mtc: Refactor various types

This commit is contained in:
CTCaer 2021-01-03 14:33:56 +02:00
parent b7789f1edb
commit 7a66e0298a
2 changed files with 68 additions and 75 deletions

View file

@ -24,8 +24,8 @@
typedef struct typedef struct
{ {
s32 pll_osc_in; u32 pll_osc_in;
s32 pll_out; u32 pll_out;
u32 pll_feedback_div; u32 pll_feedback_div;
u32 pll_input_div; u32 pll_input_div;
u32 pll_post_div; u32 pll_post_div;
@ -256,7 +256,6 @@ typedef struct
u32 emc_mrw15_idx; u32 emc_mrw15_idx;
} burst_regs_t; } burst_regs_t;
typedef struct typedef struct
{ {
u32 burst_regs[221]; u32 burst_regs[221];

View file

@ -1061,11 +1061,11 @@ static void _ccfifo_write(u32 addr, u32 data_val, u32 delay) //addr and delay ar
EMC(EMC_CCFIFO_ADDR) = (addr & 0xffff) | ((delay & 0x7FFF) << 16) | (1 << 31); EMC(EMC_CCFIFO_ADDR) = (addr & 0xffff) | ((delay & 0x7FFF) << 16) | (1 << 31);
} }
static bool _wait_emc_status(u32 reg_offset, u32 bit_mask, bool updated_state, s32 emc_channel) static bool _wait_emc_status(u32 reg_offset, u32 bit_mask, bool updated_state, u32 emc_channel)
{ {
bool err = true; bool err = true;
for (s32 i = 0; i < EMC_STATUS_UPDATE_TIMEOUT; i++) for (u32 i = 0; i < EMC_STATUS_UPDATE_TIMEOUT; i++)
{ {
if (emc_channel) if (emc_channel)
{ {
@ -1105,7 +1105,7 @@ static u32 _start_periodic_compensation()
return EMC(EMC_MPC); return EMC(EMC_MPC);
} }
static bool _timing_update(s32 dual_channel) static bool _timing_update(u32 dual_channel)
{ {
bool err = 0; bool err = 0;
@ -1117,10 +1117,10 @@ static bool _timing_update(s32 dual_channel)
return err; return err;
} }
static s32 _get_dram_temperature() static u32 _get_dram_temperature()
{ {
s32 mr4_0 = 0; u32 mr4_0 = 0;
s32 mr4_1 = 0; u32 mr4_1 = 0;
bool channel1_enabled = (EMC(EMC_FBIO_CFG7) >> 2) & 1; bool channel1_enabled = (EMC(EMC_FBIO_CFG7) >> 2) & 1;
u32 emc_cfg_o = EMC(EMC_CFG); u32 emc_cfg_o = EMC(EMC_CFG);
@ -1168,11 +1168,11 @@ out:
return mr4_0; return mr4_0;
} }
static u32 _pllm_clk_base_cfg(s32 rate_KHz, u32 clk_src_emc, s32 emc_2X_clk_src_is_PLLMB) static u32 _pllm_clk_base_cfg(u32 rate_KHz, u32 clk_src_emc, bool emc_2X_clk_src_is_PLLMB)
{ {
u32 dividers = 0; u32 dividers = 0;
s32 i = 0; u32 i = 0;
s32 pll_ref = 38400; // Only 38.4MHz crystal is supported for T210. u32 pll_ref = 38400; // Only 38.4MHz crystal is supported for T210.
