hos: pkg2: simple refactor

This commit is contained in:
CTCaer 2024-03-27 10:17:56 +02:00
parent 4effaab241
commit 4b3014bc18
4 changed files with 199 additions and 182 deletions

View file

@ -83,49 +83,49 @@ static void parse_external_kip_patches()
// Parse patchsets and glue them together. // Parse patchsets and glue them together.
LIST_FOREACH_ENTRY(ini_kip_sec_t, ini_psec, &ini_kip_sections, link) LIST_FOREACH_ENTRY(ini_kip_sec_t, ini_psec, &ini_kip_sections, link)
{ {
kip1_id_t* curr_kip = NULL; kip1_id_t *kip = NULL;
bool found = false; bool found = false;
for (u32 curr_kip_idx = 0; curr_kip_idx < _kip_id_sets_cnt + 1; curr_kip_idx++) for (u32 kip_idx = 0; kip_idx < _kip_id_sets_cnt + 1; kip_idx++)
{ {
curr_kip = &_kip_id_sets[curr_kip_idx]; kip = &_kip_id_sets[kip_idx];
// Check if reached the end of predefined list. // Check if reached the end of predefined list.
if (!curr_kip->name) if (!kip->name)
break; break;
// Check if name and hash match. // Check if name and hash match.
if (!strcmp(curr_kip->name, ini_psec->name) && !memcmp(curr_kip->hash, ini_psec->hash, 8)) if (!strcmp(kip->name, ini_psec->name) && !memcmp(kip->hash, ini_psec->hash, 8))
{ {
found = true; found = true;
break; break;
} }
} }
if (!curr_kip) if (!kip)
continue; continue;
// If not found, create a new empty entry. // If not found, create a new empty entry.
if (!found) if (!found)
{ {
curr_kip->name = ini_psec->name; kip->name = ini_psec->name;
memcpy(curr_kip->hash, ini_psec->hash, 8); memcpy(kip->hash, ini_psec->hash, 8);
curr_kip->patchset = zalloc(sizeof(kip1_patchset_t)); kip->patchset = zalloc(sizeof(kip1_patchset_t));
_kip_id_sets_cnt++; _kip_id_sets_cnt++;
} }
kip1_patchset_t *patchsets = (kip1_patchset_t *)zalloc(sizeof(kip1_patchset_t) * 16); // Max 16 patchsets per kip. kip1_patchset_t *patchsets = (kip1_patchset_t *)zalloc(sizeof(kip1_patchset_t) * 16); // Max 16 patchsets per kip.
u32 curr_patchset_idx; u32 patchset_idx;
for (curr_patchset_idx = 0; curr_kip->patchset[curr_patchset_idx].name != NULL; curr_patchset_idx++) for (patchset_idx = 0; kip->patchset[patchset_idx].name != NULL; patchset_idx++)
{ {
patchsets[curr_patchset_idx].name = curr_kip->patchset[curr_patchset_idx].name; patchsets[patchset_idx].name = kip->patchset[patchset_idx].name;
patchsets[curr_patchset_idx].patches = curr_kip->patchset[curr_patchset_idx].patches; patchsets[patchset_idx].patches = kip->patchset[patchset_idx].patches;
} }
curr_kip->patchset = patchsets; kip->patchset = patchsets;
bool first_ext_patch = true; bool first_ext_patch = true;
u32 curr_patch_idx = 0; u32 patch_idx = 0;
// Parse patches and glue them together to a patchset. // Parse patches and glue them together to a patchset.
kip1_patch_t *patches = zalloc(sizeof(kip1_patch_t) * 32); // Max 32 patches per set. kip1_patch_t *patches = zalloc(sizeof(kip1_patch_t) * 32); // Max 32 patches per set.
@ -134,36 +134,36 @@ static void parse_external_kip_patches()
if (first_ext_patch) if (first_ext_patch)
{ {
first_ext_patch = false; first_ext_patch = false;
patchsets[curr_patchset_idx].name = pt->name; patchsets[patchset_idx].name = pt->name;
patchsets[curr_patchset_idx].patches = patches; patchsets[patchset_idx].patches = patches;
} }
else if (strcmp(pt->name, patchsets[curr_patchset_idx].name)) else if (strcmp(pt->name, patchsets[patchset_idx].name))
{ {
// New patchset name found, create a new set. // New patchset name found, create a new set.
curr_patchset_idx++; patchset_idx++;
curr_patch_idx = 0; patch_idx = 0;
patches = zalloc(sizeof(kip1_patch_t) * 32); // Max 32 patches per set. patches = zalloc(sizeof(kip1_patch_t) * 32); // Max 32 patches per set.
