/* * Copyright (c) 2018 naehrwert * Copyright (c) 2018-2022 CTCaer * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include "fe_info.h" #include "../config.h" #include "../hos/hos.h" #include "../hos/pkg1.h" #include extern hekate_config h_cfg; extern void emmcsn_path_impl(char *path, char *sub_dir, char *filename, sdmmc_storage_t *storage); #pragma GCC push_options #pragma GCC optimize ("Os") void print_fuseinfo() { u32 fuse_size = h_cfg.t210b01 ? 0x368 : 0x300; u32 fuse_address = h_cfg.t210b01 ? 0x7000F898 : 0x7000F900; gfx_clear_partial_grey(0x1B, 0, 1256); gfx_con_setpos(0, 0); gfx_printf("\nSKU: %X - ", FUSE(FUSE_SKU_INFO)); switch (fuse_read_hw_state()) { case FUSE_NX_HW_STATE_PROD: gfx_printf("Retail\n"); break; case FUSE_NX_HW_STATE_DEV: gfx_printf("Dev\n"); break; } gfx_printf("Sdram ID: %d\n", fuse_read_dramid(true)); gfx_printf("Burnt fuses: %d / 64\n", bit_count(fuse_read_odm(7))); gfx_printf("Secure key: %08X%08X%08X%08X\n\n\n", byte_swap_32(FUSE(FUSE_PRIVATE_KEY0)), byte_swap_32(FUSE(FUSE_PRIVATE_KEY1)), byte_swap_32(FUSE(FUSE_PRIVATE_KEY2)), byte_swap_32(FUSE(FUSE_PRIVATE_KEY3))); gfx_printf("%kFuse cache:\n\n%k", TXT_CLR_CYAN_L, TXT_CLR_DEFAULT); gfx_hexdump(fuse_address, (u8 *)fuse_address, fuse_size); btn_wait(); } void print_mmc_info() { gfx_clear_partial_grey(0x1B, 0, 1256); gfx_con_setpos(0, 0); static const u32 SECTORS_TO_MIB_COEFF = 11; if (!emmc_initialize(false)) { EPRINTF("Failed to init eMMC."); goto out; } else { u16 card_type; u32 speed = 0; gfx_printf("%kCID:%k\n", TXT_CLR_CYAN_L, TXT_CLR_DEFAULT); switch (emmc_storage.csd.mmca_vsn) { case 2: /* MMC v2.0 - v2.2 */ case 3: /* MMC v3.1 - v3.3 */ case 4: /* MMC v4 */ gfx_printf( " Vendor ID: %X\n" " OEM ID: %02X\n" " Model: %c%c%c%c%c%c\n" " Prd Rev: %X\n" " S/N: %04X\n" " Month/Year: %02d/%04d\n\n", emmc_storage.cid.manfid, emmc_storage.cid.oemid, emmc_storage.cid.prod_name[0], emmc_storage.cid.prod_name[1], emmc_storage.cid.prod_name[2], emmc_storage.cid.prod_name[3], emmc_storage.cid.prod_name[4], emmc_storage.cid.prod_name[5], emmc_storage.cid.prv, emmc_storage.cid.serial, emmc_storage.cid.month, emmc_storage.cid.year); break; default: break; } if (emmc_storage.csd.structure == 0) EPRINTF("Unknown CSD structure."); else { gfx_printf("%kExtended CSD V1.%d:%k\n", TXT_CLR_CYAN_L, emmc_storage.ext_csd.ext_struct, TXT_CLR_DEFAULT); card_type = emmc_storage.ext_csd.card_type; char card_type_support[96]; card_type_support[0] = 0; if (card_type & EXT_CSD_CARD_TYPE_HS_26) { strcat(card_type_support, "HS26"); speed = (26 << 16) | 26; } if (card_type & EXT_CSD_CARD_TYPE_HS_52) { strcat(card_type_support, ", HS52"); speed = (52 << 16) | 52; } if (card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) { strcat(card_type_support, ", DDR52_1.8V"); speed = (52 << 16) | 104; } if (card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) { strcat(card_type_support, ", HS200_1.8V"); speed = (200 << 16) | 200; } if (card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) { strcat(card_type_support, ", HS400_1.8V"); speed = (200 << 16) | 400; } gfx_printf( " Spec Version: %02X\n" " Extended Rev: 1.