pllm_clk_config_t *pllm_clk_config; pllm_clk_config_t *pllm_clk_config;
@ -1246,7 +1246,7 @@ static void _change_dll_src(emc_table_t *mtc_table_entry, u32 clk_src_emc)
static u32 _digital_dll_prelock(emc_table_t *mtc_table_entry, u32 needs_tristate_training, u32 selected_clk_src_emc) static u32 _digital_dll_prelock(emc_table_t *mtc_table_entry, u32 needs_tristate_training, u32 selected_clk_src_emc)
{ {
s32 dual_channel = (EMC(EMC_FBIO_CFG7) >> 1) & ((EMC(EMC_FBIO_CFG7) >> 2) & 1); u32 dual_channel = (EMC(EMC_FBIO_CFG7) >> 1) & ((EMC(EMC_FBIO_CFG7) >> 2) & 1);
EMC(EMC_CFG_DIG_DLL) = (EMC(EMC_CFG_DIG_DLL) & 0xFFFFF824) | 0x3C8; EMC(EMC_CFG_DIG_DLL) = (EMC(EMC_CFG_DIG_DLL) & 0xFFFFF824) | 0x3C8;
@ -1307,7 +1307,7 @@ static void _digital_dll_disable()
; ;
} }
static void _digital_dll_enable(s32 channel1_enabled) static void _digital_dll_enable(u32 channel1_enabled)
{ {
EMC(EMC_CFG_DIG_DLL) |= 1; EMC(EMC_CFG_DIG_DLL) |= 1;
@ -1320,7 +1320,7 @@ static void _digital_dll_enable(s32 channel1_enabled)
; ;
} }
static void _digital_dll_enable_rs(s32 channel1_enabled) static void _digital_dll_enable_rs(u32 channel1_enabled)
{ {
EMC(EMC_CFG_DIG_DLL) = (EMC(EMC_CFG_DIG_DLL) & 0xFFFFFF24) | 0x89; EMC(EMC_CFG_DIG_DLL) = (EMC(EMC_CFG_DIG_DLL) & 0xFFFFFF24) | 0x89;
@ -1333,7 +1333,7 @@ static void _digital_dll_enable_rs(s32 channel1_enabled)
; ;
} }
static u32 _dvfs_power_ramp_down(bool flip_backward, emc_table_t *src_emc_table_entry, emc_table_t *dst_emc_table_entry, s32 src_clock_period) static u32 _dvfs_power_ramp_down(bool flip_backward, emc_table_t *src_emc_table_entry, emc_table_t *dst_emc_table_entry, u32 src_clock_period)
{ {
u32 pmacro_cmd_pad; u32 pmacro_cmd_pad;
u32 pmacro_rfu1; u32 pmacro_rfu1;
@ -1412,7 +1412,7 @@ static u32 _dvfs_power_ramp_down(bool flip_backward, emc_table_t *src_emc_table_
return ramp_down_wait; return ramp_down_wait;
} }
static u32 _dvfs_power_ramp_up(bool flip_backward, emc_table_t *src_emc_table_entry, emc_table_t *dst_emc_table_entry, u8 needs_training, s32 dst_clock_period) static u32 _dvfs_power_ramp_up(bool flip_backward, emc_table_t *src_emc_table_entry, emc_table_t *dst_emc_table_entry, u8 needs_training, u32 dst_clock_period)
{ {
u32 pmacro_cmd_pad; u32 pmacro_cmd_pad;
u32 pmacro_dq_pad; u32 pmacro_dq_pad;
@ -1525,7 +1525,7 @@ static u32 _dvfs_power_ramp_up(bool flip_backward, emc_table_t *src_emc_table_en
return ramp_up_wait; return ramp_up_wait;
} }
static u32 _minerva_update_clock_tree_delay(emc_table_t *src_emc_entry, emc_table_t *dst_emc_entry, s32 dram_dev_num, s32 channel1_enabled, enum tree_update_mode_t update_type) static u32 _minerva_update_clock_tree_delay(emc_table_t *src_emc_entry, emc_table_t *dst_emc_entry, u32 dram_dev_num, u32 channel1_enabled, enum tree_update_mode_t update_type)