patchsets[curr_patchset_idx].name = pt->name; patchsets[patchset_idx].name = pt->name;
patchsets[curr_patchset_idx].patches = patches; patchsets[patchset_idx].patches = patches;
} }
if (pt->length) if (pt->length)
{ {
patches[curr_patch_idx].offset = pt->offset; patches[patch_idx].offset = pt->offset;
patches[curr_patch_idx].length = pt->length; patches[patch_idx].length = pt->length;
patches[curr_patch_idx].srcData = (char *)pt->srcData; patches[patch_idx].src_data = (char *)pt->src_data;
patches[curr_patch_idx].dstData = (char *)pt->dstData; patches[patch_idx].dst_data = (char *)pt->dst_data;
} }
else else
patches[curr_patch_idx].srcData = malloc(1); // Empty patches check. Keep everything else as 0. patches[patch_idx].src_data = malloc(1); // Empty patches check. Keep everything else as 0.
curr_patch_idx++; patch_idx++;
} }
curr_patchset_idx++; patchset_idx++;
patchsets[curr_patchset_idx].name = NULL; patchsets[patchset_idx].name = NULL;
patchsets[curr_patchset_idx].patches = NULL; patchsets[patchset_idx].patches = NULL;
} }
} }
@ -307,7 +307,7 @@ void pkg2_merge_kip(link_t *info, pkg2_kip1_t *kip1)
pkg2_add_kip(info, kip1); pkg2_add_kip(info, kip1);
} }
int pkg2_decompress_kip(pkg2_kip1_info_t* ki, u32 sectsToDecomp) static int _decompress_kip(pkg2_kip1_info_t *ki, u32 sectsToDecomp)
{ {
u32 compClearMask = ~sectsToDecomp; u32 compClearMask = ~sectsToDecomp;
if ((ki->kip1->flags & compClearMask) == ki->kip1->flags) if ((ki->kip1->flags & compClearMask) == ki->kip1->flags)
@ -316,68 +316,68 @@ int pkg2_decompress_kip(pkg2_kip1_info_t* ki, u32 sectsToDecomp)
pkg2_kip1_t hdr; pkg2_kip1_t hdr;
memcpy(&hdr, ki->kip1, sizeof(hdr)); memcpy(&hdr, ki->kip1, sizeof(hdr));
unsigned int newKipSize = sizeof(hdr); u32 new_kip_size = sizeof(hdr);
for (u32 sectIdx = 0; sectIdx < KIP1_NUM_SECTIONS; sectIdx++) for (u32 sect_idx = 0; sect_idx < KIP1_NUM_SECTIONS; sect_idx++)
{ {
u32 sectCompBit = BIT(sectIdx); u32 comp_bit_mask = BIT(sect_idx);
// For compressed, cant get actual decompressed size without doing it, so use safe "output size". // For compressed, cant get actual decompressed size without doing it, so use safe "output size".
if (sectIdx < 3 && (sectsToDecomp & sectCompBit) && (hdr.flags & sectCompBit)) if (sect_idx < 3 && (sectsToDecomp & comp_bit_mask) && (hdr.flags & comp_bit_mask))
newKipSize += hdr.sections[sectIdx].size_decomp; new_kip_size += hdr.sections[sect_idx].size_decomp;
else else
newKipSize += hdr.sections[sectIdx].size_comp; new_kip_size += hdr.sections[sect_idx].size_comp;
} }
pkg2_kip1_t* newKip = malloc(newKipSize); pkg2_kip1_t *new_kip = malloc(new_kip_size);
unsigned char* dstDataPtr = newKip->data; u8 *dst_data = new_kip->data;
const unsigned char* srcDataPtr = ki->kip1->data; const u8 *src_data = ki->kip1->data;
for (u32 sectIdx = 0; sectIdx < KIP1_NUM_SECTIONS; sectIdx++) for (u32 sect_idx = 0; sect_idx < KIP1_NUM_SECTIONS; sect_idx++)
{ {
u32 sectCompBit = BIT(sectIdx); u32 comp_bit_mask = BIT(sect_idx);
// Easy copy path for uncompressed or ones we dont want to uncompress. // Easy copy path for uncompressed or ones we dont want to uncompress.
