR_DEFAULT); }) #define PKG2_LOAD_ADDR 0xA9800000 #define SECMON_BCT_CFG_ADDR 0x4003D000 #define SECMON6_BCT_CFG_ADDR 0x4003F800 // Secmon mailbox. #define SECMON_MAILBOX_ADDR 0x40002E00 #define SECMON7_MAILBOX_ADDR 0x40000000 #define SECMON_STATE_OFFSET 0xF8 typedef enum { SECMON_STATE_NOT_READY = 0, PKG1_STATE_NOT_READY = 0, PKG1_STATE_BCT_COPIED = 1, PKG1_STATE_DRAM_READY = 2, PKG1_STATE_PKG2_READY_OLD = 3, PKG1_STATE_PKG2_READY = 4 } pkg1_states_t; typedef struct _secmon_mailbox_t { // < 4.0.0 Signals - 0: Not ready, 1: BCT ready, 2: DRAM and pkg2 ready, 3: Continue boot. // >= 4.0.0 Signals - 0: Not ready, 1: BCT ready, 2: DRAM ready, 4: pkg2 ready and continue boot. u32 in; // Non-zero: Secmon ready. u32 out; } secmon_mailbox_t; typedef struct _tsec_keys_t { u8 tsec[SE_KEY_128_SIZE]; u8 tsec_root[SE_KEY_128_SIZE]; u8 tmp[SE_KEY_128_SIZE]; } tsec_keys_t; typedef struct _kb_keys_t { u8 master_kekseed[SE_KEY_128_SIZE]; u8 random_data[0x70]; u8 package1_key[SE_KEY_128_SIZE]; } kb_keys_t; typedef struct _kb_t { u8 cmac[SE_KEY_128_SIZE]; u8 ctr[SE_AES_IV_SIZE]; kb_keys_t keys; u8 padding[0x150]; } kb_t; static const u8 keyblob_keyseeds[][SE_KEY_128_SIZE] = { { 0xDF, 0x20, 0x6F, 0x59, 0x44, 0x54, 0xEF, 0xDC, 0x70, 0x74, 0x48, 0x3B, 0x0D, 0xED, 0x9F, 0xD3 }, // 1.0.0. { 0x0C, 0x25, 0x61, 0x5D, 0x68, 0x4C, 0xEB, 0x42, 0x1C, 0x23, 0x79, 0xEA, 0x82, 0x25, 0x12, 0xAC }, // 3.0.0. { 0x33, 0x76, 0x85, 0xEE, 0x88, 0x4A, 0xAE, 0x0A, 0xC2, 0x8A, 0xFD, 0x7D, 0x63, 0xC0, 0x43, 0x3B }, // 3.0.1. { 0x2D, 0x1F, 0x48, 0x80, 0xED, 0xEC, 0xED, 0x3E, 0x3C, 0xF2, 0x48, 0xB5, 0x65, 0x7D, 0xF7, 0xBE }, // 4.0.0. { 0xBB, 0x5A, 0x01, 0xF9, 0x88, 0xAF, 0xF5, 0xFC, 0x6C, 0xFF, 0x07, 0x9E, 0x13, 0x3C, 0x39, 0x80 }, // 5.0.0. { 0xD8, 0xCC, 0xE1, 0x26, 0x6A, 0x35, 0x3F, 0xCC, 0x20, 0xF3, 0x2D, 0x3B, 0x51, 0x7D, 0xE9, 0xC0 } // 6.0.0. }; static const u8 cmac_keyseed[SE_KEY_128_SIZE] = { 0x59, 0xC7, 0xFB, 0x6F, 0xBE, 0x9B, 0xBE, 0x87, 0x65, 0x6B, 0x15, 0xC0, 0x53, 0x73, 0x36, 0xA5 }; static const u8 master_keyseed_retail[SE_KEY_128_SIZE] = { 0xD8, 0xA2, 0x41, 0x0A, 0xC6, 0xC5, 0x90, 0x01, 0xC6, 0x1D, 0x6A, 0x26, 0x7C, 0x51, 0x3F, 0x3C }; static const u8 master_keyseed_4xx[SE_KEY_128_SIZE] = { 0x2D, 0xC1, 0xF4, 0x8D, 0xF3, 0x5B, 0x69, 0x33, 0x42, 0x10, 0xAC, 0x65, 0xDA, 0x90, 0x46, 0x66 }; static const u8 master_kekseed_620[SE_KEY_128_SIZE] = { 0x37, 0x4B, 0x77, 0x29, 0x59, 0xB4, 0x04, 0x30, 0x81, 0xF6, 0xE5, 0x8C, 0x6D, 0x36, 0x17, 0x9A }; //!TODO: Update on tsec/mkey changes. static const u8 master_kekseed_t210_tsec_v4[][SE_KEY_128_SIZE] = { { 0xDE, 0xDC, 0xE3, 0x39, 0x30, 0x88, 0x16, 0xF8, 0xAE, 0x97, 0xAD, 0xEC, 0x64, 0x2D, 0x41, 0x41 }, // 8.1.0. { 0x1A, 0xEC, 0x11, 0x82, 0x2B, 0x32, 0x38, 0x7A, 0x2B, 0xED, 0xBA, 0x01, 0x47, 0x7E, 0x3B, 0x67 }, // 9.0.0. { 0x30, 0x3F, 0x02, 0x7E, 0xD8, 0x38, 0xEC, 0xD7, 0x93, 0x25, 0x34, 0xB5, 0x30, 0xEB, 0xCA, 0x7A }, // 9.1.0. { 0x84, 0x67, 0xB6, 0x7F, 0x13, 0x11, 0xAE, 0xE6, 0x58, 0x9B, 0x19, 0xAF, 0x13, 0x6C, 0x80, 0x7A }, // 12.1.0. { 0x68, 0x3B, 0xCA, 0x54, 0xB8, 0x6F, 0x92, 0x48, 0xC3, 0x05, 0x76, 0x87, 0x88, 0x70, 0x79, 0x23 }, // 13.0.0. { 0xF0, 0x13, 0x37, 0x9A, 0xD5, 0x63, 0x51, 0xC3, 0xB4, 0x96, 0x35, 0xBC, 0x9C, 0xE8, 0x76, 0x81 }, // 14.0.0. }; //!TODO: Update on mkey changes. static const u8 master_kekseed_t210b01[][SE_KEY_128_SIZE] = { { 0x77, 0x60, 0x5A, 0xD2, 0xEE, 0x6E, 0xF8, 0x3C, 0x3F, 0x72, 0xE2, 0x59, 0x9D, 0xAC, 0x5E, 0x56 }, // 6.0.0. { 0x1E, 0x80, 0xB8, 0x17, 0x3E, 0xC0, 0x60, 0xAA, 0x11, 0xBE, 0x1A, 0x4A, 0xA6, 0x6F, 0xE4, 0xAE }, // 6.2.0. { 0x94, 0x08, 0x67, 0xBD, 0x0A, 0x00, 0x38, 0x84, 0x11, 0xD3, 0x1A, 0xDB, 0xDD, 0x8D, 0xF1, 0x8A }, // 7.0.0. { 0x5C, 0x24, 0xE3, 0xB8, 0xB4, 0xF7, 0x00, 0xC2, 0x3C, 0xFD, 0x0A, 0xCE, 0x13, 0xC3, 0xDC, 0x23 }, // 8.1.0. { 0x86, 0x69, 0xF0, 0x09, 0x87, 0xC8, 0x05, 0xAE, 0xB5, 0x7B, 0x48, 0x74, 0xDE, 0x62, 0xA6, 0x13 }, // 9.0.0. { 0x0E, 0x44, 0x0C, 0xED, 0xB4, 0x36, 0xC0, 0x3F, 0xAA, 0x1D, 0xAE, 0xBF, 0x62, 0xB1, 0x09, 0x82 }, // 9.1.0. { 0xE5, 0x41, 0xAC, 0xEC, 0xD1, 0xA7, 0xD1, 0xAB, 0xED, 0x03, 0x77, 0xF1, 