/* * Copyright (c) 2018 naehrwert * Copyright (c) 2018-2024 CTCaer * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <memory_map.h> #include <soc/ccplex.h> #include <soc/hw_init.h> #include <soc/i2c.h> #include <soc/clock.h> #include <soc/pmc.h> #include <soc/t210.h> #include <power/max77620.h> #include <power/max7762x.h> #include <power/max77812.h> #include <utils/util.h> #define CCPLEX_FLOWCTRL_POWERGATING 0 static void _ccplex_enable_power_t210() { // Configure GPIO5 and enable output in order to power CPU pmic. max77620_config_gpio(5, MAX77620_GPIO_OUTPUT_ENABLE); // Configure CPU pmic. // 1-3.x: MAX77621_NFSR_ENABLE. // 1.0.0-3.x: MAX77621_T_JUNCTION_120 | MAX77621_CKKADV_TRIP_DISABLE | MAX77621_INDUCTOR_NOMINAL. max77621_config_default(REGULATOR_CPU0, MAX77621_CTRL_HOS_CFG); // Set voltage and enable cluster power. max7762x_regulator_set_voltage(REGULATOR_CPU0, 950000); max7762x_regulator_enable(REGULATOR_CPU0, true); } static void _ccplex_enable_power_t210b01() { // Set voltage and enable cluster power. max7762x_regulator_set_voltage(REGULATOR_CPU1, 800000); max7762x_regulator_enable(REGULATOR_CPU1, true); } static void _ccplex_disable_power() { // Disable cluster power. if (hw_get_chip_id() == GP_HIDREV_MAJOR_T210) { max7762x_regulator_enable(REGULATOR_CPU0, false); i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_GPIO5, 0); } else max7762x_regulator_enable(REGULATOR_CPU1, false); } void ccplex_boot_cpu0(u32 entry, bool lock) { // Set ACTIVE_CLUSER to FAST. FLOW_CTLR(FLOW_CTLR_BPMP_CLUSTER_CONTROL) &= ~CLUSTER_CTRL_ACTIVE_SLOW; if (hw_get_chip_id() == GP_HIDREV_MAJOR_T210) _ccplex_enable_power_t210(); else _ccplex_enable_power_t210b01(); clock_enable_pllx(); // Configure MSELECT source and enable clock to 102MHz. CLOCK(CLK_RST_CONTROLLER_CLK_SOURCE_MSELECT) = (0 << 29) | CLK_SRC_DIV(4); CLOCK(CLK_RST_CONTROLLER_CLK_ENB_V_SET) = BIT(CLK_V_MSELECT); // Configure initial CPU clock frequency and enable clock. CLOCK(CLK_RST_CONTROLLER_CCLK_BURST_POLICY) = 0x20008888; // PLLX_OUT0_LJ. CLOCK(CLK_RST_CONTROLLER_SUPER_CCLK_DIVIDER) = BIT(31); // SUPER_CDIV_ENB. CLOCK(CLK_RST_CONTROLLER_CLK_ENB_V_SET) = BIT(CLK_V_CPUG); clock_enable_coresight(); // CAR2PMC_CPU_ACK_WIDTH should be set to 0. CLOCK(CLK_RST_CONTROLLER_CPU_SOFTRST_CTRL2) &= 0xFFFFF000; // Enable CPU main rail. pmc_enable_partition(POWER_RAIL_CRAIL, ENABLE); // Enable cluster 0 non-CPU rail. pmc_enable_partition(POWER_RAIL_C0NC, ENABLE); // Enable CPU0 rail. pmc_enable_partition(POWER_RAIL_CE0, ENABLE); // Request and wait for RAM repair. Needed for the Fast cluster. FLOW_CTLR(FLOW_CTLR_RAM_REPAIR) = RAM_REPAIR_REQ; while (!(FLOW_CTLR(FLOW_CTLR_RAM_REPAIR) & RAM_REPAIR_STS)) ; EXCP_VEC(EVP_CPU_RESET_VECTOR) = 0; // Set reset vector. SB(SB_AA64_RESET_LOW) = entry | SB_AA64_RST_AARCH64_MODE_EN; SB(SB_AA64_RESET_HIGH) = 0; // Non-secure reset vector write disable. if (lock) { SB(SB_CSR) = SB_CSR_NS_RST_VEC_WR_DIS; (void)SB(SB_CSR); } // Tighten up the security aperture. // MC(MC_TZ_SECURITY_CTRL) = 1; // Clear MSELECT reset. CLOCK(CLK_RST_CONTROLLER_RST_DEV_V_CLR) = BIT(CLK_V_MSELECT); // Clear NONCPU reset. CLOCK(CLK_RST_CONTROLLER_RST_CPUG_CMPLX_CLR) = BIT(29); // CLR_NONCPURESET. // Clear CPU0 reset. // < 5.x: 0x411F000F, Clear CPU{0,1,2,3} POR and CORE, CX0, L2, and DBG reset. CLOCK(CLK_RST_CONTROLLER_RST_CPUG_CMPLX_CLR) = BIT(30) | BIT(24) | BIT(16) | BIT(0); } void ccplex_powergate_cpu0() { #if CCPLEX_FLOWCTRL_POWERGATING // Halt CPU0. FLOW_CTLR(FLOW_CTLR_HALT_CPU0_EVENTS) = HALT_MODE_STOP_UNTIL_IRQ; // Powergate cluster via flow control without waiting for WFI. FLOW_CTLR(FLOW_CTLR_CPU0_CSR) = CSR_INTR_FLAG | CSR_EVENT_FLAG | CSR_ENABLE_EXT_CPU_RAIL | CSR_WAIT_WFI_NONE | CSR_ENABLE; // Wait for the rail power off to finish. while((FLOW_CTLR(FLOW_CTLR_CPU_PWR_CSR) & CPU_PWR_RAIL_STS_MASK) != CPU_PWR_RAIL_OFF); // Set CPU0 to waitevent. FLOW_CTLR(FLOW_CTLR_HALT_CPU0_EVENTS) = HALT_MODE_WAITEVENT; #endif // Set CPU0 POR and CORE, CX0, L2, and DBG reset. CLOCK(CLK_RST_CONTROLLER_RST_CPUG_CMPLX_SET) = BIT(30) | BIT(24) | BIT(16) | BIT(0); // Set NONCPU reset. CLOCK(CLK_RST_CONTROLLER_RST_CPUG_CMPLX_SET) = BIT(29); // Set MSELECT reset. CLOCK(CLK_RST_CONTROLLER_RST_DEV_V_SET) = BIT(CLK_V_MSELECT); // Disable CE0. pmc_enable_partition(POWER_RAIL_CE0, DISABLE); // Disable cluster 0 non-CPU. pmc_enable_partition(POWER_RAIL_C0NC, DISABLE); // Disable CPU rail. pmc_enable_partition(POWER_RAIL_CRAIL, DISABLE); clock_disable_coresight(); // Clear out MSELECT and CPU clocks. CLOCK(CLK_RST_CONTROLLER_CLK_ENB_V_CLR) = BIT(CLK_V_MSELECT) | BIT(CLK_V_CPUG); _ccplex_disable_power(); }