if (sectIdx >= 3 || !(sectsToDecomp & sectCompBit) || !(hdr.flags & sectCompBit)) if (sect_idx >= 3 || !(sectsToDecomp & comp_bit_mask) || !(hdr.flags & comp_bit_mask))
{ {
unsigned int dataSize = hdr.sections[sectIdx].size_comp; u32 dataSize = hdr.sections[sect_idx].size_comp;
if (dataSize == 0) if (dataSize == 0)
continue; continue;
memcpy(dstDataPtr, srcDataPtr, dataSize); memcpy(dst_data, src_data, dataSize);
srcDataPtr += dataSize; src_data += dataSize;
dstDataPtr += dataSize; dst_data += dataSize;
continue; continue;
} }
unsigned int compSize = hdr.sections[sectIdx].size_comp; u32 comp_size = hdr.sections[sect_idx].size_comp;
unsigned int outputSize = hdr.sections[sectIdx].size_decomp; u32 output_size = hdr.sections[sect_idx].size_decomp;
gfx_printf("Decomping '%s', sect %d, size %d..\n", (const char*)hdr.name, sectIdx, compSize); gfx_printf("Decomping '%s', sect %d, size %d..\n", (char *)hdr.name, sect_idx, comp_size);
if (blz_uncompress_srcdest(srcDataPtr, compSize, dstDataPtr, outputSize) == 0) if (blz_uncompress_srcdest(src_data, comp_size, dst_data, output_size) == 0)
{ {
gfx_con.mute = false; gfx_con.mute = false;
gfx_printf("%kERROR decomping sect %d of '%s'!%k\n", TXT_CLR_ERROR, sectIdx, (char*)hdr.name, TXT_CLR_DEFAULT); gfx_printf("%kERROR decomping sect %d of '%s'!%k\n", TXT_CLR_ERROR, sect_idx, (char *)hdr.name, TXT_CLR_DEFAULT);
free(newKip); free(new_kip);
return 1; return 1;
} }
else else
{ {
DPRINTF("Done! Decompressed size is %d!\n", outputSize); DPRINTF("Done! Decompressed size is %d!\n", output_size);
} }
hdr.sections[sectIdx].size_comp = outputSize; hdr.sections[sect_idx].size_comp = output_size;
srcDataPtr += compSize; src_data += comp_size;
dstDataPtr += outputSize; dst_data += output_size;
} }
hdr.flags &= compClearMask; hdr.flags &= compClearMask;
memcpy(newKip, &hdr, sizeof(hdr)); memcpy(new_kip, &hdr, sizeof(hdr));
newKipSize = dstDataPtr-(unsigned char*)(newKip); new_kip_size = dst_data - (u8 *)(new_kip);
free(ki->kip1); free(ki->kip1);
ki->kip1 = newKip; ki->kip1 = new_kip;
ki->size = newKipSize; ki->size = new_kip_size;
return 0; return 0;
} }
static int _kipm_inject(const char *kipm_path, char *target_name, pkg2_kip1_info_t* ki) static int _kipm_inject(const char *kipm_path, char *target_name, pkg2_kip1_info_t *ki)
{ {
if (!strncmp((const char *)ki->kip1->name, target_name, sizeof(ki->kip1->name))) if (!strncmp((const char *)ki->kip1->name, target_name, sizeof(ki->kip1->name)))
{ {
@ -403,9 +403,9 @@ static int _kipm_inject(const char *kipm_path, char *target_name, pkg2_kip1_info
u32 new_offset = 0; u32 new_offset = 0;
for (u32 currSectIdx = 0; currSectIdx < KIP1_NUM_SECTIONS - 2; currSectIdx++) for (u32 section_idx = 0; section_idx < KIP1_NUM_SECTIONS - 2; section_idx++)
{ {
if (!currSectIdx) // .text. if (!section_idx) // .text.
{ {
memcpy(ki->kip1->data + inject_size, fs_kip->data, fs_kip->sections[0].size_comp); memcpy(ki->kip1->data + inject_size, fs_kip->data, fs_kip->sections[0].size_comp);
ki->kip1->sections[0].size_decomp += inject_size; ki->kip1->sections[0].size_decomp += inject_size;
@ -413,11 +413,11 @@ static int _kipm_inject(const char *kipm_path, char *target_name, pkg2_kip1_info
} }
else // Others. else // Others.
{ {
if (currSectIdx < 3) if (section_idx < 3)
memcpy(ki->kip1->data + new_offset + inject_size, fs_kip->data + new_offset, fs_kip->sections[currSectIdx].size_comp); memcpy(ki->kip1->data + new_offset + inject_size, fs_kip->data + new_offset, fs_kip->sections[section_idx].size_comp);
ki->kip1->sections[currSectIdx].offset += inject_size; ki->kip1->sections[section_idx].offset += inject_size;
} }
new_offset += fs_kip->sections[currSectIdx].size_comp; new_offset += fs_kip->sections[section_idx].size_comp;
} }
// Patch PMC capabilities for 1.0.0. // Patch PMC capabilities for 1.0.0.