{ {
s32 temp_ch0_0 = 0; s32 temp_ch0_0 = 0;
s32 temp_ch0_1 = 0; s32 temp_ch0_1 = 0;
@ -1915,12 +1915,11 @@ out:
return (u32)tdel0_0; return (u32)tdel0_0;
} }
static u32 _minerva_periodic_compensation_handler(emc_table_t *src_emc_entry, emc_table_t *dst_emc_entry, s32 dram_dev_num, s32 channel1_enabled, enum comp_seq_t seq_type) static u32 _minerva_periodic_compensation_handler(emc_table_t *src_emc_entry, emc_table_t *dst_emc_entry, u32 dram_dev_num, u32 channel1_enabled, enum comp_seq_t seq_type)
{ {
if (!dst_emc_entry->periodic_training) if (!dst_emc_entry->periodic_training)
return seq_type; return 0;
u32 adel = 0;
u32 delay = 1000 * _actual_osc_clocks(src_emc_entry->run_clocks) / src_emc_entry->rate_khz + 2; u32 delay = 1000 * _actual_osc_clocks(src_emc_entry->run_clocks) / src_emc_entry->rate_khz + 2;
if (seq_type == DVFS_SEQUENCE) if (seq_type == DVFS_SEQUENCE)
@ -1956,9 +1955,7 @@ static u32 _minerva_periodic_compensation_handler(emc_table_t *src_emc_entry, em
} }
} }
adel = _minerva_update_clock_tree_delay(src_emc_entry, dst_emc_entry, dram_dev_num, channel1_enabled, DVFS_UPDATE); return _minerva_update_clock_tree_delay(src_emc_entry, dst_emc_entry, dram_dev_num, channel1_enabled, DVFS_UPDATE);
return adel;
} }
else if (seq_type == WRITE_TRAINING_SEQUENCE) else if (seq_type == WRITE_TRAINING_SEQUENCE)
{ {
@ -1978,17 +1975,13 @@ static u32 _minerva_periodic_compensation_handler(emc_table_t *src_emc_entry, em
_minerva_update_clock_tree_delay(src_emc_entry, dst_emc_entry, dram_dev_num, channel1_enabled, TRAINING_PT1); _minerva_update_clock_tree_delay(src_emc_entry, dst_emc_entry, dram_dev_num, channel1_enabled, TRAINING_PT1);
} }
adel = _minerva_update_clock_tree_delay(src_emc_entry, dst_emc_entry, dram_dev_num, channel1_enabled, TRAINING_UPDATE); return _minerva_update_clock_tree_delay(src_emc_entry, dst_emc_entry, dram_dev_num, channel1_enabled, TRAINING_UPDATE);
return adel;
} }
else if (seq_type == PERIODIC_TRAINING_SEQUENCE) else if (seq_type == PERIODIC_TRAINING_SEQUENCE)
{ {
_start_periodic_compensation(); _start_periodic_compensation();
_usleep(delay); _usleep(delay);
adel = _minerva_update_clock_tree_delay(src_emc_entry, dst_emc_entry, dram_dev_num, channel1_enabled, PERIODIC_TRAINING_UPDATE); return _minerva_update_clock_tree_delay(src_emc_entry, dst_emc_entry, dram_dev_num, channel1_enabled, PERIODIC_TRAINING_UPDATE);
return adel;
} }
return seq_type; return seq_type;
@ -2046,7 +2039,7 @@ static u32 _minerva_apply_periodic_compensation_trimmer(emc_table_t *mtc_table_e
tree_delta_taps[1] = (tree_delta[1] * (s32)dst_rate_mhz) / 1000000; tree_delta_taps[1] = (tree_delta[1] * (s32)dst_rate_mhz) / 1000000;