0x27, 0xCA, 0xF8, 0xF1 }, // 12.1.0. { 0x52, 0x71, 0x9B, 0xDF, 0xA7, 0x8B, 0x61, 0xD8, 0xD5, 0x85, 0x11, 0xE4, 0x8E, 0x4F, 0x74, 0xC6 }, // 13.0.0. { 0xD2, 0x68, 0xC6, 0x53, 0x9D, 0x94, 0xF9, 0xA8, 0xA5, 0xA8, 0xA7, 0xC8, 0x8F, 0x53, 0x4B, 0x7A }, // 14.0.0. }; static const u8 console_keyseed[SE_KEY_128_SIZE] = { 0x4F, 0x02, 0x5F, 0x0E, 0xB6, 0x6D, 0x11, 0x0E, 0xDC, 0x32, 0x7D, 0x41, 0x86, 0xC2, 0xF4, 0x78 }; static const u8 console_keyseed_4xx[SE_KEY_128_SIZE] = { 0x0C, 0x91, 0x09, 0xDB, 0x93, 0x93, 0x07, 0x81, 0x07, 0x3C, 0xC4, 0x16, 0x22, 0x7C, 0x6C, 0x28 }; const u8 package2_keyseed[SE_KEY_128_SIZE] = { 0xFB, 0x8B, 0x6A, 0x9C, 0x79, 0x00, 0xC8, 0x49, 0xEF, 0xD2, 0x4D, 0x85, 0x4D, 0x30, 0xA0, 0xC7 }; static void _hos_crit_error(const char *text) { gfx_con.mute = false; gfx_printf("%k%s%k\n", TXT_CLR_ERROR, text, TXT_CLR_DEFAULT); } static void _se_lock(bool lock_se) { if (lock_se) { // Disable aes key read. for (u32 i = 0; i < 16; i++) se_key_acc_ctrl(i, SE_KEY_TBL_DIS_KEYREAD_FLAG | SE_KEY_TBL_DIS_OIVREAD_FLAG | SE_KEY_TBL_DIS_UIVREAD_FLAG); // Disable RSA key read. for (u32 i = 0; i < 2; i++) se_rsa_acc_ctrl(i, SE_RSA_KEY_TBL_DIS_KEYREAD_FLAG); SE(SE_TZRAM_SECURITY_REG) = 0; // Make SE TZRAM secure only. SE(SE_CRYPTO_SECURITY_PERKEY_REG) = 0; // Make all AES keys access secure only. SE(SE_RSA_SECURITY_PERKEY_REG) = 0; // Make all RSA keys access secure only. SE(SE_SE_SECURITY_REG) &= ~SE_PERKEY_SETTING; // Make access lock regs secure only. } memset((void *)IPATCH_BASE, 0, 14 * sizeof(u32)); SB(SB_CSR) = SB_CSR_PIROM_DISABLE; // This is useful for documenting the bits in the SE config registers, so we can keep it around. /*gfx_printf("SE(SE_SE_SECURITY_REG) = %08X\n", SE(SE_SE_SECURITY_REG)); gfx_printf("SE(0x4) = %08X\n", SE(0x4)); gfx_printf("SE(SE_CRYPTO_SECURITY_PERKEY_REG) = %08X\n", SE(SE_CRYPTO_SECURITY_PERKEY_REG)); gfx_printf("SE(SE_RSA_SECURITY_PERKEY_REG) = %08X\n", SE(SE_RSA_SECURITY_PERKEY_REG)); for(u32 i = 0; i < 16; i++) gfx_printf("%02X ", SE(SE_CRYPTO_KEYTABLE_ACCESS_REG + i * 4) & 0xFF); gfx_putc('\n'); for(u32 i = 0; i < 2; i++) gfx_printf("%02X ", SE(SE_RSA_KEYTABLE_ACCESS_REG + i * 4) & 0xFF); gfx_putc('\n'); gfx_hexdump(SE_BASE, (void *)SE_BASE, 0x400);*/ } bool hos_eks_rw_try(u8 *buf, bool write) { for (u32 i = 0; i < 3; i++) { if (!write) { if (sdmmc_storage_read(&sd_storage, 0, 1, buf)) return true; } else { if (sdmmc_storage_write(&sd_storage, 0, 1, buf)) return true; } } return false; } static void _hos_eks_get() { // Check if Erista based unit. if (h_cfg.t210b01) return; // Check if EKS already found and parsed. if (!h_cfg.eks) { // Read EKS blob. u8 *mbr = calloc(512 , 1); if (!hos_eks_rw_try(mbr, false)) goto out; // Decrypt EKS blob. hos_eks_mbr_t *eks = (hos_eks_mbr_t *)(mbr + 0x80); se_aes_crypt_ecb(14, DECRYPT, eks, sizeof(hos_eks_mbr_t), eks, sizeof(hos_eks_mbr_t)); // Check if valid and for this unit. if (eks->magic == HOS_EKS_MAGIC && eks->lot0 == FUSE(FUSE_OPT_LOT_CODE_0)) { h_cfg.eks = eks; return; } out: free(mbr); } } static void _hos_eks_save() { // Check if Erista based unit. if (h_cfg.t210b01) return; // EKS save. Only for 7.0.0 and up. bool new_eks = false; if (!h_cfg.eks) { h_cfg.eks = calloc(512 , 1); new_eks = true; } // If matching blob doesn't exist, create it. if (h_cfg.eks->enabled != HOS_EKS_TSEC_VER) { // Read EKS blob. u8 *mbr = calloc(512 , 1); if (!hos_eks_rw_try(mbr, false)) { if (new_eks) { free(h_cfg.eks); h_cfg.eks = NULL; } goto out; } // Get keys. u8 *keys = (u8 *)calloc(SZ_4K, 2); se_get_aes_keys(keys + SZ_4K, keys, SE_KEY_128_SIZE); // Set magic and personalized info. h_cfg.eks->magic = HOS_EKS_MAGIC; h_cfg.eks->enabled = HOS_EKS_TSEC_VER; h_cfg.eks->lot0 = FUSE(FUSE_OPT_LOT_CODE_0); // Copy new keys. memcpy(h_cfg.eks->tsec, keys + 12 * SE_KEY_128_SIZE, SE_KEY_128_SIZE); memcpy(h_cfg.eks->troot, keys + 13 * SE_KEY_128_SIZE, SE_KEY_128_SIZE); memcpy(h_cfg.eks->troot_dev, keys + 11 * SE_KEY_128_SIZE, SE_KEY_128_SIZE); // Encrypt EKS blob. u8 *eks = calloc(512 , 