mirror of
https://github.com/CTCaer/hekate
synced 2024-11-09 13:26:35 +00:00
265 lines
9.2 KiB
C
265 lines
9.2 KiB
C
|
/**
|
||
|
* @file lv_draw_arc.c
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/*********************
|
||
|
* INCLUDES
|
||
|
*********************/
|
||
|
#include "lv_draw_arc.h"
|
||
|
#include "../lv_misc/lv_math.h"
|
||
|
|
||
|
/*********************
|
||
|
* DEFINES
|
||
|
*********************/
|
||
|
|
||
|
/**********************
|
||
|
* TYPEDEFS
|
||
|
**********************/
|
||
|
|
||
|
/**********************
|
||
|
* STATIC PROTOTYPES
|
||
|
**********************/
|
||
|
static uint16_t fast_atan2(int x, int y);
|
||
|
static void ver_line(lv_coord_t x, lv_coord_t y, const lv_area_t * mask, lv_coord_t len, lv_color_t color, lv_opa_t opa);
|
||
|
static void hor_line(lv_coord_t x, lv_coord_t y, const lv_area_t * mask, lv_coord_t len, lv_color_t color, lv_opa_t opa);
|
||
|
static bool deg_test_norm(uint16_t deg, uint16_t start, uint16_t end);
|
||
|
static bool deg_test_inv(uint16_t deg, uint16_t start, uint16_t end);
|
||
|
|
||
|
/**********************
|
||
|
* STATIC VARIABLES
|
||
|
**********************/
|
||
|
|
||
|
/**********************
|
||
|
* MACROS
|
||
|
**********************/
|
||
|
|
||
|
/**********************
|
||
|
* GLOBAL FUNCTIONS
|
||
|
**********************/
|
||
|
|
||
|
/**
|
||
|
* Draw an arc. (Can draw pie too with great thickness.)
|
||
|
* @param center_x the x coordinate of the center of the arc
|
||
|
* @param center_y the y coordinate of the center of the arc
|
||
|
* @param radius the radius of the arc
|
||
|
* @param mask the arc will be drawn only in this mask
|
||
|
* @param start_angle the start angle of the arc (0 deg on the bottom, 90 deg on the right)
|
||
|
* @param end_angle the end angle of the arc
|
||
|
* @param style style of the arc (`body.thickness`, `body.main_color`, `body.opa` is used)
|
||
|
* @param opa_scale scale down all opacities by the factor
|
||
|
*/
|
||
|
void lv_draw_arc(lv_coord_t center_x, lv_coord_t center_y, uint16_t radius, const lv_area_t * mask,
|
||
|
uint16_t start_angle, uint16_t end_angle, const lv_style_t * style, lv_opa_t opa_scale)
|
||
|
{
|
||
|
lv_coord_t thickness = style->line.width;
|
||
|
if(thickness > radius) thickness = radius;
|
||
|
|
||
|
lv_coord_t r_out = radius;
|
||
|
lv_coord_t r_in = r_out - thickness;
|
||
|
int16_t deg_base;
|
||
|
int16_t deg;
|
||
|
lv_coord_t x_start[4];
|
||
|
lv_coord_t x_end[4];
|
||
|
|
||
|
lv_color_t color = style->line.color;
|
||
|
lv_opa_t opa = opa_scale == LV_OPA_COVER ? style->body.opa : (uint16_t)((uint16_t) style->body.opa * opa_scale) >> 8;
|
||
|
|
||
|
|
||
|
bool (*deg_test)(uint16_t, uint16_t, uint16_t);
|
||
|
if(start_angle <= end_angle) deg_test = deg_test_norm;
|
||
|
else deg_test = deg_test_inv;
|
||
|
|
||
|
if(deg_test(270, start_angle, end_angle)) hor_line(center_x - r_out + 1, center_y, mask, thickness - 1, color, opa); // Left Middle
|
||
|
if(deg_test(90, start_angle, end_angle)) hor_line(center_x + r_in, center_y, mask, thickness - 1, color, opa); // Right Middle
|
||
|
if(deg_test(180, start_angle, end_angle)) ver_line(center_x, center_y - r_out + 1, mask, thickness - 1, color, opa); // Top Middle
|
||
|
if(deg_test(0, start_angle, end_angle)) ver_line(center_x, center_y + r_in, mask, thickness - 1, color, opa); // Bottom middle