tree_delta_taps[2] = (tree_delta[2] * (s32)dst_rate_mhz) / 1000000; tree_delta_taps[2] = (tree_delta[2] * (s32)dst_rate_mhz) / 1000000;
tree_delta_taps[3] = (tree_delta[3] * (s32)dst_rate_mhz) / 1000000; tree_delta_taps[3] = (tree_delta[3] * (s32)dst_rate_mhz) / 1000000;
for (s32 i = 0; i < 4; i++) for (u32 i = 0; i < 4; i++)
{ {
if ((tree_delta_taps[i] > mtc_table_entry->tree_margin) || (tree_delta_taps[i] < (-1 * mtc_table_entry->tree_margin))) if ((tree_delta_taps[i] > mtc_table_entry->tree_margin) || (tree_delta_taps[i] < (-1 * mtc_table_entry->tree_margin)))
{ {
@ -2056,12 +2049,12 @@ static u32 _minerva_apply_periodic_compensation_trimmer(emc_table_t *mtc_table_e
} }
if (trim_emc_reg_addr == EMC_DATA_BRLSHFT_0) if (trim_emc_reg_addr == EMC_DATA_BRLSHFT_0)
{ {
for (s32 i = 0; i < 8; i++) for (u32 i = 0; i < 8; i++)
new_trim[i] /= 64; new_trim[i] /= 64;
} }
else else
{ {
for (s32 i = 0; i < 8; i++) for (u32 i = 0; i < 8; i++)
new_trim[i] %= 64; new_trim[i] %= 64;
} }
break; break;
@ -2078,7 +2071,7 @@ static u32 _minerva_apply_periodic_compensation_trimmer(emc_table_t *mtc_table_e
tree_delta_taps[1] = (tree_delta[1] * (s32)dst_rate_mhz) / 1000000; tree_delta_taps[1] = (tree_delta[1] * (s32)dst_rate_mhz) / 1000000;
tree_delta_taps[2] = (tree_delta[2] * (s32)dst_rate_mhz) / 1000000; tree_delta_taps[2] = (tree_delta[2] * (s32)dst_rate_mhz) / 1000000;
tree_delta_taps[3] = (tree_delta[3] * (s32)dst_rate_mhz) / 1000000; tree_delta_taps[3] = (tree_delta[3] * (s32)dst_rate_mhz) / 1000000;
for (s32 i = 0; i < 4; i++) for (u32 i = 0; i < 4; i++)
{ {
if ((tree_delta_taps[i] > mtc_table_entry->tree_margin) || (tree_delta_taps[i] < (-1 * mtc_table_entry->tree_margin))) if ((tree_delta_taps[i] > mtc_table_entry->tree_margin) || (tree_delta_taps[i] < (-1 * mtc_table_entry->tree_margin)))
{ {
@ -2088,15 +2081,17 @@ static u32 _minerva_apply_periodic_compensation_trimmer(emc_table_t *mtc_table_e
} }
if (trim_emc_reg_addr == EMC_DATA_BRLSHFT_1) if (trim_emc_reg_addr == EMC_DATA_BRLSHFT_1)
{ {
for (s32 i = 0; i < 8; i++) for (u32 i = 0; i < 8; i++)
new_trim[i + 8] /= 64; new_trim[i + 8] /= 64;
} }
else else
{ {
for (s32 i = 0; i < 8; i++) for (u32 i = 0; i < 8; i++)
new_trim[i + 8] %= 64; new_trim[i + 8] %= 64;
} }
break; break;
default:
break;
} }
switch (trim_emc_reg_addr) switch (trim_emc_reg_addr)
@ -2126,24 +2121,24 @@ static u32 _minerva_apply_periodic_compensation_trimmer(emc_table_t *mtc_table_e
trimmer = (new_trim[14] & 0x7FF) | ((new_trim[15] & 0x7FF) << 16); trimmer = (new_trim[14] & 0x7FF) | ((new_trim[15] & 0x7FF) << 16);
break; break;
case EMC_DATA_BRLSHFT_0: case EMC_DATA_BRLSHFT_0:
trimmer = (new_trim[0] & 7) trimmer = ((new_trim[0] & 7) << EMC_DATA_BRLSHFT_0_RANK0_BYTE0_DATA_BRLSHFT_SHIFT)
| ((new_trim[1] & 7) << 3) | ((new_trim[1] & 7) << EMC_DATA_BRLSHFT_0_RANK0_BYTE1_DATA_BRLSHFT_SHIFT)
