/* * Copyright (c) 2018 naehrwert * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "hos.h" #include "sdmmc.h" #include "nx_emmc.h" #include "t210.h" #include "se.h" #include "se_t210.h" #include "pmc.h" #include "cluster.h" #include "heap.h" #include "tsec.h" #include "pkg2.h" #include "nx_emmc.h" #include "util.h" #include "pkg1.h" #include "pkg2.h" #include "ff.h" #include "gfx.h" extern gfx_ctxt_t gfx_ctxt; extern gfx_con_t gfx_con; //#define DPRINTF(...) gfx_printf(&gfx_con, __VA_ARGS__) #define DPRINTF(...) typedef struct _launch_ctxt_t { void *keyblob; void *pkg1; const pkg1_id_t *pkg1_id; const pkg2_kernel_id_t *pkg2_kernel_id; void *warmboot; u32 warmboot_size; void *secmon; u32 secmon_size; void *pkg2; u32 pkg2_size; void *kernel; u32 kernel_size; link_t kip1_list; int svcperm; int debugmode; } launch_ctxt_t; typedef struct _merge_kip_t { void *kip1; link_t link; } merge_kip_t; #define KB_FIRMWARE_VERSION_100_200 0 #define KB_FIRMWARE_VERSION_300 1 #define KB_FIRMWARE_VERSION_301 2 #define KB_FIRMWARE_VERSION_400 3 #define KB_FIRMWARE_VERSION_500 4 #define NUM_KEYBLOB_KEYS 5 static const u8 keyblob_keyseeds[NUM_KEYBLOB_KEYS][0x10] = { { 0xDF, 0x20, 0x6F, 0x59, 0x44, 0x54, 0xEF, 0xDC, 0x70, 0x74, 0x48, 0x3B, 0x0D, 0xED, 0x9F, 0xD3 }, //1.0.0 { 0x0C, 0x25, 0x61, 0x5D, 0x68, 0x4C, 0xEB, 0x42, 0x1C, 0x23, 0x79, 0xEA, 0x82, 0x25, 0x12, 0xAC }, //3.0.0 { 0x33, 0x76, 0x85, 0xEE, 0x88, 0x4A, 0xAE, 0x0A, 0xC2, 0x8A, 0xFD, 0x7D, 0x63, 0xC0, 0x43, 0x3B }, //3.0.1 { 0x2D, 0x1F, 0x48, 0x80, 0xED, 0xEC, 0xED, 0x3E, 0x3C, 0xF2, 0x48, 0xB5, 0x65, 0x7D, 0xF7, 0xBE }, //4.0.0 { 0xBB, 0x5A, 0x01, 0xF9, 0x88, 0xAF, 0xF5, 0xFC, 0x6C, 0xFF, 0x07, 0x9E, 0x13, 0x3C, 0x39, 0x80 } //5.0.0 }; static const u8 cmac_keyseed[0x10] = { 0x59, 0xC7, 0xFB, 0x6F, 0xBE, 0x9B, 0xBE, 0x87, 0x65, 0x6B, 0x15, 0xC0, 0x53, 0x73, 0x36, 0xA5 }; static const u8 master_keyseed_retail[0x10] = { 0xD8, 0xA2, 0x41, 0x0A, 0xC6, 0xC5, 0x90, 0x01, 0xC6, 0x1D, 0x6A, 0x26, 0x7C, 0x51, 0x3F, 0x3C }; static const u8 console_keyseed[0x10] = { 0x4F, 0x02, 0x5F, 0x0E, 0xB6, 0x6D, 0x11, 0x0E, 0xDC, 0x32, 0x7D, 0x41, 0x86, 0xC2, 0xF4, 0x78 }; static const u8 key8_keyseed[] = { 0xFB, 0x8B, 0x6A, 0x9C, 0x79, 0x00, 0xC8, 0x49, 0xEF, 0xD2, 0x4D, 0x85, 0x4D, 0x30, 0xA0, 0xC7 }; static const u8 master_keyseed_4xx[0x10] = { 0x2D, 0xC1, 0xF4, 0x8D, 0xF3, 0x5B, 0x69, 0x33, 0x42, 0x10, 0xAC, 0x65, 0xDA, 0x90, 0x46, 0x66 }; static const u8 console_keyseed_4xx[0x10] = { 0x0C, 0x91, 0x09, 0xDB, 0x93, 0x93, 0x07, 0x81, 0x07, 0x3C, 0xC4, 0x16, 0x22, 0x7C, 0x6C, 0x28 }; #define CRC32C_POLY 0x82F63B78 u32 crc32c(const u8 *buf, u32 len) { u32 crc = 0xFFFFFFFF; while (len--) { crc ^= *buf++; for (int i = 0; i < 8; i++) crc = crc & 1 ? (crc >> 1) ^ CRC32C_POLY : crc >> 1; } return ~crc; } static void _se_lock() { for (u32 i = 0; i < 16; i++) se_key_acc_ctrl(i, 0x15); for (u32 i = 0; i < 2; i++) se_rsa_acc_ctrl(i, 1); SE(0x4) = 0; //Make this reg secure only. SE(SE_KEY_TABLE_ACCESS_LOCK_OFFSET) = 0; //Make all key access regs secure only. SE(SE_RSA_KEYTABLE_ACCESS_LOCK_OFFSET) = 0; //Make all rsa access regs secure only. SE(SE_SECURITY_0) &= 0xFFFFFFFB; //Make access lock regs secure only. //This is useful for documenting the bits in the SE config registers, so we can keep it around. /*gfx_printf(&gfx_con, "SE(SE_SECURITY_0) = %08X\n", SE(SE_SECURITY_0)); gfx_printf(&gfx_con, "SE(0x4) = %08X\n", SE(0x4)); gfx_printf(&gfx_con, "SE(SE_KEY_TABLE_ACCESS_LOCK_OFFSET) = %08X\n", SE(SE_KEY_TABLE_ACCESS_LOCK_OFFSET)); gfx_printf(&gfx_con, "SE(SE_RSA_KEYTABLE_ACCESS_LOCK_OFFSET) = %08X\n", SE(SE_RSA_KEYTABLE_ACCESS_LOCK_OFFSET)); for(u32 i = 0; i < 16; i++) gfx_printf(&gfx_con, "%02X ", SE(SE_KEY_TABLE_ACCESS_REG_OFFSET + i * 4) & 0xFF); gfx_putc(&gfx_con, '\n'); for(u32 i = 0; i < 2; i++) gfx_printf(&gfx_con, "%02X ", SE(SE_RSA_KEYTABLE_ACCESS_REG_OFFSET + i * 4) & 0xFF); gfx_putc(&gfx_con, '\n'); gfx_hexdump(&gfx_con, SE_BASE, (void *)SE_BASE, 0x400);*/ } int keygen(u8 *keyblob, u32 kb, void *tsec_fw) { u8 tmp[0x10]; se_key_acc_ctrl(0x0D, 0x15); se_key_acc_ctrl(0x0E, 0x15); //Get TSEC key. if (tsec_query(tmp, 1, tsec_fw) < 0) return 0; se_aes_key_set(0x0D, tmp, 0x10); //Derive keyblob keys from TSEC+SBK. se_aes_crypt_block_ecb(0x0D, 0x00, tmp, keyblob_keyseeds[0]); se_aes_unwrap_key(0x0F, 0x0E, tmp); se_aes_crypt_block_ecb(0xD, 0x00, tmp, keyblob_keyseeds[kb]); se_aes_unwrap_key(0x0D, 0x0E, tmp); // Clear SBK se_aes_key_clear(0x0E); //TODO: verify keyblob CMAC. //se_aes_unwrap_key(11, 13, cmac_keyseed); //se_aes_cmac(tmp, 0x10, 11, keyblob + 0x10, 0xA0); //if (!memcmp(keyblob, tmp, 0x10)) // return 0; se_aes_crypt_block_ecb(0x0D, 0, tmp, cmac_keyseed); se_aes_unwrap_key(0x0B, 0x0D, cmac_keyseed); //Decrypt keyblob and set keyslots. se_aes_crypt_ctr(0x0D, keyblob + 0x20, 0x90, keyblob + 0x20, 0x90, keyblob + 0x10); se_aes_key_set(0x0B, keyblob + 0x20 + 0x80, 0x10); // package1 key se_aes_key_set(0x0C, keyblob + 0x20, 0x10); se_aes_key_set(0x0D, keyblob + 0x20, 0x10); se_aes_crypt_block_ecb(0x0C, 0, tmp, master_keyseed_retail); switch (kb) { case KB_FIRMWARE_VERSION_100_200: case