@ -440,24 +440,24 @@ static int _kipm_inject(const char *kipm_path, char *target_name, pkg2_kip1_info
return 1; return 1;
} }
const char* pkg2_patch_kips(link_t *info, char* patchNames) const char *pkg2_patch_kips(link_t *info, char *patch_names)
{ {
if (patchNames == NULL || patchNames[0] == 0) if (patch_names == NULL || patch_names[0] == 0)
return NULL; return NULL;
static const u32 MAX_NUM_PATCHES_REQUESTED = sizeof(u32) * 8; static const u32 MAX_NUM_PATCHES_REQUESTED = sizeof(u32) * 8;
char* patches[MAX_NUM_PATCHES_REQUESTED]; char *patches[MAX_NUM_PATCHES_REQUESTED];
u32 numPatches = 1; u32 patches_num = 1;
patches[0] = patchNames; patches[0] = patch_names;
{ {
for (char* p = patchNames; *p != 0; p++) for (char *p = patch_names; *p != 0; p++)
{ {
if (*p == ',') if (*p == ',')
{ {
*p = 0; *p = 0;
patches[numPatches++] = p + 1; patches[patches_num++] = p + 1;
if (numPatches >= MAX_NUM_PATCHES_REQUESTED) if (patches_num >= MAX_NUM_PATCHES_REQUESTED)
return "too_many_patches"; return "too_many_patches";
} }
else if (*p >= 'A' && *p <= 'Z') // Convert to lowercase. else if (*p >= 'A' && *p <= 'Z') // Convert to lowercase.
@ -465,37 +465,38 @@ const char* pkg2_patch_kips(link_t *info, char* patchNames)
} }
} }
u32 patchesApplied = 0; // Bitset over patches. u32 patches_applied = 0; // Bitset over patches.
for (u32 i = 0; i < numPatches; i++) for (u32 i = 0; i < patches_num; i++)
{ {
// Eliminate leading spaces. // Eliminate leading spaces.
for (const char* p = patches[i]; *p != 0; p++) for (const char *p = patches[i]; *p != 0; p++)
{ {
if (*p == ' ' || *p == '\t' || *p == '\r' || *p == '\n') if (*p == ' ' || *p == '\t' || *p == '\r' || *p == '\n')
patches[i]++; patches[i]++;
else else
break; break;
} }
int valueLen = strlen(patches[i]);
if (valueLen == 0) int patch_len = strlen(patches[i]);
if (patch_len == 0)
continue; continue;
// Eliminate trailing spaces. // Eliminate trailing spaces.
for (int chIdx = valueLen - 1; chIdx >= 0; chIdx--) for (int chIdx = patch_len - 1; chIdx >= 0; chIdx--)
{ {
const char* p = patches[i] + chIdx; const char *p = patches[i] + chIdx;
if (*p == ' ' || *p == '\t' || *p == '\r' || *p == '\n') if (*p == ' ' || *p == '\t' || *p == '\r' || *p == '\n')
valueLen = chIdx; patch_len = chIdx;
else else
break; break;
} }
patches[i][valueLen] = 0; patches[i][patch_len] = 0;
DPRINTF("Requested patch: '%s'\n", patches[i]); DPRINTF("Requested patch: '%s'\n", patches[i]);
} }
// Parse external patches if needed. // Parse external patches if needed.
for (u32 i = 0; i < numPatches; i++) for (u32 i = 0; i < patches_num; i++)
{ {
if (strcmp(patches[i], "emummc") && strcmp(patches[i], "nogc")) if (strcmp(patches[i], "emummc") && strcmp(patches[i], "nogc"))
{ {
@ -504,159 +505,175 @@ const char* pkg2_patch_kips(link_t *info, char* patchNames)
} }
} }
u32 shaBuf[SE_SHA_256_SIZE / sizeof(u32)]; u32 kip_hash[SE_SHA_256_SIZE / sizeof(u32)];
LIST_FOREACH_ENTRY(pkg2_kip1_info_t, ki, info, link) LIST_FOREACH_ENTRY(pkg2_kip1_info_t, ki, info, link)
{ {
shaBuf[0] = 0; // sha256 for this kip not yet calculated. // Reset hash so it can be calculated for the new kip.
for (u32 currKipIdx = 0; currKipIdx < _kip_id_sets_cnt; currKipIdx++) kip_hash[0] = 0;
// Check all SHA256 ID sets. (IDs are grouped per KIP. IDs are still unique.)
for (u32 kip_id_idx = 0; kip_id_idx < _kip_id_sets_cnt; kip_id_idx++)
{ {
if (strncmp((const char*)ki->kip1->name, _kip_id_sets[currKipIdx].name, sizeof(ki->kip1->name)) != 0) // Check if KIP name macthes ID's KIP name.