1); memcpy(eks, h_cfg.eks, sizeof(hos_eks_mbr_t)); se_aes_crypt_ecb(14, ENCRYPT, eks, sizeof(hos_eks_mbr_t), eks, sizeof(hos_eks_mbr_t)); // Write EKS blob to SD. memcpy(mbr + 0x80, eks, sizeof(hos_eks_mbr_t)); hos_eks_rw_try(mbr, true); free(eks); free(keys); out: free(mbr); } } void hos_eks_clear(u32 kb) { // Check if Erista based unit. if (h_cfg.t210b01) return; if (h_cfg.eks && kb >= KB_FIRMWARE_VERSION_700) { // Check if current Master key is enabled. if (h_cfg.eks->enabled) { // Read EKS blob. u8 *mbr = calloc(512 , 1); if (!hos_eks_rw_try(mbr, false)) goto out; // Disable current Master key version. h_cfg.eks->enabled = 0; // Encrypt EKS blob. u8 *eks = calloc(512 , 1); memcpy(eks, h_cfg.eks, sizeof(hos_eks_mbr_t)); se_aes_crypt_ecb(14, ENCRYPT, eks, sizeof(hos_eks_mbr_t), eks, sizeof(hos_eks_mbr_t)); // Write EKS blob to SD. memcpy(mbr + 0x80, eks, sizeof(hos_eks_mbr_t)); hos_eks_rw_try(mbr, true); free(eks); out: free(mbr); } } } int hos_keygen_t210b01(u32 kb) { // Use SBK as Device key 4x unsealer and KEK for mkey in T210B01 units. se_aes_unwrap_key(10, 14, console_keyseed_4xx); // Derive master key. se_aes_unwrap_key(7, 12, &master_kekseed_t210b01[kb - KB_FIRMWARE_VERSION_600]); se_aes_unwrap_key(7, 7, master_keyseed_retail); // Derive latest pkg2 key. se_aes_unwrap_key(8, 7, package2_keyseed); return 1; } int hos_keygen(void *keyblob, u32 kb, tsec_ctxt_t *tsec_ctxt, bool stock, bool is_exo) { static bool sbk_wiped = false; u32 retries = 0; bool use_tsec = false; tsec_keys_t tsec_keys; kb_t *kb_data = (kb_t *)keyblob; if (kb > KB_FIRMWARE_VERSION_MAX) return 0; if (h_cfg.t210b01) return hos_keygen_t210b01(kb); // Do Erista keygen. // SBK is wiped. Try to restore it from fuses. if (sbk_wiped) { if (fuse_set_sbk()) sbk_wiped = false; else return 1; // Continue with current SE keys. } // Use HOS EKS if it exists. _hos_eks_get(); // Use tsec keygen for old firmware or if EKS keys does not exist for newer. if (kb <= KB_FIRMWARE_VERSION_620 || !h_cfg.eks || (h_cfg.eks && h_cfg.eks->enabled != HOS_EKS_TSEC_VER)) use_tsec = true; if (kb <= KB_FIRMWARE_VERSION_600) { tsec_ctxt->size = 0xF00; tsec_ctxt->type = TSEC_FW_TYPE_OLD; } else if (kb == KB_FIRMWARE_VERSION_620) { tsec_ctxt->size = 0x2900; tsec_ctxt->type = TSEC_FW_TYPE_EMU; // Prepare smmu tsec page for 6.2.0. u8 *tsec_paged = (u8 *)page_alloc(3); memcpy(tsec_paged, (void *)tsec_ctxt->fw, tsec_ctxt->size); tsec_ctxt->fw = tsec_paged; } else if (use_tsec) // 7.0.0+ { /* * 7.0.0/8.1.0 tsec fw are 0x3000/0x3300. * Unused here because of THK. */ // Use custom TSEC Hovi Keygen firmware. tsec_ctxt->fw = sd_file_read("bootloader/sys/thk.bin", NULL); if (!tsec_ctxt->fw) { _hos_crit_error("\nFailed to load thk.bin"); return 0; } tsec_ctxt->size = 0x1F00; tsec_ctxt->type = TSEC_FW_TYPE_NEW; } else if (h_cfg.eks) { // EKS found. Set TSEC keys. se_aes_key_set(12, h_cfg.eks->tsec, SE_KEY_128_SIZE); se_aes_key_set(13, h_cfg.eks->troot, SE_KEY_128_SIZE); se_aes_key_set(11, h_cfg.eks->troot_dev, SE_KEY_128_SIZE); } // Get TSEC key. while (use_tsec && tsec_query(&tsec_keys, tsec_ctxt) < 0) { memset(&tsec_keys, 0x00, 0x20); retries++; // We rely on racing conditions, make sure we cover even the unluckiest cases. if (retries > 15) { _hos_crit_error("\nFailed to get TSEC keys. Please try again."); return 0; } } if (kb >= KB_FIRMWARE_VERSION_700) { // For 7.0.0 and up, save EKS slot if it doesn't exist. if (use_tsec) { _hos_eks_save(); free(tsec_ctxt->fw); } // Use 8.1.0 for 7.0.0 otherwise the proper one. u32 mkey_idx = 0; if (kb >= KB_FIRMWARE_VERSION_810) mkey_idx = kb - KB_FIRMWARE_VERSION_810; if (!is_exo) { // Derive Package2 key in secmon compatible way. se_aes_unwrap_key(7, 13, master_kekseed_t210_tsec_v4[mkey_idx]); se_aes_unwrap_key(7, 7, master_keyseed_retail); se_aes_unwrap_key(8, 7, package2_keyseed); } else { se_aes_crypt_block_ecb(12, DECRYPT, tsec_keys.tmp, keyblob_keyseeds[0]); se_aes_unwrap_key(15, 14, tsec_keys.tmp); // Derive device keys. se_aes_unwrap_key(10, 15, console_keyseed_4xx); se_aes_unwrap_key(15, 15, console_keyseed); // Derive master kek. se_aes_unwrap_key(13, 