| ((new_trim[2] & 7) << 6) | ((new_trim[2] & 7) << EMC_DATA_BRLSHFT_0_RANK0_BYTE2_DATA_BRLSHFT_SHIFT)
| ((new_trim[3] & 7) << 9) | ((new_trim[3] & 7) << EMC_DATA_BRLSHFT_0_RANK0_BYTE3_DATA_BRLSHFT_SHIFT)
| ((new_trim[4] & 7) << 12) | ((new_trim[4] & 7) << EMC_DATA_BRLSHFT_0_RANK0_BYTE4_DATA_BRLSHFT_SHIFT)
| ((new_trim[5] & 7) << 15) | ((new_trim[5] & 7) << EMC_DATA_BRLSHFT_0_RANK0_BYTE5_DATA_BRLSHFT_SHIFT)
| ((new_trim[6] & 7) << 18) | ((new_trim[6] & 7) << EMC_DATA_BRLSHFT_0_RANK0_BYTE6_DATA_BRLSHFT_SHIFT)
| ((new_trim[7] & 7) << 21); | ((new_trim[7] & 7) << EMC_DATA_BRLSHFT_0_RANK0_BYTE7_DATA_BRLSHFT_SHIFT);
break; break;
case EMC_DATA_BRLSHFT_1: case EMC_DATA_BRLSHFT_1:
trimmer = (new_trim[8] & 7) trimmer = ((new_trim[8] & 7) << EMC_DATA_BRLSHFT_1_RANK1_BYTE0_DATA_BRLSHFT_SHIFT)
| ((new_trim[9] & 7) << 3) | ((new_trim[9] & 7) << EMC_DATA_BRLSHFT_1_RANK1_BYTE1_DATA_BRLSHFT_SHIFT)
| ((new_trim[10] & 7) << 6) | ((new_trim[10] & 7) << EMC_DATA_BRLSHFT_1_RANK1_BYTE2_DATA_BRLSHFT_SHIFT)
| ((new_trim[11] & 7) << 9) | ((new_trim[11] & 7) << EMC_DATA_BRLSHFT_1_RANK1_BYTE3_DATA_BRLSHFT_SHIFT)
| ((new_trim[12] & 7) << 12) | ((new_trim[12] & 7) << EMC_DATA_BRLSHFT_1_RANK1_BYTE4_DATA_BRLSHFT_SHIFT)
| ((new_trim[13] & 7) << 15) | ((new_trim[13] & 7) << EMC_DATA_BRLSHFT_1_RANK1_BYTE5_DATA_BRLSHFT_SHIFT)
| ((new_trim[14] & 7) << 18) | ((new_trim[14] & 7) << EMC_DATA_BRLSHFT_1_RANK1_BYTE6_DATA_BRLSHFT_SHIFT)
| ((new_trim[15] & 7) << 21); | ((new_trim[15] & 7) << EMC_DATA_BRLSHFT_1_RANK1_BYTE7_DATA_BRLSHFT_SHIFT);
break; break;
default: default:
break; break;
@ -2156,7 +2151,7 @@ static bool _check_freq_changed(u32 dst_entry_rate_KHz, u32 dst_entry_clk_src_em
{ {
s64 dst_div_clock; s64 dst_div_clock;
s64 src_div_clock; s64 src_div_clock;
s32 src_end_div_clk_ratio; u32 src_end_div_clk_ratio;
u32 src_entry_emc_2X_clk_src = src_entry_clk_src_emc >> EMC_2X_CLK_SRC_SHIFT; u32 src_entry_emc_2X_clk_src = src_entry_clk_src_emc >> EMC_2X_CLK_SRC_SHIFT;
u32 dst_entry_emc_2X_clk_src = dst_entry_clk_src_emc >> EMC_2X_CLK_SRC_SHIFT; u32 dst_entry_emc_2X_clk_src = dst_entry_clk_src_emc >> EMC_2X_CLK_SRC_SHIFT;
@ -2205,7 +2200,7 @@ static bool _check_freq_changed(u32 dst_entry_rate_KHz, u32 dst_entry_clk_src_em
return false; return false;
} }
static void _save_train_results(emc_table_t *mtc_table_entry, u32 needs_training, s32 dram_dev_num, bool channel1_enabled) static void _save_train_results(emc_table_t *mtc_table_entry, u32 needs_training, u32 dram_dev_num, bool channel1_enabled)
{ {
bool needs_ca_training = needs_training & 1; bool needs_ca_training = needs_training & 1;
bool needs_ca_vref_training = (needs_training >> 1) & 1; bool needs_ca_vref_training = (needs_training >> 1) & 1;