if (strncmp((char *)ki->kip1->name, _kip_id_sets[kip_id_idx].name, sizeof(ki->kip1->name)) != 0)
continue; continue;
u32 bitsAffected = 0; // Check if there are patches to apply.
kip1_patchset_t* currPatchset = _kip_id_sets[currKipIdx].patchset; bool patches_found = false;
while (currPatchset != NULL && currPatchset->name != NULL) kip1_patchset_t *patchset = _kip_id_sets[kip_id_idx].patchset;
while (patchset != NULL && patchset->name != NULL && !patches_found)
{ {
for (u32 i = 0; i < numPatches; i++) for (u32 i = 0; i < patches_num; i++)
{ {
// Continue if patch name does not match. // Continue if patch name does not match.
if (strcmp(currPatchset->name, patches[i]) != 0) if (strcmp(patchset->name, patches[i]) != 0)
continue; continue;
bitsAffected = i + 1; patches_found = true;
break; break;
} }
currPatchset++; patchset++;
} }
// Dont bother even hashing this KIP if we dont have any patches enabled for it. // Don't bother hashing this KIP if no patches are enabled for it.
if (bitsAffected == 0) if (!patches_found)
continue; continue;
if (shaBuf[0] == 0) // Check if current KIP not hashed and hash it.
{ if (kip_hash[0] == 0)
if (!se_calc_sha256_oneshot(shaBuf, ki->kip1, ki->size)) if (!se_calc_sha256_oneshot(kip_hash, ki->kip1, ki->size))
memset(shaBuf, 0, sizeof(shaBuf)); memset(kip_hash, 0, sizeof(kip_hash));
}
if (memcmp(shaBuf, _kip_id_sets[currKipIdx].hash, sizeof(_kip_id_sets[0].hash)) != 0) // Check if kip is the expected version.
if (memcmp(kip_hash, _kip_id_sets[kip_id_idx].hash, sizeof(_kip_id_sets[0].hash)) != 0)
continue; continue;
// Find out which sections are affected by the enabled patches, to know which to decompress. // Find out which sections are affected by the enabled patches, in order to decompress them.
bitsAffected = 0; u32 sections_affected = 0;
currPatchset = _kip_id_sets[currKipIdx].patchset; patchset = _kip_id_sets[kip_id_idx].patchset;
while (currPatchset != NULL && currPatchset->name != NULL) while (patchset != NULL && patchset->name != NULL)
{ {
if (currPatchset->patches != NULL) if (patchset->patches != NULL)
{ {
for (u32 currEnabIdx = 0; currEnabIdx < numPatches; currEnabIdx++) for (u32 patch_idx = 0; patch_idx < patches_num; patch_idx++)
{ {
if (strcmp(currPatchset->name, patches[currEnabIdx])) if (strcmp(patchset->name, patches[patch_idx]))
continue; continue;
if (!strcmp(currPatchset->name, "emummc")) if (!strcmp(patchset->name, "emummc"))
bitsAffected |= BIT(GET_KIP_PATCH_SECTION(currPatchset->patches->offset)); sections_affected |= BIT(GET_KIP_PATCH_SECTION(patchset->patches->offset));
for (const kip1_patch_t* currPatch=currPatchset->patches; currPatch != NULL && (currPatch->length != 0); currPatch++) for (const kip1_patch_t *patch = patchset->patches; patch != NULL && (patch->length != 0); patch++)
bitsAffected |= BIT(GET_KIP_PATCH_SECTION(currPatch->offset)); sections_affected |= BIT(GET_KIP_PATCH_SECTION(patch->offset));
} }
} }
currPatchset++; patchset++;
} }
// Got patches to apply to this kip, have to decompress it. // Got patches to apply to this kip, have to decompress it.
if (pkg2_decompress_kip(ki, bitsAffected)) if (_decompress_kip(ki, sections_affected))
return (const char*)ki->kip1->name; // Failed to decompress. return (char *)ki->kip1->name; // Failed to decompress.
currPatchset = _kip_id_sets[currKipIdx].patchset; // Apply all patches from matched ID.
patchset = _kip_id_sets[kip_id_idx].patchset;
bool emummc_patch_selected = false; bool emummc_patch_selected = false;
while (currPatchset != NULL && currPatchset->name != NULL) while (patchset != NULL && patchset->name != NULL)
{ {
for (u32 currEnabIdx = 0; currEnabIdx < numPatches; currEnabIdx++) for (u32 patch_idx = 0; patch_idx < patches_num; patch_idx++)
{ {
if (strcmp(currPatchset->name, patches[currEnabIdx])) // Check if patchset name matches requested patch.
if (strcmp(patchset->name, patches[patch_idx]))
continue; continue;
u32 appliedMask = BIT(currEnabIdx); u32 applied_mask = BIT(patch_idx);
if (!strcmp(currPatchset->name, "emummc")) if (!strcmp(patchset->name, "emummc"))
{ {
emummc_patch_selected = true; emummc_patch_selected = true;
patchesApplied |= appliedMask; patches_applied |= applied_mask;
continue; // Patching is done later. continue; // Patching is done later.