13, master_kekseed_t210_tsec_v4[mkey_idx]); // Derive device master key and master key. se_aes_unwrap_key(12, 13, master_keyseed_4xx); se_aes_unwrap_key(13, 13, master_keyseed_retail); // Package2 key. se_aes_unwrap_key(8, 13, package2_keyseed); } } else if (kb == KB_FIRMWARE_VERSION_620) { // Set TSEC key. se_aes_key_set(12, tsec_keys.tsec, SE_KEY_128_SIZE); // Set TSEC root key. se_aes_key_set(13, tsec_keys.tsec_root, SE_KEY_128_SIZE); if (!is_exo) { // Derive Package2 key in secmon compatible way. se_aes_key_set(8, tsec_keys.tsec_root, SE_KEY_128_SIZE); se_aes_unwrap_key(8, 8, master_kekseed_620); se_aes_unwrap_key(8, 8, master_keyseed_retail); se_aes_unwrap_key(8, 8, package2_keyseed); } else { // Decrypt keyblob and set keyslots for Exosphere 2. se_aes_crypt_block_ecb(12, DECRYPT, tsec_keys.tmp, keyblob_keyseeds[0]); se_aes_unwrap_key(15, 14, tsec_keys.tmp); // Derive device keys. se_aes_unwrap_key(10, 15, console_keyseed_4xx); se_aes_unwrap_key(15, 15, console_keyseed); // Derive master kek. se_aes_unwrap_key(13, 13, master_kekseed_620); // Derive device master key and master key. se_aes_unwrap_key(12, 13, master_keyseed_4xx); se_aes_unwrap_key(13, 13, master_keyseed_retail); // Package2 key. se_aes_unwrap_key(8, 13, package2_keyseed); } } else { se_key_acc_ctrl(13, SE_KEY_TBL_DIS_KEYREAD_FLAG | SE_KEY_TBL_DIS_OIVREAD_FLAG | SE_KEY_TBL_DIS_UIVREAD_FLAG); se_key_acc_ctrl(14, SE_KEY_TBL_DIS_KEYREAD_FLAG | SE_KEY_TBL_DIS_OIVREAD_FLAG | SE_KEY_TBL_DIS_UIVREAD_FLAG); // Set TSEC key. se_aes_key_set(13, tsec_keys.tsec, SE_KEY_128_SIZE); // Derive keyblob keys from TSEC+SBK. se_aes_crypt_block_ecb(13, DECRYPT, tsec_keys.tsec, keyblob_keyseeds[0]); se_aes_unwrap_key(15, 14, tsec_keys.tsec); se_aes_crypt_block_ecb(13, DECRYPT, tsec_keys.tsec, keyblob_keyseeds[kb]); se_aes_unwrap_key(13, 14, tsec_keys.tsec); // Clear SBK. //se_aes_key_clear(14); /* // Verify keyblob CMAC. u8 cmac[SE_KEY_128_SIZE]; se_aes_unwrap_key(11, 13, cmac_keyseed); se_aes_cmac(cmac, SE_KEY_128_SIZE, 11, (void *)kb_data->ctr, sizeof(kb_data->ctr) + sizeof(kb_data->keys)); if (!memcmp(kb_data->cmac, cmac, SE_KEY_128_SIZE)) return 0; */ se_aes_crypt_block_ecb(13, DECRYPT, tsec_keys.tsec, cmac_keyseed); se_aes_unwrap_key(11, 13, cmac_keyseed); // Decrypt keyblob and set keyslots. se_aes_crypt_ctr(13, &kb_data->keys, sizeof(kb_keys_t), &kb_data->keys, sizeof(kb_keys_t), kb_data->ctr); se_aes_key_set(11, kb_data->keys.package1_key, SE_KEY_128_SIZE); se_aes_key_set(12, kb_data->keys.master_kekseed, SE_KEY_128_SIZE); se_aes_key_set(13, kb_data->keys.master_kekseed, SE_KEY_128_SIZE); se_aes_crypt_block_ecb(12, DECRYPT, tsec_keys.tsec, master_keyseed_retail); if (!is_exo) { switch (kb) { case KB_FIRMWARE_VERSION_100: case KB_FIRMWARE_VERSION_300: case KB_FIRMWARE_VERSION_301: se_aes_unwrap_key(13, 15, console_keyseed); se_aes_unwrap_key(12, 12, master_keyseed_retail); break; case KB_FIRMWARE_VERSION_400: se_aes_unwrap_key(13, 15, console_keyseed_4xx); se_aes_unwrap_key(15, 15, console_keyseed); se_aes_unwrap_key(14, 12, master_keyseed_4xx); se_aes_unwrap_key(12, 12, master_keyseed_retail); sbk_wiped = true; break; case KB_FIRMWARE_VERSION_500: case KB_FIRMWARE_VERSION_600: se_aes_unwrap_key(10, 15, console_keyseed_4xx); se_aes_unwrap_key(15, 15, console_keyseed); se_aes_unwrap_key(14, 12, master_keyseed_4xx); se_aes_unwrap_key(12, 12, master_keyseed_retail); sbk_wiped = true; break; } } else // Exosphere 2. { se_aes_unwrap_key(10, 15, console_keyseed_4xx); se_aes_unwrap_key(15, 15, console_keyseed); se_aes_unwrap_key(13, 12, master_keyseed_retail); se_aes_unwrap_key(12, 12, master_keyseed_4xx); } // Package2 key. se_key_acc_ctrl(8, SE_KEY_TBL_DIS_KEYREAD_FLAG | SE_KEY_TBL_DIS_OIVREAD_FLAG | SE_KEY_TBL_DIS_UIVREAD_FLAG); se_aes_unwrap_key(8, !is_exo ? 