KB_FIRMWARE_VERSION_300: case KB_FIRMWARE_VERSION_301: se_aes_unwrap_key(0x0D, 0x0F, console_keyseed); se_aes_unwrap_key(0x0C, 0x0C, master_keyseed_retail); break; case KB_FIRMWARE_VERSION_400: se_aes_unwrap_key(0x0D, 0x0F, console_keyseed_4xx); se_aes_unwrap_key(0x0F, 0x0F, console_keyseed); se_aes_unwrap_key(0x0E, 0x0C, master_keyseed_4xx); se_aes_unwrap_key(0x0C, 0x0C, master_keyseed_retail); break; case KB_FIRMWARE_VERSION_500: default: se_aes_unwrap_key(0x0A, 0x0F, console_keyseed_4xx); se_aes_unwrap_key(0x0F, 0x0F, console_keyseed); se_aes_unwrap_key(0x0E, 0x0C, master_keyseed_4xx); se_aes_unwrap_key(0x0C, 0x0C, master_keyseed_retail); break; } //Package2 key. se_key_acc_ctrl(0x08, 0x15); se_aes_unwrap_key(0x08, 0x0C, key8_keyseed); return 1; } static int _read_emmc_pkg1(launch_ctxt_t *ctxt) { int res = 0; sdmmc_storage_t storage; sdmmc_t sdmmc; sdmmc_storage_init_mmc(&storage, &sdmmc, SDMMC_4, SDMMC_BUS_WIDTH_8, 4); //Read package1. ctxt->pkg1 = (u8 *)malloc(0x40000); sdmmc_storage_set_mmc_partition(&storage, 1); sdmmc_storage_read(&storage, 0x100000 / NX_EMMC_BLOCKSIZE, 0x40000 / NX_EMMC_BLOCKSIZE, ctxt->pkg1); ctxt->pkg1_id = pkg1_identify(ctxt->pkg1); if (!ctxt->pkg1_id) { gfx_printf(&gfx_con, "%kCould not identify package1 version (= '%s').%k\n", 0xFF0000FF, (char *)ctxt->pkg1 + 0x10, 0xFFFFFFFF); goto out; } gfx_printf(&gfx_con, "Identified package1 ('%s'), Keyblob version %d\n\n", (char *)(ctxt->pkg1 + 0x10), ctxt->pkg1_id->kb); //Read the correct keyblob. ctxt->keyblob = (u8 *)malloc(NX_EMMC_BLOCKSIZE); sdmmc_storage_read(&storage, 0x180000 / NX_EMMC_BLOCKSIZE + ctxt->pkg1_id->kb, 1, ctxt->keyblob); res = 1; out:; sdmmc_storage_end(&storage); return res; } static int _read_emmc_pkg2(launch_ctxt_t *ctxt) { int res = 0; sdmmc_storage_t storage; sdmmc_t sdmmc; sdmmc_storage_init_mmc(&storage, &sdmmc, SDMMC_4, SDMMC_BUS_WIDTH_8, 4); sdmmc_storage_set_mmc_partition(&storage, 0); //Parse eMMC GPT. LIST_INIT(gpt); nx_emmc_gpt_parse(&gpt, &storage); DPRINTF("Parsed GPT\n"); //Find package2 partition. emmc_part_t *pkg2_part = nx_emmc_part_find(&gpt, "BCPKG2-1-Normal-Main"); if (!pkg2_part) goto out; //Read in package2 header and get package2 real size. //TODO: implement memalign for DMA buffers. u8 *tmp = (u8 *)malloc(NX_EMMC_BLOCKSIZE); nx_emmc_part_read(&storage, pkg2_part, 0x4000 / NX_EMMC_BLOCKSIZE, 1, tmp); u32 *hdr = (u32 *)(tmp + 0x100); u32 pkg2_size = hdr[0] ^ hdr[2] ^ hdr[3]; free(tmp); DPRINTF("pkg2 size on emmc is %08X\n", pkg2_size); //Read in package2. u32 pkg2_size_aligned = ALIGN(pkg2_size, NX_EMMC_BLOCKSIZE); DPRINTF("pkg2 size aligned is %08X\n", pkg2_size_aligned); ctxt->pkg2 = malloc(pkg2_size_aligned); ctxt->pkg2_size = pkg2_size; nx_emmc_part_read(&storage, pkg2_part, 0x4000 / NX_EMMC_BLOCKSIZE, pkg2_size_aligned / NX_EMMC_BLOCKSIZE, ctxt->pkg2); res = 1; out:; nx_emmc_gpt_free(&gpt); sdmmc_storage_end(&storage); return res; } static int _config_warmboot(launch_ctxt_t *ctxt, const char *value) { FIL fp; if (f_open(&fp, value, FA_READ) != FR_OK) return 0; ctxt->warmboot_size = f_size(&fp); ctxt->warmboot = malloc(ctxt->warmboot_size); f_read(&fp, ctxt->warmboot, ctxt->warmboot_size, NULL); f_close(&fp); return 1; } static int _config_secmon(launch_ctxt_t *ctxt, const char *value) { FIL fp; if (f_open(&fp, value, FA_READ) != FR_OK) return 0; ctxt->secmon_size = f_size(&fp); ctxt->secmon = malloc(ctxt->secmon_size); f_read(&fp, ctxt->secmon, ctxt->secmon_size, NULL); f_close(&fp); return 1; } static int _config_kernel(launch_ctxt_t *ctxt, const char *value) { FIL fp; if (f_open(&fp, value, FA_READ) != FR_OK) return 0; ctxt->kernel_size = f_size(&fp); ctxt->kernel = malloc(ctxt->kernel_size); f_read(&fp, ctxt->kernel, ctxt->kernel_size, NULL); f_close(&fp); return 1; } static int _config_kip1(launch_ctxt_t *ctxt, const char *value) { FIL fp; if (f_open(&fp, value, FA_READ) != FR_OK) return 0; merge_kip_t *mkip1 = (merge_kip_t *)malloc(sizeof(merge_kip_t)); mkip1->kip1 = malloc(f_size(&fp)); f_read(&fp, mkip1->kip1, f_size(&fp), NULL); DPRINTF("Loaded kip1 from SD (size %08X)\n", f_size(&fp)); f_close(&fp); list_append(&ctxt->kip1_list, &mkip1->link); return 1; } static int _config_svcperm(launch_ctxt_t *ctxt, const char *value) { if (*value == '1') { DPRINTF("Disabled SVC verification\n"); ctxt->svcperm = 1; } return 1; } static int _config_debugmode(launch_ctxt_t *ctxt, const char *value) { if (*value == '1') { DPRINTF("Enabled Debug mode\n"); ctxt->debugmode = 1; } return 1; } typedef struct _cfg_handler_t { const char *key; int (*handler)(launch_ctxt_t *ctxt, const char *value); } cfg_handler_t; static const cfg_handler_t _config_handlers[] = { { "warmboot", _config_warmboot }, { "secmon", _config_secmon }, { "kernel", _config_kernel }, { "kip1", _config_kip1 }, { "fullsvcperm", _config_svcperm }, { "debugmode", _config_debugmode }, { NULL, NULL }, }; static int _config(launch_ctxt_t *ctxt, ini_sec_t *cfg) { LIST_FOREACH_ENTRY(ini_kv_t, kv, &cfg->kvs, link) for(u32 i = 0; _config_handlers[i].key; i++) if (!strcmp(_config_handlers[i].key, kv->key) && !