%d\n" " Dev Version: %d\n" " Cmd Classes: %02X\n" " Capacity: %s\n" " Max Rate: %d MB/s (%d MHz)\n" " Current Rate: %d MB/s\n" " Type Support: ", emmc_storage.csd.mmca_vsn, emmc_storage.ext_csd.rev, emmc_storage.ext_csd.dev_version, emmc_storage.csd.cmdclass, emmc_storage.csd.capacity == (4096 * 512) ? "High" : "Low", speed & 0xFFFF, (speed >> 16) & 0xFFFF, emmc_storage.csd.busspeed); gfx_con.fntsz = 8; gfx_printf("%s", card_type_support); gfx_con.fntsz = 16; gfx_printf("\n\n", card_type_support); u32 boot_size = emmc_storage.ext_csd.boot_mult << 17; u32 rpmb_size = emmc_storage.ext_csd.rpmb_mult << 17; gfx_printf("%keMMC Partitions:%k\n", TXT_CLR_CYAN_L, TXT_CLR_DEFAULT); gfx_printf(" 1: %kBOOT0 %k\n Size: %5d KiB (LBA Sectors: 0x%07X)\n", TXT_CLR_GREENISH, TXT_CLR_DEFAULT, boot_size / 1024, boot_size / 512); gfx_put_small_sep(); gfx_printf(" 2: %kBOOT1 %k\n Size: %5d KiB (LBA Sectors: 0x%07X)\n", TXT_CLR_GREENISH, TXT_CLR_DEFAULT, boot_size / 1024, boot_size / 512); gfx_put_small_sep(); gfx_printf(" 3: %kRPMB %k\n Size: %5d KiB (LBA Sectors: 0x%07X)\n", TXT_CLR_GREENISH, TXT_CLR_DEFAULT, rpmb_size / 1024, rpmb_size / 512); gfx_put_small_sep(); gfx_printf(" 0: %kGPP (USER) %k\n Size: %5d MiB (LBA Sectors: 0x%07X)\n\n", TXT_CLR_GREENISH, TXT_CLR_DEFAULT, emmc_storage.sec_cnt >> SECTORS_TO_MIB_COEFF, emmc_storage.sec_cnt); gfx_put_small_sep(); gfx_printf("%kGPP (eMMC USER) partition table:%k\n", TXT_CLR_CYAN_L, TXT_CLR_DEFAULT); emmc_set_partition(EMMC_GPP); LIST_INIT(gpt); emmc_gpt_parse(&gpt); int gpp_idx = 0; LIST_FOREACH_ENTRY(emmc_part_t, part, &gpt, link) { gfx_printf(" %02d: %k%s%k\n Size: % 5d MiB (LBA Sectors 0x%07X)\n LBA Range: %08X-%08X\n", gpp_idx++, TXT_CLR_GREENISH, part->name, TXT_CLR_DEFAULT, (part->lba_end - part->lba_start + 1) >> SECTORS_TO_MIB_COEFF, part->lba_end - part->lba_start + 1, part->lba_start, part->lba_end); gfx_put_small_sep(); } emmc_gpt_free(&gpt); } } out: emmc_end(); btn_wait(); } void print_sdcard_info() { static const u32 SECTORS_TO_MIB_COEFF = 11; gfx_clear_partial_grey(0x1B, 0, 1256); gfx_con_setpos(0, 0); if (sd_initialize(false)) { gfx_printf("%kCard IDentification:%k\n", TXT_CLR_CYAN_L, TXT_CLR_DEFAULT); gfx_printf( " Vendor ID: %02x\n" " OEM ID: %c%c\n" " Model: %c%c%c%c%c\n" " HW rev: %X\n" " FW rev: %X\n" " S/N: %08x\n" " Month/Year: %02d/%04d\n\n", sd_storage.cid.manfid, (sd_storage.cid.oemid >> 8) & 0xFF, sd_storage.cid.oemid & 0xFF, sd_storage.cid.prod_name[0], sd_storage.cid.prod_name[1], sd_storage.cid.prod_name[2], sd_storage.cid.prod_name[3], sd_storage.cid.prod_name[4], sd_storage.cid.hwrev, sd_storage.cid.fwrev, sd_storage.cid.serial, sd_storage.cid.month, sd_storage.cid.year); u16 *sd_errors = sd_get_error_count(); gfx_printf("%kCard-Specific Data V%d.0:%k\n", TXT_CLR_CYAN_L, sd_storage.csd.structure + 1, TXT_CLR_DEFAULT); gfx_printf( " Cmd Classes: %02X\n" " Capacity: %d MiB\n" " Bus Width: %d\n" " Current Rate: %d MB/s (%d MHz)\n" " Speed Class: %d\n" " UHS Grade: U%d\n" " Video Class: V%d\n" " App perf class: A%d\n" " Write Protect: %d\n" " SDMMC Errors: %d %d %d\n\n", sd_storage.csd.cmdclass, sd_storage.sec_cnt >> 11, sd_storage.ssr.bus_width, sd_storage.csd.busspeed, sd_storage.csd.busspeed * 2, sd_storage.ssr.speed_class, sd_storage.ssr.uhs_grade, sd_storage.ssr.video_class, sd_storage.ssr.app_class, sd_storage.csd.write_protect, sd_errors[0], sd_errors[1], sd_errors[2]); // SD_ERROR_INIT_FAIL, SD_ERROR_RW_FAIL, SD_ERROR_RW_RETRY. int res = f_mount(&sd_fs, "", 1); if (!res) { gfx_puts("Acquiring FAT volume info...\n\n"); f_getfree("", &sd_fs.free_clst, NULL); gfx_printf("%kFound %s volume:%k\n Free: %d MiB\n Cluster: %d KiB\n", TXT_CLR_CYAN_L, sd_fs.fs_type == FS_EXFAT ? "exFAT" : "FAT32", TXT_CLR_DEFAULT, sd_fs.free_clst * sd_fs.csize >> SECTORS_TO_MIB_COEFF, (sd_fs.csize > 1) ? (sd_fs.csize >> 1) : 512); f_mount(NULL, "", 1); } else { EPRINTFARGS("Failed to mount SD card (FatFS Error %d).