12 : 13, package2_keyseed); } return 1; } static int _read_emmc_pkg1(launch_ctxt_t *ctxt) { const u32 pk1_offset = h_cfg.t210b01 ? sizeof(bl_hdr_t210b01_t) : 0; // Skip T210B01 OEM header. u32 bootloader_offset = PKG1_BOOTLOADER_MAIN_OFFSET; ctxt->pkg1 = (void *)malloc(PKG1_BOOTLOADER_SIZE); try_load: // Read package1. emummc_storage_set_mmc_partition(EMMC_BOOT0); emummc_storage_read(bootloader_offset / EMMC_BLOCKSIZE, PKG1_BOOTLOADER_SIZE / EMMC_BLOCKSIZE, ctxt->pkg1); ctxt->pkg1_id = pkg1_identify(ctxt->pkg1 + pk1_offset); if (!ctxt->pkg1_id) { // Check if wrong pkg1 was flashed. bool wrong_pkg1; const u32 pkg1_erista_check = ((bl_hdr_t210b01_t *)ctxt->pkg1)->entrypoint; const u32 pkg1_mariko_check = *(u32 *)(ctxt->pkg1 + sizeof(pk1_hdr_t) * 2); if (!h_cfg.t210b01) // For Erista check if start is 0 and entrypoint matches Mariko. wrong_pkg1 = *(u32 *)ctxt->pkg1 == 0 && pkg1_erista_check == PKG1_MARIKO_ON_ERISTA_MAGIC; else // For Mariko check if start is not 0 and build id. It works for 8.0.0 Erista pkg1 and up. wrong_pkg1 = *(u32 *)ctxt->pkg1 != 0 && pkg1_mariko_check == PKG1_ERISTA_ON_MARIKO_MAGIC; if (wrong_pkg1) { _hos_crit_error("Wrong pkg1 flashed:"); EPRINTFARGS("%s pkg1 on %s!", !h_cfg.t210b01 ? "Mariko" : "Erista", !h_cfg.t210b01 ? "Erista" : "Mariko"); } else { _hos_crit_error("Unknown pkg1 version."); EPRINTFARGS("HOS version not supported!%s", (emu_cfg.enabled && !h_cfg.emummc_force_disable) ? "\nOr emuMMC corrupt!" : ""); } // Try backup bootloader. if (bootloader_offset != PKG1_BOOTLOADER_BACKUP_OFFSET) { EPRINTF("\nTrying backup bootloader..."); bootloader_offset = PKG1_BOOTLOADER_BACKUP_OFFSET; goto try_load; } return 0; } gfx_printf("Identified pkg1 and mkey %d\n\n", ctxt->pkg1_id->kb); // Read the correct keyblob for older HOS versions. if (ctxt->pkg1_id->kb <= KB_FIRMWARE_VERSION_600) { ctxt->keyblob = (u8 *)calloc(EMMC_BLOCKSIZE, 1); emummc_storage_read(PKG1_HOS_KEYBLOBS_OFFSET / EMMC_BLOCKSIZE + ctxt->pkg1_id->kb, 1, ctxt->keyblob); } return 1; } static u8 *_read_emmc_pkg2(launch_ctxt_t *ctxt) { u8 *bctBuf = NULL; emummc_storage_set_mmc_partition(EMMC_GPP); // Parse eMMC GPT. LIST_INIT(gpt); emmc_gpt_parse(&gpt); DPRINTF("Parsed GPT\n"); // Find package2 partition. emmc_part_t *pkg2_part = emmc_part_find(&gpt, "BCPKG2-1-Normal-Main"); if (!pkg2_part) goto out; // Read in package2 header and get package2 real size. const u32 BCT_SIZE = SZ_16K; bctBuf = (u8 *)malloc(BCT_SIZE); emmc_part_read(pkg2_part, BCT_SIZE / EMMC_BLOCKSIZE, 1, bctBuf); u32 *hdr = (u32 *)(bctBuf + 0x100); u32 pkg2_size = hdr[0] ^ hdr[2] ^ hdr[3]; DPRINTF("pkg2 size on emmc is %08X\n", pkg2_size); // Read in Boot Config. memset(bctBuf, 0, BCT_SIZE); emmc_part_read(pkg2_part, 0, BCT_SIZE / EMMC_BLOCKSIZE, bctBuf); // Read in package2. u32 pkg2_size_aligned = ALIGN(pkg2_size, EMMC_BLOCKSIZE); DPRINTF("pkg2 size aligned is %08X\n", pkg2_size_aligned); ctxt->pkg2 = malloc(pkg2_size_aligned); ctxt->pkg2_size = pkg2_size; emmc_part_read(pkg2_part, BCT_SIZE / EMMC_BLOCKSIZE, pkg2_size_aligned / EMMC_BLOCKSIZE, ctxt->pkg2); out: emmc_gpt_free(&gpt); return bctBuf; } static void _free_launch_components(launch_ctxt_t *ctxt) { free(ctxt->keyblob); free(ctxt->pkg1); free(ctxt->pkg2); free(ctxt->warmboot); free(ctxt->secmon); free(ctxt->kernel); free(ctxt->kip1_patches); } static bool _get_fs_exfat_compatible(link_t *info, u32 *hos_revision) { u32 fs_ids_cnt; u32 sha_buf[32 / sizeof(u32)]; kip1_id_t *kip_ids; LIST_FOREACH_ENTRY(pkg2_kip1_info_t, ki, info, link) { if (strncmp((const char*)ki->kip1->name, "FS", sizeof(ki->kip1->name))) continue; if (!se_calc_sha256_oneshot(sha_buf, ki->kip1, ki->size)) break; pkg2_get_ids(&kip_ids, &fs_ids_cnt); for (int fs_idx = fs_ids_cnt - 1; fs_idx >= 0; fs_idx--) { if (!memcmp(sha_buf, kip_ids[fs_idx].hash, 8)) { // HOS Api special handling. if ((fs_idx & ~1) == 16) // Check if it's 5.1.0. *hos_revision = 1; else if ((fs_idx & ~1) == 34) // Check if it's 10.2.0. *hos_revision = 2; // Check if FAT32-only. if (!(fs_idx & 1)) return false; // FS is FAT32 + exFAT. break; } } break; } // FAT32 + exFAT or unknown FS version. return true; } int hos_launch(ini_sec_t *cfg) { u8 kb; u32 secmon_base; u32 warmboot_base; bool is_exo = false; launch_ctxt_t ctxt = {0}; tsec_ctxt_t tsec_ctxt = {0}; volatile secmon_mailbox_t *secmon_mailbox; minerva_change_freq(FREQ_1600); list_init(&ctxt.kip1_list); ctxt.cfg = cfg; if (!gfx_con.mute) gfx_clear_grey(0x1B); gfx_con_setpos(0, 0); gfx_puts("Initializing...