|
||
|
|
||
|
uint32_t r_out_sqr = r_out * r_out;
|
||
|
uint32_t r_in_sqr = r_in * r_in;
|
||
|
int16_t xi;
|
||
|
int16_t yi;
|
||
|
for(yi = -r_out; yi < 0; yi++) {
|
||
|
x_start[0] = LV_COORD_MIN;
|
||
|
x_start[1] = LV_COORD_MIN;
|
||
|
x_start[2] = LV_COORD_MIN;
|
||
|
x_start[3] = LV_COORD_MIN;
|
||
|
x_end[0] = LV_COORD_MIN;
|
||
|
x_end[1] = LV_COORD_MIN;
|
||
|
x_end[2] = LV_COORD_MIN;
|
||
|
x_end[3] = LV_COORD_MIN;
|
||
|
for(xi = -r_out; xi < 0; xi++) {
|
||
|
|
||
|
uint32_t r_act_sqr = xi * xi + yi * yi;
|
||
|
if(r_act_sqr > r_out_sqr) continue;
|
||
|
|
||
|
deg_base = fast_atan2(xi, yi) - 180;
|
||
|
|
||
|
deg = 180 + deg_base;
|
||
|
if(deg_test(deg, start_angle, end_angle)) {
|
||
|
if(x_start[0] == LV_COORD_MIN) x_start[0] = xi;
|
||
|
} else if(x_start[0] != LV_COORD_MIN && x_end[0] == LV_COORD_MIN) {
|
||
|
x_end[0] = xi - 1;
|
||
|
}
|
||
|
|
||
|
deg = 360 - deg_base;
|
||
|
if(deg_test(deg, start_angle, end_angle)) {
|
||
|
if(x_start[1] == LV_COORD_MIN) x_start[1] = xi;
|
||
|
} else if(x_start[1] != LV_COORD_MIN && x_end[1] == LV_COORD_MIN) {
|
||
|
x_end[1] = xi - 1;
|
||
|
}
|
||
|
|
||
|
deg = 180 - deg_base;
|
||
|
if(deg_test(deg, start_angle, end_angle)) {
|
||
|
if(x_start[2] == LV_COORD_MIN) x_start[2] = xi;
|
||
|
} else if(x_start[2] != LV_COORD_MIN && x_end[2] == LV_COORD_MIN) {
|
||
|
x_end[2] = xi - 1;
|
||
|
}
|
||
|
|
||
|
deg = deg_base;
|
||
|
if(deg_test(deg, start_angle, end_angle)) {
|
||
|
if(x_start[3] == LV_COORD_MIN) x_start[3] = xi;
|
||
|
} else if(x_start[3] != LV_COORD_MIN && x_end[3] == LV_COORD_MIN) {
|
||
|
x_end[3] = xi - 1;
|
||
|
}
|
||
|
|
||
|
if(r_act_sqr < r_in_sqr) break; /*No need to continue the iteration in x once we found the inner edge of the arc*/
|
||
|
}
|
||
|
|
||
|
|
||
|
if(x_start[0] != LV_COORD_MIN) {
|
||
|
if(x_end[0] == LV_COORD_MIN) x_end[0] = xi - 1;
|
||
|
hor_line(center_x + x_start[0], center_y + yi, mask, x_end[0] - x_start[0], color, opa);
|
||
|
}
|
||
|
|
||
|
if(x_start[1] != LV_COORD_MIN) {
|
||
|
if(x_end[1] == LV_COORD_MIN) x_end[1] = xi - 1;
|
||
|
hor_line(center_x + x_start[1], center_y - yi, mask, x_end[1] - x_start[1], color, opa);
|
||
|
}
|
||
|
|
||
|
if(x_start[2] != LV_COORD_MIN) {
|
||
|
if(x_end[2] == LV_COORD_MIN) x_end[2] = xi - 1;
|
||
|
hor_line(center_x - x_end[2], center_y + yi, mask, LV_MATH_ABS(x_end[2] - x_start[2]), color, opa);
|
||
|
}
|
||
|
|
||
|
if(x_start[3] != LV_COORD_MIN) {
|
||
|
if(x_end[3] == LV_COORD_MIN) x_end[3] = xi - 1;
|
||
|
hor_line(center_x - x_end[3], center_y - yi, mask, LV_MATH_ABS(x_end[3] - x_start[3]), color, opa);
|
||
|
}
|
||
|
|
||
|
|
||
|
#if LV_ANTIALIAS
|
||
|
/*TODO*/
|
||
|
|
||
|
#endif
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static uint16_t fast_atan2(int x, int y)
|
||
|
{
|
||
|
// Fast XY vector to integer degree algorithm - Jan 2011 www.RomanBlack.com
|
||
|
// Converts any XY values including 0 to a degree value that should be
|
||
|
// within +/- 1 degree of the accurate value without needing
|
||
|
// large slow trig functions like ArcTan() or ArcCos().
|
||
|
// NOTE! at least one of the X or Y values must be non-zero!
|
||
|
// This is the full version, for all 4 quadrants and will generate
|
||
|
// the angle in integer degrees from 0-360.