} }
if (currPatchset->patches == NULL) // Check if patchset is empty.
if (patchset->patches == NULL)
{ {
DPRINTF("Patch '%s' not necessary for %s\n", currPatchset->name, (const char*)ki->kip1->name); DPRINTF("Patch '%s' not necessary for %s\n", patchset->name, (char *)ki->kip1->name);
patchesApplied |= appliedMask; patches_applied |= applied_mask;
continue; // Continue in case it's double defined. continue; // Continue in case it's double defined.
} }
unsigned char* kipSectData = ki->kip1->data; // Apply patches per section.
for (u32 currSectIdx = 0; currSectIdx < KIP1_NUM_SECTIONS; currSectIdx++) u8 *kip_sect_data = ki->kip1->data;
for (u32 section_idx = 0; section_idx < KIP1_NUM_SECTIONS; section_idx++)
{ {
if (bitsAffected & BIT(currSectIdx)) if (sections_affected & BIT(section_idx))
{ {
gfx_printf("Applying '%s' on %s, sect %d\n", currPatchset->name, (const char*)ki->kip1->name, currSectIdx); gfx_printf("Applying '%s' on %s, sect %d\n", patchset->name, (char *)ki->kip1->name, section_idx);
for (const kip1_patch_t* currPatch = currPatchset->patches; currPatch != NULL && currPatch->srcData != NULL; currPatch++) for (const kip1_patch_t *patch = patchset->patches; patch != NULL && patch->src_data != NULL; patch++)
{ {
if (GET_KIP_PATCH_SECTION(currPatch->offset) != currSectIdx) // Check if patch is in current section.
if (GET_KIP_PATCH_SECTION(patch->offset) != section_idx)
continue; continue;
if (!currPatch->length) // Check if patch is empty.
if (!patch->length)
{ {
gfx_con.mute = false; gfx_con.mute = false;
gfx_printf("%kPatch empty!%k\n", TXT_CLR_ERROR, TXT_CLR_DEFAULT); gfx_printf("%kPatch empty!%k\n", TXT_CLR_ERROR, TXT_CLR_DEFAULT);
return currPatchset->name; // MUST stop here as it's not probably intended. return patchset->name; // MUST stop here as it's not probably intended.
} }
u32 currOffset = GET_KIP_PATCH_OFFSET(currPatch->offset);
// If source does not match and is not already patched, throw an error. // If source does not match and is not already patched, throw an error.
if ((memcmp(&kipSectData[currOffset], currPatch->srcData, currPatch->length) != 0) && u32 patch_offset = GET_KIP_PATCH_OFFSET(patch->offset);
(memcmp(&kipSectData[currOffset], currPatch->dstData, currPatch->length) != 0)) if ((memcmp(&kip_sect_data[patch_offset], patch->src_data, patch->length) != 0) &&
(memcmp(&kip_sect_data[patch_offset], patch->dst_data, patch->length) != 0))
{ {
gfx_con.mute = false; gfx_con.mute = false;
gfx_printf("%kPatch mismatch at 0x%x!%k\n", TXT_CLR_ERROR, currOffset, TXT_CLR_DEFAULT); gfx_printf("%kPatch mismatch at 0x%x!%k\n", TXT_CLR_ERROR, patch_offset, TXT_CLR_DEFAULT);
return currPatchset->name; // MUST stop here as kip is likely corrupt. return patchset->name; // MUST stop here as kip is likely corrupt.
} }
else else
{ {
DPRINTF("Patching %d bytes at offset 0x%x\n", currPatch->length, currOffset); DPRINTF("Patching %d bytes at offset 0x%x\n", patch->length, patch_offset);
memcpy(&kipSectData[currOffset], currPatch->dstData, currPatch->length); memcpy(&kip_sect_data[patch_offset], patch->dst_data, patch->length);
} }
} }
} }
kipSectData += ki->kip1->sections[currSectIdx].size_comp; kip_sect_data += ki->kip1->sections[section_idx].size_comp;
} }
patchesApplied |= appliedMask; patches_applied |= applied_mask;
continue; // Continue in case it's double defined.