\n\n"); // Initialize eMMC/emuMMC. int res = emummc_storage_init_mmc(); if (res) { if (res == 2) _hos_crit_error("Failed to init eMMC."); else _hos_crit_error("Failed to init emuMMC."); goto error; } // Check if SD Card is GPT. if (sd_is_gpt()) { _hos_crit_error("SD has GPT only!"); goto error; } // Read package1 and the correct keyblob. if (!_read_emmc_pkg1(&ctxt)) goto error; kb = ctxt.pkg1_id->kb; // Try to parse config if present. if (ctxt.cfg && !parse_boot_config(&ctxt)) { _hos_crit_error("Wrong ini cfg or missing/corrupt files!"); goto error; } bool emummc_enabled = emu_cfg.enabled && !h_cfg.emummc_force_disable; // Enable emummc patching. if (emummc_enabled) { if (ctxt.stock) { _hos_crit_error("Stock emuMMC is not supported yet!"); goto error; } ctxt.atmosphere = true; // Set atmosphere patching in case of no fss0. config_kip1patch(&ctxt, "emummc"); } else if (!emu_cfg.enabled && ctxt.emummc_forced) { _hos_crit_error("emuMMC is forced but not enabled!"); goto error; } // If Auto NOGC is enabled, check if burnt fuses lower than installed HOS fuses and apply NOGC patch. // For emuMMC, unconditionally enable NOGC when burnt fuses are higher than installed HOS fuses. // Disable Auto NOGC in stock to prevent black screen (fatal error). Use kip1patch=nogc to force it. if (!ctxt.stock) { u32 fuses = fuse_read_odm(7); if ((h_cfg.autonogc && ( (!(fuses & ~0xF) && (ctxt.pkg1_id->fuses >= 5)) || // LAFW v2, 4.0.0+ (!(fuses & ~0x3FF) && (ctxt.pkg1_id->fuses >= 11)) || // LAFW v3, 9.0.0+ (!(fuses & ~0x1FFF) && (ctxt.pkg1_id->fuses >= 14)) || // LAFW v4, 11.0.0+ // Detection broken! Use kip1patch=nogc // LAFW v5, 12.0.0+ (!(fuses & ~0x3FFF) && (ctxt.pkg1_id->fuses >= 15)) // LAFW v5, 12.0.2+ ) ) || ((emummc_enabled) && ( ((fuses & 0x400) && (ctxt.pkg1_id->fuses <= 10)) || // HOS 9.0.0+ fuses burnt. ((fuses & 0x2000) && (ctxt.pkg1_id->fuses <= 13)) || // HOS 11.0.0+ fuses burnt. // Detection broken! Use kip1patch=nogc // HOS 12.0.0+ ((fuses & 0x4000) && (ctxt.pkg1_id->fuses <= 14)) // HOS 12.0.2+ fuses burnt. ) )) config_kip1patch(&ctxt, "nogc"); } gfx_printf("Loaded config and pkg1\n%s mode\n", ctxt.stock ? "Stock" : "CFW"); // Check if secmon is exosphere. if (ctxt.secmon) is_exo = !memcmp((void *)((u8 *)ctxt.secmon + ctxt.secmon_size - 4), "LENY", 4); const pkg1_id_t *pk1_latest = pkg1_get_latest(); secmon_base = is_exo ? pk1_latest->secmon_base : ctxt.pkg1_id->secmon_base; warmboot_base = is_exo ? pk1_latest->warmboot_base : ctxt.pkg1_id->warmboot_base; // Generate keys. tsec_ctxt.fw = (u8 *)ctxt.pkg1 + ctxt.pkg1_id->tsec_off; tsec_ctxt.pkg1 = ctxt.pkg1; tsec_ctxt.pkg11_off = ctxt.pkg1_id->pkg11_off; tsec_ctxt.secmon_base = secmon_base; if (!hos_keygen(ctxt.keyblob, kb, &tsec_ctxt, ctxt.stock, is_exo)) goto error; gfx_puts("Generated keys\n"); // Decrypt and unpack package1 if we require parts of it. if (!ctxt.warmboot || !ctxt.secmon) { // Decrypt PK1 or PK11. if (kb <= KB_FIRMWARE_VERSION_600 || h_cfg.t210b01) { if (!pkg1_decrypt(ctxt.pkg1_id, ctxt.pkg1)) { _hos_crit_error("Pkg1 decryption failed!"); // Check if T210B01 BEK is missing or wrong. if (h_cfg.t210b01) { u32 bek_vector[4] = {0}; se_aes_crypt_ecb(13, ENCRYPT, bek_vector, SE_KEY_128_SIZE, bek_vector, SE_KEY_128_SIZE); if (bek_vector[0] == 0x59C14895) // Encrypted zeroes first 32bits. EPRINTF("Pkg1 corrupt?"); else EPRINTF("BEK is missing!"); } goto error; } } // Unpack PK11. if (h_cfg.t210b01 || (kb <= KB_FIRMWARE_VERSION_620 && !emummc_enabled)) { // Skip T210B01 OEM header. u32 pk1_offset = 0; if (h_cfg.t210b01) pk1_offset = sizeof(bl_hdr_t210b01_t); pkg1_unpack((void *)warmboot_base, &ctxt.warmboot_size, !is_exo ? (void *)ctxt.pkg1_id->secmon_base : NULL, NULL, ctxt.pkg1_id, ctxt.pkg1 + pk1_offset); gfx_puts("Decrypted & unpacked pkg1\n"); } else { _hos_crit_error("No mandatory secmon or warmboot provided!"); goto error; } } // Configure and manage Warmboot binary. if (!pkg1_warmboot_config(&ctxt, warmboot_base, ctxt.pkg1_id->fuses, kb)) { // Can only happen on T210B01. _hos_crit_error("Failed to match warmboot with fuses!