\n" "Make sure that a FAT partition exists..", res); } sd_end(); } else { EPRINTF("Failed to init SD card."); if (!sdmmc_get_sd_inserted()) EPRINTF("Make sure that it is inserted."); else EPRINTF("SD Card Reader is not properly seated!"); sd_end(); } btn_wait(); } void print_fuel_gauge_info() { int value = 0; gfx_printf("%kFuel Gauge Info:\n%k", TXT_CLR_CYAN_L, TXT_CLR_DEFAULT); max17050_get_property(MAX17050_RepSOC, &value); gfx_printf("Capacity now: %3d%\n", value >> 8); max17050_get_property(MAX17050_RepCap, &value); gfx_printf("Capacity now: %4d mAh\n", value); max17050_get_property(MAX17050_FullCAP, &value); gfx_printf("Capacity full: %4d mAh\n", value); max17050_get_property(MAX17050_DesignCap, &value); gfx_printf("Capacity (design): %4d mAh\n", value); max17050_get_property(MAX17050_Current, &value); gfx_printf("Current now: %d mA\n", value / 1000); max17050_get_property(MAX17050_AvgCurrent, &value); gfx_printf("Current average: %d mA\n", value / 1000); max17050_get_property(MAX17050_VCELL, &value); gfx_printf("Voltage now: %4d mV\n", value); max17050_get_property(MAX17050_OCVInternal, &value); gfx_printf("Voltage open-circuit: %4d mV\n", value); max17050_get_property(MAX17050_MinVolt, &value); gfx_printf("Min voltage reached: %4d mV\n", value); max17050_get_property(MAX17050_MaxVolt, &value); gfx_printf("Max voltage reached: %4d mV\n", value); max17050_get_property(MAX17050_V_empty, &value); gfx_printf("Empty voltage (design): %4d mV\n", value); max17050_get_property(MAX17050_TEMP, &value); gfx_printf("Battery temperature: %d.%d oC\n", value / 10, (value >= 0 ? value : (~value)) % 10); } void print_battery_charger_info() { int value = 0; gfx_printf("%k\n\nBattery Charger Info:\n%k", TXT_CLR_CYAN_L, TXT_CLR_DEFAULT); bq24193_get_property(BQ24193_InputVoltageLimit, &value); gfx_printf("Input voltage limit: %4d mV\n", value); bq24193_get_property(BQ24193_InputCurrentLimit, &value); gfx_printf("Input current limit: %4d mA\n", value); bq24193_get_property(BQ24193_SystemMinimumVoltage, &value); gfx_printf("Min voltage limit: %4d mV\n", value); bq24193_get_property(BQ24193_FastChargeCurrentLimit, &value); gfx_printf("Fast charge current limit: %4d mA\n", value); bq24193_get_property(BQ24193_ChargeVoltageLimit, &value); gfx_printf("Charge voltage limit: %4d mV\n", value); bq24193_get_property(BQ24193_ChargeStatus, &value); gfx_printf("Charge status: "); switch (value) { case 0: gfx_printf("Not charging\n"); break; case 1: gfx_printf("Pre-charging\n"); break; case 2: gfx_printf("Fast charging\n"); break; case 3: gfx_printf("Charge terminated\n"); break; default: gfx_printf("Unknown (%d)\n", value); break; } bq24193_get_property(BQ24193_TempStatus, &value); gfx_printf("Temperature status: "); switch (value) { case 0: gfx_printf("Normal\n"); break; case 2: gfx_printf("Warm\n"); break; case 3: gfx_printf("Cool\n"); break; case 5: gfx_printf("Cold\n"); break; case 6: gfx_printf("Hot\n"); break; default: gfx_printf("Unknown (%d)\n", value); break; } } void print_battery_info() { gfx_clear_partial_grey(0x1B, 0, 1256); gfx_con_setpos(0, 0); print_fuel_gauge_info(); print_battery_charger_info(); u8 *buf = (u8 *)malloc(0x100 * 2); gfx_printf("%k\n\nBattery Fuel Gauge Registers:\n%k", TXT_CLR_CYAN_L, TXT_CLR_DEFAULT); for (int i = 0; i < 0x200; i += 2) { i2c_recv_buf_small(buf + i, 2, I2C_1, MAXIM17050_I2C_ADDR, i >> 1); usleep(2500); } gfx_hexdump(0, (u8 *)buf, 0x200); btn_wait(); } #pragma GCC pop_options