} }
currPatchset++;
patchset++;
} }
if (emummc_patch_selected && !strncmp(_kip_id_sets[currKipIdx].name, "FS", sizeof(ki->kip1->name))) if (emummc_patch_selected && !strncmp(_kip_id_sets[kip_id_idx].name, "FS", sizeof(ki->kip1->name)))
{ {
emummc_patch_selected = false; // Encode ID.
emu_cfg.fs_ver = currKipIdx; emu_cfg.fs_ver = kip_id_idx;
if (currKipIdx) if (kip_id_idx)
emu_cfg.fs_ver--; emu_cfg.fs_ver--;
if (currKipIdx > 17) if (kip_id_idx > 17)
emu_cfg.fs_ver -= 2; emu_cfg.fs_ver -= 2;
// Inject emuMMC code.
gfx_printf("Injecting emuMMC. FS ID: %d\n", emu_cfg.fs_ver); gfx_printf("Injecting emuMMC. FS ID: %d\n", emu_cfg.fs_ver);
if (_kipm_inject("/bootloader/sys/emummc.kipm", "FS", ki)) if (_kipm_inject("bootloader/sys/emummc.kipm", "FS", ki))
return "emummc"; return "emummc";
// Skip checking again.
emummc_patch_selected = false;
} }
} }
} }
for (u32 i = 0; i < numPatches; i++) // Check if all patches were applied.
for (u32 i = 0; i < patches_num; i++)
{ {
if ((patchesApplied & BIT(i)) == 0) if ((patches_applied & BIT(i)) == 0)
return patches[i]; return patches[i];
} }
@ -746,7 +763,7 @@ static u32 _pkg2_ini1_build(u8 *pdst, u8 *psec, pkg2_hdr_t *hdr, link_t *kips_in
// Merge KIPs into INI1. // Merge KIPs into INI1.
LIST_FOREACH_ENTRY(pkg2_kip1_info_t, ki, kips_info, link) LIST_FOREACH_ENTRY(pkg2_kip1_info_t, ki, kips_info, link)
{ {
DPRINTF("adding kip1 '%s' @ %08X (%08X)\n", ki->kip1->name, (u32)ki->kip1, ki->size); DPRINTF("adding kip1 '%s' @ %08X (%08X)\n", (char *)ki->kip1->name, (u32)ki->kip1, ki->size);
memcpy(pdst, ki->kip1, ki->size); memcpy(pdst, ki->kip1, ki->size);
pdst += ki->size; pdst += ki->size;
ini1->num_procs++; ini1->num_procs++;
@ -770,7 +787,7 @@ DPRINTF("adding kip1 '%s' @ %08X (%08X)\n", ki->kip1->name, (u32)ki->kip1, ki->s
void pkg2_build_encrypt(void *dst, void *hos_ctxt, link_t *kips_info, bool is_exo) void pkg2_build_encrypt(void *dst, void *hos_ctxt, link_t *kips_info, bool is_exo)
{ {
launch_ctxt_t * ctxt = (launch_ctxt_t *)hos_ctxt; launch_ctxt_t *ctxt = (launch_ctxt_t *)hos_ctxt;
u32 meso_magic = *(u32 *)(ctxt->kernel + 4); u32 meso_magic = *(u32 *)(ctxt->kernel + 4);
u32 kernel_size = ctxt->kernel_size; u32 kernel_size = ctxt->kernel_size;
u8 kb = ctxt->pkg1_id->kb; u8 kb = ctxt->pkg1_id->kb;

View file

@ -40,9 +40,9 @@ extern u32 pkg2_newkern_ini1_end;
typedef struct _kernel_patch_t typedef struct _kernel_patch_t
{ {
u32 id; u32 id;
u32 off; u32 off;
u32 val; u32 val;
u32 *ptr; u32 *ptr;
} kernel_patch_t; } kernel_patch_t;
@ -67,8 +67,8 @@ enum
typedef struct _pkg2_hdr_t typedef struct _pkg2_hdr_t
{ {
u8 ctr[0x10]; u8 ctr[0x10];
u8 sec_ctr[0x40]; u8 sec_ctr[0x40];
u32 magic; u32 magic;
u32 base; u32 base;
u32 pad0; u32 pad0;
@ -77,8 +77,8 @@ typedef struct _pkg2_hdr_t
u16 pad1; u16 pad1;
u32 sec_size[4]; u32 sec_size[4];
u32 sec_off[4]; u32 sec_off[4];
u8 sec_sha256[0x80]; u8 sec_sha256[0x80];
u8 data[]; u8 data[];
} pkg2_hdr_t; } pkg2_hdr_t;
typedef struct _pkg2_ini1_t typedef struct _pkg2_ini1_t
@ -102,7 +102,7 @@ typedef struct _pkg2_kip1_sec_t
typedef struct _pkg2_kip1_t typedef struct _pkg2_kip1_t
{ {
/* 0x000 */ u32 magic; /* 0x000 */ u32 magic;
/* 0x004*/ u8 name[12]; /* 0x004*/ u8 name[12];
/* 0x010 */ u64 tid; /* 0x010 */ u64 tid;
/* 0x018 */ u32 proc_cat; /* 0x018 */ u32 proc_cat;
/* 0x01C */ u8 main_thrd_prio; /* 0x01C */ u8 main_thrd_prio;
@ -129,23 +129,23 @@ typedef struct _pkg2_kernel_id_t
typedef struct _kip1_patch_t typedef struct _kip1_patch_t
{ {
u32 offset; // section+offset of patch to apply. u32 offset; // section+offset of patch to apply.