\nIf you continue, sleep wont work!"); gfx_puts("\nPress POWER to continue.\nPress VOL to go to the menu.\n"); display_backlight_brightness(h_cfg.backlight, 1000); if (!(btn_wait() & BTN_POWER)) goto error; } // Replace 'warmboot.bin' if requested. if (ctxt.warmboot) memcpy((void *)warmboot_base, ctxt.warmboot, ctxt.warmboot_size); else if (!h_cfg.t210b01) { // Patch warmboot on T210 to allow downgrading. if (kb >= KB_FIRMWARE_VERSION_700) { _hos_crit_error("No warmboot provided!"); goto error; } pkg1_warmboot_patch((void *)&ctxt); } // Replace 'SecureMonitor' if requested or patch Pkg2 checks if needed. if (ctxt.secmon) memcpy((void *)secmon_base, ctxt.secmon, ctxt.secmon_size); else pkg1_secmon_patch((void *)&ctxt, secmon_base, h_cfg.t210b01); gfx_puts("Loaded warmboot and secmon\n"); // Read package2. u8 *bootConfigBuf = _read_emmc_pkg2(&ctxt); if (!bootConfigBuf) { _hos_crit_error("Pkg2 read failed!"); goto error; } gfx_puts("Read pkg2\n"); // Decrypt package2 and parse KIP1 blobs in INI1 section. pkg2_hdr_t *pkg2_hdr = pkg2_decrypt(ctxt.pkg2, kb, is_exo); if (!pkg2_hdr) { _hos_crit_error("Pkg2 decryption failed!\npkg1/pkg2 mismatch or old hekate!"); // Clear EKS slot, in case something went wrong with tsec keygen. hos_eks_clear(kb); goto error; } LIST_INIT(kip1_info); if (!pkg2_parse_kips(&kip1_info, pkg2_hdr, &ctxt.new_pkg2)) { _hos_crit_error("INI1 parsing failed!"); goto error; } gfx_puts("Parsed ini1\n"); // Use the kernel included in package2 in case we didn't load one already. if (!ctxt.kernel) { ctxt.kernel = pkg2_hdr->data; ctxt.kernel_size = pkg2_hdr->sec_size[PKG2_SEC_KERNEL]; if (!ctxt.stock && (ctxt.svcperm || ctxt.debugmode || ctxt.atmosphere)) { // Hash only Kernel when it embeds INI1. u8 kernel_hash[0x20]; if (!ctxt.new_pkg2) se_calc_sha256_oneshot(kernel_hash, ctxt.kernel, ctxt.kernel_size); else se_calc_sha256_oneshot(kernel_hash, ctxt.kernel + PKG2_NEWKERN_START, pkg2_newkern_ini1_start - PKG2_NEWKERN_START); ctxt.pkg2_kernel_id = pkg2_identify(kernel_hash); if (!ctxt.pkg2_kernel_id) { _hos_crit_error("Failed to identify kernel!"); goto error; } // In case a kernel patch option is set; allows to disable SVC verification or/and enable debug mode. kernel_patch_t *kernel_patchset = ctxt.pkg2_kernel_id->kernel_patchset; if (kernel_patchset != NULL) { gfx_printf("%kPatching kernel%k\n", TXT_CLR_ORANGE, TXT_CLR_DEFAULT); u32 *temp; for (u32 i = 0; kernel_patchset[i].id != 0xFFFFFFFF; i++) { if ((ctxt.svcperm && kernel_patchset[i].id == SVC_VERIFY_DS) || (ctxt.debugmode && kernel_patchset[i].id == DEBUG_MODE_EN && !(ctxt.atmosphere && ctxt.secmon)) || (ctxt.atmosphere && kernel_patchset[i].id == ATM_GEN_PATCH)) *(vu32 *)(ctxt.kernel + kernel_patchset[i].off) = kernel_patchset[i].val; else if (ctxt.atmosphere && kernel_patchset[i].id == ATM_ARR_PATCH) { temp = (u32 *)kernel_patchset[i].ptr; for (u32 j = 0; j < kernel_patchset[i].val; j++) *(vu32 *)(ctxt.kernel + kernel_patchset[i].off + (j << 2)) = temp[j]; } else if (kernel_patchset[i].id < SVC_VERIFY_DS) *(vu32 *)(ctxt.kernel + kernel_patchset[i].off) = kernel_patchset[i].val; } } } } // Merge extra KIP1s into loaded ones. LIST_FOREACH_ENTRY(merge_kip_t, mki, &ctxt.kip1_list, link) pkg2_merge_kip(&kip1_info, (pkg2_kip1_t *)mki->kip1); // Check if FS is compatible with exFAT and if 5.1.0. if (!ctxt.stock && (sd_fs.fs_type == FS_EXFAT || kb == KB_FIRMWARE_VERSION_500)) { bool exfat_compat = _get_fs_exfat_compatible(&kip1_info, &ctxt.exo_ctx.hos_revision); if (sd_fs.fs_type == FS_EXFAT && !exfat_compat) { _hos_crit_error("SD Card is exFAT but installed HOS driver\nonly supports FAT32!"); _free_launch_components(&ctxt); goto error; } } // Patch kip1s in memory if needed. if (ctxt.kip1_patches) gfx_printf("%kPatching kips%k\n", TXT_CLR_ORANGE, TXT_CLR_DEFAULT); const char* unappliedPatch = pkg2_patch_kips(&kip1_info, ctxt.kip1_patches); if (unappliedPatch != NULL) { EHPRINTFARGS("Failed to apply '%s'!", unappliedPatch); bool emmc_patch_failed = !strcmp(unappliedPatch, "emummc"); if (!emmc_patch_failed) { gfx_puts("\nPress POWER to continue.