_config_handlers[i].handler(ctxt, kv->val)) return 0; return 1; } int hos_launch(ini_sec_t *cfg) { int bootStateDramPkg2; int bootStatePkg2Continue; launch_ctxt_t ctxt; memset(&ctxt, 0, sizeof(launch_ctxt_t)); list_init(&ctxt.kip1_list); gfx_clear_grey(&gfx_ctxt, 0x1B); gfx_con_setpos(&gfx_con, 0, 0); //Try to parse config if present. if (cfg && !_config(&ctxt, cfg)) return 0; gfx_printf(&gfx_con, "Initializing...\n\n"); //Read package1 and the correct keyblob. if (!_read_emmc_pkg1(&ctxt)) return 0; gfx_printf(&gfx_con, "Loaded package1 and keyblob\n"); //Generate keys. keygen(ctxt.keyblob, ctxt.pkg1_id->kb, (u8 *)ctxt.pkg1 + ctxt.pkg1_id->tsec_off); DPRINTF("Generated keys\n"); //Decrypt and unpack package1 if we require parts of it. if (!ctxt.warmboot || !ctxt.secmon) { pkg1_decrypt(ctxt.pkg1_id, ctxt.pkg1); pkg1_unpack((void *)ctxt.pkg1_id->warmboot_base, (void *)ctxt.pkg1_id->secmon_base, NULL, ctxt.pkg1_id, ctxt.pkg1); gfx_printf(&gfx_con, "Decrypted and unpacked package1\n"); } //Replace 'warmboot.bin' if requested. if (ctxt.warmboot) memcpy((void *)ctxt.pkg1_id->warmboot_base, ctxt.warmboot, ctxt.warmboot_size); //Set warmboot address in PMC if required. if (ctxt.pkg1_id->set_warmboot) PMC(APBDEV_PMC_SCRATCH1) = ctxt.pkg1_id->warmboot_base; //Replace 'SecureMonitor' if requested. if (ctxt.secmon) memcpy((void *)ctxt.pkg1_id->secmon_base, ctxt.secmon, ctxt.secmon_size); else { //Else we patch it to allow for an unsigned package2 and patched kernel. patch_t *secmon_patchset = ctxt.pkg1_id->secmon_patchset; gfx_printf(&gfx_con, "%kPatching Security Monitor%k\n", 0xFF00BAFF, 0xFFCCCCCC); for (u32 i = 0; secmon_patchset[i].off != 0xFFFFFFFF; i++) *(vu32 *)(ctxt.pkg1_id->secmon_base + secmon_patchset[i].off) = secmon_patchset[i].val; } gfx_printf(&gfx_con, "Loaded warmboot.bin and secmon\n"); //Read package2. if (!_read_emmc_pkg2(&ctxt)) return 0; gfx_printf(&gfx_con, "Read package2\n"); //Decrypt package2 and parse KIP1 blobs in INI1 section. pkg2_hdr_t *pkg2_hdr = pkg2_decrypt(ctxt.pkg2); LIST_INIT(kip1_info); pkg2_parse_kips(&kip1_info, pkg2_hdr); gfx_printf(&gfx_con, "Parsed ini1\n"); //Use the kernel included in package2 in case we didn't load one already. if (!ctxt.kernel) { ctxt.kernel = pkg2_hdr->data; ctxt.kernel_size = pkg2_hdr->sec_size[PKG2_SEC_KERNEL]; if (ctxt.svcperm || ctxt.debugmode) { u32 kernel_crc32 = crc32c(ctxt.kernel, ctxt.kernel_size); ctxt.pkg2_kernel_id = pkg2_identify(kernel_crc32); //In case a kernel patch option is set; allows to disable SVC verification or/and enable debug mode. patch_t *kernel_patchset = ctxt.pkg2_kernel_id->kernel_patchset; if (kernel_patchset != NULL) { gfx_printf(&gfx_con, "%kPatching kernel%k\n", 0xFF00BAFF, 0xFFCCCCCC); //TODO: this is a bit ugly, perhaps attach a 'key' to the patchset and pass it via ini. if (ctxt.svcperm && kernel_patchset[0].off != 0xFFFFFFFF) *(vu32 *)(ctxt.kernel + kernel_patchset[0].off) = kernel_patchset[0].val; if (ctxt.debugmode && kernel_patchset[1].off != 0xFFFFFFFF) *(vu32 *)(ctxt.kernel + kernel_patchset[1].off) = kernel_patchset[1].val; } } } //Merge extra KIP1s into loaded ones. gfx_printf(&gfx_con, "%kPatching kernel initial processes%k\n", 0xFF00BAFF, 0xFFCCCCCC); LIST_FOREACH_ENTRY(merge_kip_t, mki, &ctxt.kip1_list, link) pkg2_merge_kip(&kip1_info, (pkg2_kip1_t *)mki->kip1); //Rebuild and encrypt package2. pkg2_build_encrypt((void *)0xA9800000, ctxt.kernel, ctxt.kernel_size, &kip1_info); gfx_printf(&gfx_con, "Rebuilt and loaded package2\n"); //Unmount SD card. f_mount(NULL, "", 1); gfx_printf(&gfx_con, "\n%kBooting...%k\n", 0xFF00FF96, 0xFFCCCCCC); se_aes_key_clear(0x8); se_aes_key_clear(0xB); switch (ctxt.pkg1_id->kb) { case KB_FIRMWARE_VERSION_100_200: case KB_FIRMWARE_VERSION_300: case KB_FIRMWARE_VERSION_301: se_key_acc_ctrl(0xC, 0xFF); se_key_acc_ctrl(0xD, 0xFF); bootStateDramPkg2 = 2; bootStatePkg2Continue = 3; break; default: case KB_FIRMWARE_VERSION_400: case KB_FIRMWARE_VERSION_500: se_key_acc_ctrl(0xC, 0xFF); se_key_acc_ctrl(0xF, 0xFF); bootStateDramPkg2 = 2; bootStatePkg2Continue = 4; break; } //TODO: Don't Clear 'BootConfig' for retail >1.0.0. memset((void *)0x4003D000, 0, 0x3000); //Lock SE before starting 'SecureMonitor'. _se_lock(); //< 4.0.0 Signals. 0: Nothing ready, 1: BCT ready, 2: DRAM and pkg2 ready, 3: Continue boot //>=4.0.0 Signals. 0: Nothing ready, 1: BCT ready, 2: DRAM ready, 4: pkg2 ready and continue boot vu32 *mb_in = (vu32 *)0x40002EF8; //Non-zero: Secmon ready vu32 *mb_out = (vu32 *)0x40002EFC; //Start from DRAM ready signal *mb_in = bootStateDramPkg2; *mb_out = 0; //Wait for secmon to get ready. cluster_boot_cpu0(ctxt.pkg1_id->secmon_base); while (!*mb_out) sleep(1); //TODO: pkg1.1 locks PMC scratches, we can do that too at some point. /*PMC(0x4) = 0x7FFFF3; PMC(0x2C4) = 0xFFFFFFFF; PMC(0x2D8) = 0xFFAFFFFF; PMC(0x5B0) = 0xFFFFFFFF; PMC(0x5B4) = 0xFFFFFFFF; PMC(0x5B8) = 0xFFFFFFFF; PMC(0x5BC) = 0xFFFFFFFF; PMC(0x5C0) = 0xFFAAFFFF;*/ //TODO: Cleanup. //display_end(); //Signal to pkg2 ready and continue boot. *mb_in = bootStatePkg2Continue; //Halt ourselves in waitevent state. while (1) FLOW_CTLR(0x4) = 0x50000000; return 0; }