@ -2566,7 +2561,7 @@ static void _save_train_results(emc_table_t *mtc_table_entry, u32 needs_training
} }
} }
s32 _minerva_set_clock(emc_table_t *src_emc_entry, emc_table_t *dst_emc_entry, u32 needs_training, u32 selected_clk_src_emc) u32 _minerva_set_clock(emc_table_t *src_emc_entry, emc_table_t *dst_emc_entry, u32 needs_training, u32 selected_clk_src_emc)
{ {
u32 emc_dbg_o; u32 emc_dbg_o;
u32 emc_pin_o; u32 emc_pin_o;
@ -2612,11 +2607,11 @@ s32 _minerva_set_clock(emc_table_t *src_emc_entry, emc_table_t *dst_emc_entry, u
bool zcal_resistor_shared = (src_emc_entry->burst_regs.emc_zcal_wait_cnt_idx >> 31) & 1; bool zcal_resistor_shared = (src_emc_entry->burst_regs.emc_zcal_wait_cnt_idx >> 31) & 1;
bool enable_bg_regulator = (dst_emc_entry->burst_regs.emc_pmacro_bg_bias_ctrl_0_idx & 1) ^ 1; bool enable_bg_regulator = (dst_emc_entry->burst_regs.emc_pmacro_bg_bias_ctrl_0_idx & 1) ^ 1;
bool channel1_enabled = (src_emc_entry->burst_regs.emc_fbio_cfg7_idx >> 2) & 1; bool channel1_enabled = (src_emc_entry->burst_regs.emc_fbio_cfg7_idx >> 2) & 1;
s32 dram_type = EMC(EMC_FBIO_CFG5) & 3; u32 dram_type = EMC(EMC_FBIO_CFG5) & 3;
s32 dram_dev_num = (MC(MC_EMEM_ADR_CFG) & 1) + 1; u32 dram_dev_num = (MC(MC_EMEM_ADR_CFG) & 1) + 1;
s32 src_clock_period = 1000000000 / src_emc_entry->rate_khz; u32 src_clock_period = 1000000000 / src_emc_entry->rate_khz;
s32 dst_clock_period = 1000000000 / dst_emc_entry->rate_khz; u32 dst_clock_period = 1000000000 / dst_emc_entry->rate_khz;
fsp_for_src_freq = !fsp_for_src_freq; fsp_for_src_freq = !fsp_for_src_freq;
@ -2681,9 +2676,9 @@ s32 _minerva_set_clock(emc_table_t *src_emc_entry, emc_table_t *dst_emc_entry, u
dst_emc_entry->current_dram_clktree_c1d1u0 = dst_emc_entry->trained_dram_clktree_c1d1u0; dst_emc_entry->current_dram_clktree_c1d1u0 = dst_emc_entry->trained_dram_clktree_c1d1u0;
dst_emc_entry->current_dram_clktree_c1d1u1 = dst_emc_entry->trained_dram_clktree_c1d1u1; dst_emc_entry->current_dram_clktree_c1d1u1 = dst_emc_entry->trained_dram_clktree_c1d1u1;
u32 adel = _minerva_periodic_compensation_handler(src_emc_entry, dst_emc_entry, dram_dev_num, channel1_enabled, DVFS_SEQUENCE); u32 adelta = _minerva_periodic_compensation_handler(src_emc_entry, dst_emc_entry, dram_dev_num, channel1_enabled, DVFS_SEQUENCE);
if (((dst_emc_entry->rate_khz / 1000) << 7) * adel / 1000000 > dst_emc_entry->tree_margin) if (((dst_emc_entry->rate_khz / 1000) << 7) * adelta / 1000000 > dst_emc_entry->tree_margin)
compensate_trimmer_applicable = true; compensate_trimmer_applicable = true;
} }
@ -2769,7 +2764,7 @@ s32 _minerva_set_clock(emc_table_t *src_emc_entry, emc_table_t *dst_emc_entry, u
u32 RP_war = 0; u32 RP_war = 0;
u32 W2P_war = 0; u32 W2P_war = 0;
s32 nRTP = 8; // <= 1066MHz. u32 nRTP = 8; // <= 1066MHz.