\nPress VOL to go to the menu.\n"); display_backlight_brightness(h_cfg.backlight, 1000); } if (emmc_patch_failed || !(btn_wait() & BTN_POWER)) { _free_launch_components(&ctxt); goto error; // MUST stop here, because if user requests 'nogc' but it's not applied, their GC controller gets updated! } } // Rebuild and encrypt package2. pkg2_build_encrypt((void *)PKG2_LOAD_ADDR, &ctxt, &kip1_info, is_exo); // Configure Exosphere if secmon is replaced. if (is_exo) config_exosphere(&ctxt, warmboot_base); // Unmount SD card and eMMC. sd_end(); emmc_end(); gfx_printf("Rebuilt & loaded pkg2\n\n%kBooting...%k\n", TXT_CLR_GREENISH, TXT_CLR_DEFAULT); // Clear pkg1/pkg2 keys. se_aes_key_clear(8); se_aes_key_clear(11); // Clear derived master key in case of Erista and 7.0.0+ se_aes_key_clear(9); // Set secmon mailbox pkg2 ready state. u32 pkg1_state_pkg2_ready = PKG1_STATE_PKG2_READY; // Finalize per firmware key access. Skip access control if Exosphere 2. switch (kb | (is_exo << 7)) { case KB_FIRMWARE_VERSION_100: case KB_FIRMWARE_VERSION_300: case KB_FIRMWARE_VERSION_301: se_key_acc_ctrl(12, SE_KEY_TBL_DIS_KEY_ACCESS_FLAG | SE_KEY_LOCK_FLAG); se_key_acc_ctrl(13, SE_KEY_TBL_DIS_KEY_ACCESS_FLAG | SE_KEY_LOCK_FLAG); pkg1_state_pkg2_ready = PKG1_STATE_PKG2_READY_OLD; break; case KB_FIRMWARE_VERSION_400: case KB_FIRMWARE_VERSION_500: case KB_FIRMWARE_VERSION_600: se_key_acc_ctrl(12, SE_KEY_TBL_DIS_KEY_ACCESS_FLAG | SE_KEY_LOCK_FLAG); se_key_acc_ctrl(15, SE_KEY_TBL_DIS_KEY_ACCESS_FLAG | SE_KEY_LOCK_FLAG); break; } // Clear BCT area for retail units and copy it over if dev unit. if (kb <= KB_FIRMWARE_VERSION_500 && !is_exo) { memset((void *)SECMON_BCT_CFG_ADDR, 0, SZ_4K + SZ_8K); if (fuse_read_hw_state() == FUSE_NX_HW_STATE_DEV) memcpy((void *)SECMON_BCT_CFG_ADDR, bootConfigBuf, SZ_4K); } else { memset((void *)SECMON6_BCT_CFG_ADDR, 0, SZ_2K); if (fuse_read_hw_state() == FUSE_NX_HW_STATE_DEV) memcpy((void *)SECMON6_BCT_CFG_ADDR, bootConfigBuf, SZ_2K); } // Finalize MC carveout. if (kb <= KB_FIRMWARE_VERSION_301 && !is_exo) mc_config_carveout(); // Lock SE before starting 'SecureMonitor' if < 6.2.0, otherwise lock bootrom and ipatches. _se_lock(kb <= KB_FIRMWARE_VERSION_600 && !is_exo); // Reset sysctr0 counters. if (kb >= KB_FIRMWARE_VERSION_620) { for (u32 i = 0; i < SYSCTR0_COUNTERS; i += sizeof(u32)) SYSCTR0(SYSCTR0_COUNTERS_BASE + i) = 0; } // NX Bootloader locks LP0 Carveout secure scratch registers. //pmc_scratch_lock(PMC_SEC_LOCK_LP0_PARAMS); // Set secmon mailbox address and clear it. if (kb >= KB_FIRMWARE_VERSION_700 || is_exo) { memset((void *)SECMON7_MAILBOX_ADDR, 0, 0x200); secmon_mailbox = (secmon_mailbox_t *)(SECMON7_MAILBOX_ADDR + SECMON_STATE_OFFSET); } else { if (kb <= KB_FIRMWARE_VERSION_301) memset((void *)SECMON_MAILBOX_ADDR, 0, 0x200); secmon_mailbox = (secmon_mailbox_t *)(SECMON_MAILBOX_ADDR + SECMON_STATE_OFFSET); } // Start directly from PKG2 ready signal and reset outgoing value. secmon_mailbox->in = pkg1_state_pkg2_ready; secmon_mailbox->out = SECMON_STATE_NOT_READY; // Disable display. This must be executed before secmon to provide support for all fw versions. display_end(); // Clear EMC_SCRATCH0. EMC(EMC_SCRATCH0) = 0; // Hold USBD, USB2, AHBDMA and APBDMA in reset for SoC state validation on sleep. CLOCK(CLK_RST_CONTROLLER_RST_DEV_L_SET) = BIT(CLK_L_USBD); CLOCK(CLK_RST_CONTROLLER_RST_DEV_H_SET) = BIT(CLK_H_AHBDMA) | BIT(CLK_H_APBDMA) | BIT(CLK_H_USB2); // Scale down RAM OC if enabled. if (ctxt.stock) minerva_prep_boot_freq(); // Flush cache and disable MMU. bpmp_mmu_disable(); bpmp_clk_rate_set(BPMP_CLK_NORMAL); // Launch secmon. if (smmu_is_used()) smmu_exit(); else ccplex_boot_cpu0(secmon_base); // Halt ourselves in waitevent state and resume if there's JTAG activity. while (true) bpmp_halt(); error: emmc_end(); EPRINTF("\nFailed to launch HOS!"); return 0; }