u32 length; // In bytes, 0 means last patch. u32 length; // In bytes, 0 means last patch.
char* srcData; // That must match. char *src_data; // That must match.
char* dstData; // That it gets replaced by. char *dst_data; // That it gets replaced by.
} kip1_patch_t; } kip1_patch_t;
typedef struct _kip1_patchset_t typedef struct _kip1_patchset_t
{ {
char* name; // NULL means end. char *name; // NULL means end.
kip1_patch_t* patches; // NULL means not necessary. kip1_patch_t *patches; // NULL means not necessary.
} kip1_patchset_t; } kip1_patchset_t;
typedef struct _kip1_id_t typedef struct _kip1_id_t
{ {
const char* name; const char *name;
u8 hash[8]; u8 hash[8];
kip1_patchset_t* patchset; kip1_patchset_t *patchset;
} kip1_id_t; } kip1_id_t;
void pkg2_get_newkern_info(u8 *kern_data); void pkg2_get_newkern_info(u8 *kern_data);
@ -155,7 +155,7 @@ void pkg2_replace_kip(link_t *info, u64 tid, pkg2_kip1_t *kip1);
void pkg2_add_kip(link_t *info, pkg2_kip1_t *kip1); void pkg2_add_kip(link_t *info, pkg2_kip1_t *kip1);
void pkg2_merge_kip(link_t *info, pkg2_kip1_t *kip1); void pkg2_merge_kip(link_t *info, pkg2_kip1_t *kip1);
void pkg2_get_ids(kip1_id_t **ids, u32 *entries); void pkg2_get_ids(kip1_id_t **ids, u32 *entries);
const char* pkg2_patch_kips(link_t *info, char* patchNames); const char *pkg2_patch_kips(link_t *info, char *patch_names);
const pkg2_kernel_id_t *pkg2_identify(u8 *hash); const pkg2_kernel_id_t *pkg2_identify(u8 *hash);
pkg2_hdr_t *pkg2_decrypt(void *data, u8 kb, bool is_exo); pkg2_hdr_t *pkg2_decrypt(void *data, u8 kb, bool is_exo);

View file

@ -158,11 +158,11 @@ int ini_patch_parse(link_t *dst, char *ini_path)
// Set patch source data. // Set patch source data.
str_start = _find_patch_section_name(&lbuf[pos], lblen - pos, ','); str_start = _find_patch_section_name(&lbuf[pos], lblen - pos, ',');
pt->srcData = _htoa(NULL, &lbuf[pos], pt->length, buf); pt->src_data = _htoa(NULL, &lbuf[pos], pt->length, buf);
pos += str_start + 1; pos += str_start + 1;
// Set patch destination data. // Set patch destination data.
pt->dstData = _htoa(NULL, &lbuf[pos], pt->length, buf + pt->length); pt->dst_data = _htoa(NULL, &lbuf[pos], pt->length, buf + pt->length);
} }
list_append(&ksec->pts, &pt->link); list_append(&ksec->pts, &pt->link);

View file

@ -22,10 +22,10 @@
typedef struct _ini_patchset_t typedef struct _ini_patchset_t
{ {
char *name; char *name;
u32 offset; // section + offset of patch to apply. u32 offset; // section + offset of patch to apply.
u32 length; // In bytes, 0 means last patch. u32 length; // In bytes, 0 means last patch.
u8 *srcData; // That must match. u8 *src_data; // That must match.
u8 *dstData; // Gets replaced with. u8 *dst_data; // Gets replaced with.
link_t link; link_t link;
} ini_patchset_t; } ini_patchset_t;