if (src_clock_period < 3759 // 1000 / 266MHz. if (src_clock_period < 3759 // 1000 / 266MHz.
&& src_clock_period < 1876 // 1000 / 533MHz. && src_clock_period < 1876 // 1000 / 533MHz.
&& src_clock_period < 1250 // 1000 / 800MHz. && src_clock_period < 1250 // 1000 / 800MHz.
@ -2782,7 +2777,7 @@ s32 _minerva_set_clock(emc_table_t *src_emc_entry, emc_table_t *dst_emc_entry, u
if (src_clock_period < 535) // 1000 / 1866MHz. if (src_clock_period < 535) // 1000 / 1866MHz.
nRTP = 16; // > 1866MHz nRTP = 16; // > 1866MHz
s32 tRPST = (src_emc_entry->emc_mrw >> 7) & 1; u32 tRPST = (src_emc_entry->emc_mrw >> 7) & 1;
u32 deltaTWATM = div_o3(7500, src_clock_period); u32 deltaTWATM = div_o3(7500, src_clock_period);
if (deltaTWATM < 8) if (deltaTWATM < 8)
@ -3637,13 +3632,13 @@ static void _minerva_train_patterns(emc_table_t *src_emc_entry, emc_table_t *dst
void _minerva_do_over_temp_compensation(mtc_config_t *mtc_cfg) void _minerva_do_over_temp_compensation(mtc_config_t *mtc_cfg)
{ {
s32 dram_type = EMC(EMC_FBIO_CFG5) & 3; u32 dram_type = EMC(EMC_FBIO_CFG5) & 3;
// Only LPDDR chips are supported. // Only LPDDR chips are supported.
if (dram_type != DRAM_TYPE_LPDDR4) if (dram_type != DRAM_TYPE_LPDDR4)
return; return;
s32 dram_temp = _get_dram_temperature(); u32 dram_temp = _get_dram_temperature();
if (mtc_cfg->prev_temp == dram_temp || dram_temp < 0) if (mtc_cfg->prev_temp == dram_temp || dram_temp < 0)
return; return;
@ -3693,7 +3688,7 @@ u32 _minerva_do_periodic_compensation(emc_table_t *mtc_table_entry)
if (mtc_table_entry && mtc_table_entry->periodic_training) if (mtc_table_entry && mtc_table_entry->periodic_training)
{ {
u32 val = 0; u32 val = 0;
s32 dram_dev_num = (MC(MC_EMEM_ADR_CFG) & 1) + 1; u32 dram_dev_num = (MC(MC_EMEM_ADR_CFG) & 1) + 1;
bool channel1_enabled = (mtc_table_entry->burst_regs.emc_fbio_cfg7_idx >> 2) & 1; bool channel1_enabled = (mtc_table_entry->burst_regs.emc_fbio_cfg7_idx >> 2) & 1;
//u32 emc_dbg_o = EMC(EMC_DBG); //u32 emc_dbg_o = EMC(EMC_DBG);
@ -3736,10 +3731,10 @@ u32 _minerva_do_periodic_compensation(emc_table_t *mtc_table_entry)
_usleep(1000 * _actual_osc_clocks(mtc_table_entry->run_clocks) / mtc_table_entry->rate_khz + 1); _usleep(1000 * _actual_osc_clocks(mtc_table_entry->run_clocks) / mtc_table_entry->rate_khz + 1);
// Step 4 - Check delta wrt previous values (save value if margin exceeds what is set in table). // Step 4 - Check delta wrt previous values (save value if margin exceeds what is set in table).