|
||
|
// Any values of X and Y are usable including negative values provided
|
||
|
// they are between -1456 and 1456 so the 16bit multiply does not overflow.
|
||
|
|
||
|
unsigned char negflag;
|
||
|
unsigned char tempdegree;
|
||
|
unsigned char comp;
|
||
|
unsigned int degree; // this will hold the result
|
||
|
//signed int x; // these hold the XY vector at the start
|
||
|
//signed int y; // (and they will be destroyed)
|
||
|
unsigned int ux;
|
||
|
unsigned int uy;
|
||
|
|
||
|
// Save the sign flags then remove signs and get XY as unsigned ints
|
||
|
negflag = 0;
|
||
|
if(x < 0) {
|
||
|
negflag += 0x01; // x flag bit
|
||
|
x = (0 - x); // is now +
|
||
|
}
|
||
|
ux = x; // copy to unsigned var before multiply
|
||
|
if(y < 0) {
|
||
|
negflag += 0x02; // y flag bit
|
||
|
y = (0 - y); // is now +
|
||
|
}
|
||
|
uy = y; // copy to unsigned var before multiply
|
||
|
|
||
|
// 1. Calc the scaled "degrees"
|
||
|
if(ux > uy) {
|
||
|
degree = (uy * 45) / ux; // degree result will be 0-45 range
|
||
|
negflag += 0x10; // octant flag bit
|
||
|
} else {
|
||
|
degree = (ux * 45) / uy; // degree result will be 0-45 range
|
||
|
}
|
||
|
|
||
|
// 2. Compensate for the 4 degree error curve
|
||
|
comp = 0;
|
||
|
tempdegree = degree; // use an unsigned char for speed!
|
||
|
if(tempdegree > 22) { // if top half of range
|
||
|
if(tempdegree <= 44) comp++;
|
||
|
if(tempdegree <= 41) comp++;
|
||
|
if(tempdegree <= 37) comp++;
|
||
|
if(tempdegree <= 32) comp++; // max is 4 degrees compensated
|
||
|
} else { // else is lower half of range
|
||
|
if(tempdegree >= 2) comp++;
|
||
|
if(tempdegree >= 6) comp++;
|
||
|
if(tempdegree >= 10) comp++;
|
||
|
if(tempdegree >= 15) comp++; // max is 4 degrees compensated
|
||
|
}
|
||
|
degree += comp; // degree is now accurate to +/- 1 degree!
|
||
|
|
||
|
// Invert degree if it was X>Y octant, makes 0-45 into 90-45
|
||
|
if(negflag & 0x10) degree = (90 - degree);
|
||
|
|
||
|
// 3. Degree is now 0-90 range for this quadrant,
|
||
|
// need to invert it for whichever quadrant it was in
|
||
|
if(negflag & 0x02) { // if -Y
|
||
|
if(negflag & 0x01) // if -Y -X
|
||
|
degree = (180 + degree);
|
||
|
else // else is -Y +X
|
||
|
degree = (180 - degree);
|
||
|
} else { // else is +Y
|
||
|
if(negflag & 0x01) // if +Y -X
|
||
|
degree = (360 - degree);
|
||
|
}
|
||
|
return degree;
|
||
|
}
|
||
|
|
||
|
/**********************
|
||
|
* STATIC FUNCTIONS
|
||
|
**********************/
|
||
|
static void ver_line(lv_coord_t x, lv_coord_t y, const lv_area_t * mask, lv_coord_t len, lv_color_t color, lv_opa_t opa)
|
||
|
{
|
||
|
lv_area_t area;
|
||
|
lv_area_set(&area, x, y, x, y + len);
|
||
|
|
||
|
fill_fp(&area, mask, color, opa);
|
||
|
}
|
||
|
|
||
|
static void hor_line(lv_coord_t x, lv_coord_t y, const lv_area_t * mask, lv_coord_t len, lv_color_t color, lv_opa_t opa)
|
||
|
{
|
||
|
lv_area_t area;
|
||
|
lv_area_set(&area, x, y, x + len, y);
|
||
|
|
||
|
fill_fp(&area, mask, color, opa);
|
||
|
}
|
||
|
|
||
|
static bool deg_test_norm(uint16_t deg, uint16_t start, uint16_t end)
|
||
|
{
|
||
|
if(deg >= start && deg <= end) return true;
|
||
|
else return false;
|
||
|
}
|
||
|
|
||
|
static bool deg_test_inv(uint16_t deg, uint16_t start, uint16_t end)
|
||
|
{
|
||
|
if(deg >= start || deg <= end) {
|
||
|
return true;
|
||
|
} else return false;
|
||
|
}
|