u32 adel = _minerva_update_clock_tree_delay(mtc_table_entry, mtc_table_entry, dram_dev_num, channel1_enabled, PERIODIC_TRAINING_UPDATE); u32 adelta = _minerva_update_clock_tree_delay(mtc_table_entry, mtc_table_entry, dram_dev_num, channel1_enabled, PERIODIC_TRAINING_UPDATE);
// Step 5 - Apply compensation w.r.t. trained values (if clock tree has drifted more than the set margin). // Step 5 - Apply compensation w.r.t. trained values (if clock tree has drifted more than the set margin).
if (adel && ((mtc_table_entry->rate_khz / 1000) << 7) * adel / 1000000 > mtc_table_entry->tree_margin) if (adelta && ((mtc_table_entry->rate_khz / 1000) << 7) * adelta / 1000000 > mtc_table_entry->tree_margin)
{ {
for (u32 i = 0; i < 10; i++) for (u32 i = 0; i < 10; i++)
{ {
@ -3763,11 +3758,10 @@ u32 _minerva_do_periodic_compensation(emc_table_t *mtc_table_entry)
return 0; return 0;
} }
s32 _minerva_set_rate(mtc_config_t *mtc_cfg) u32 _minerva_set_rate(mtc_config_t *mtc_cfg)
{ {
s32 src_emc_entry_idx = 0; s32 src_emc_entry_idx = 0;
s32 dst_emc_entry_idx = 999; s32 dst_emc_entry_idx = 999;
s32 table_entry_rate;
u32 selected_clk_src_emc; u32 selected_clk_src_emc;
u32 selected_emc_2x_clk_src; u32 selected_emc_2x_clk_src;
bool freq_changed = false; bool freq_changed = false;
@ -3776,7 +3770,7 @@ s32 _minerva_set_rate(mtc_config_t *mtc_cfg)
for (u32 i = 0; i < mtc_cfg->table_entries; i++) for (u32 i = 0; i < mtc_cfg->table_entries; i++)
{ {
table_entry_rate = mtc_cfg->mtc_table[i].rate_khz; u32 table_entry_rate = mtc_cfg->mtc_table[i].rate_khz;
if (mtc_cfg->rate_from == table_entry_rate) if (mtc_cfg->rate_from == table_entry_rate)
src_emc_entry_idx = i; src_emc_entry_idx = i;
if (mtc_cfg->rate_to == table_entry_rate) if (mtc_cfg->rate_to == table_entry_rate)
@ -3786,8 +3780,8 @@ s32 _minerva_set_rate(mtc_config_t *mtc_cfg)
src_emc_entry = (emc_table_t *)&mtc_cfg->mtc_table[src_emc_entry_idx]; src_emc_entry = (emc_table_t *)&mtc_cfg->mtc_table[src_emc_entry_idx];
dst_emc_entry = (emc_table_t *)&mtc_cfg->mtc_table[dst_emc_entry_idx]; dst_emc_entry = (emc_table_t *)&mtc_cfg->mtc_table[dst_emc_entry_idx];
s32 src_rate_khz = src_emc_entry->rate_khz; u32 src_rate_khz = src_emc_entry->rate_khz;
s32 dst_rate_khz = dst_emc_entry->rate_khz; u32 dst_rate_khz = dst_emc_entry->rate_khz;
u32 src_clk_src_emc = src_emc_entry->clk_src_emc; u32 src_clk_src_emc = src_emc_entry->clk_src_emc;
u32 dst_clk_src_emc = dst_emc_entry->clk_src_emc; u32 dst_clk_src_emc = dst_emc_entry->clk_src_emc;