mirror of
https://github.com/Atmosphere-NX/Atmosphere
synced 2025-01-21 22:26:10 +00:00
1315 lines
55 KiB
C++
1315 lines
55 KiB
C++
/*
|
|
* Copyright (c) Atmosphère-NX
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#if defined(ATMOSPHERE_IS_STRATOSPHERE)
|
|
#include <stratosphere.hpp>
|
|
#elif defined(ATMOSPHERE_IS_MESOSPHERE)
|
|
#include <mesosphere.hpp>
|
|
#elif defined(ATMOSPHERE_IS_EXOSPHERE)
|
|
#include <exosphere.hpp>
|
|
#else
|
|
#include <vapours.hpp>
|
|
#endif
|
|
#include "sdmmc_sdmmc_controller.board.nintendo_nx.hpp"
|
|
#include "sdmmc_io_impl.board.nintendo_nx.hpp"
|
|
#include "sdmmc_timer.hpp"
|
|
|
|
namespace ams::sdmmc::impl {
|
|
|
|
/* FOR REFERENCE: board-specific sdmmc registers. */
|
|
//struct SdmmcRegisters {
|
|
// /* Standard registers. */
|
|
// volatile SdHostStandardRegisters sd_host_standard_registers;
|
|
//
|
|
// /* Vendor specific registers */
|
|
// volatile uint32_t vendor_clock_cntrl;
|
|
// volatile uint32_t vendor_sys_sw_cntrl;
|
|
// volatile uint32_t vendor_err_intr_status;
|
|
// volatile uint32_t vendor_cap_overrides;
|
|
// volatile uint32_t vendor_boot_cntrl;
|
|
// volatile uint32_t vendor_boot_ack_timeout;
|
|
// volatile uint32_t vendor_boot_dat_timeout;
|
|
// volatile uint32_t vendor_debounce_count;
|
|
// volatile uint32_t vendor_misc_cntrl;
|
|
// volatile uint32_t max_current_override;
|
|
// volatile uint32_t max_current_override_hi;
|
|
// volatile uint32_t _0x12c[0x20];
|
|
// volatile uint32_t vendor_io_trim_cntrl;
|
|
//
|
|
// /* Start of sdmmc2/sdmmc4 only */
|
|
// volatile uint32_t vendor_dllcal_cfg;
|
|
// volatile uint32_t vendor_dll_ctrl0;
|
|
// volatile uint32_t vendor_dll_ctrl1;
|
|
// volatile uint32_t vendor_dllcal_cfg_sta;
|
|
// /* End of sdmmc2/sdmmc4 only */
|
|
//
|
|
// volatile uint32_t vendor_tuning_cntrl0;
|
|
// volatile uint32_t vendor_tuning_cntrl1;
|
|
// volatile uint32_t vendor_tuning_status0;
|
|
// volatile uint32_t vendor_tuning_status1;
|
|
// volatile uint32_t vendor_clk_gate_hysteresis_count;
|
|
// volatile uint32_t vendor_preset_val0;
|
|
// volatile uint32_t vendor_preset_val1;
|
|
// volatile uint32_t vendor_preset_val2;
|
|
// volatile uint32_t sdmemcomppadctrl;
|
|
// volatile uint32_t auto_cal_config;
|
|
// volatile uint32_t auto_cal_interval;
|
|
// volatile uint32_t auto_cal_status;
|
|
// volatile uint32_t io_spare;
|
|
// volatile uint32_t sdmmca_mccif_fifoctrl;
|
|
// volatile uint32_t timeout_wcoal_sdmmca;
|
|
// volatile uint32_t _0x1fc;
|
|
//};
|
|
|
|
DEFINE_SD_REG_BIT_ENUM(VENDOR_CLOCK_CNTRL_SPI_MODE_CLKEN_OVERRIDE, 2, NORMAL, OVERRIDE);
|
|
DEFINE_SD_REG(VENDOR_CLOCK_CNTRL_TAP_VAL, 16, 8);
|
|
DEFINE_SD_REG(VENDOR_CLOCK_CNTRL_TRIM_VAL, 24, 5);
|
|
|
|
DEFINE_SD_REG(VENDOR_CAP_OVERRIDES_DQS_TRIM_VAL, 8, 6);
|
|
|
|
DEFINE_SD_REG(VENDOR_IO_TRIM_CNTRL_SEL_VREG, 2, 1);
|
|
|
|
DEFINE_SD_REG_BIT_ENUM(VENDOR_DLLCAL_CFG_CALIBRATE, 31, DISABLE, ENABLE);
|
|
|
|
DEFINE_SD_REG_BIT_ENUM(VENDOR_DLLCAL_CFG_STA_DLL_CAL_ACTIVE, 31, DONE, RUNNING);
|
|
|
|
DEFINE_SD_REG(VENDOR_TUNING_CNTRL0_MUL_M, 6, 7);
|
|
DEFINE_SD_REG_THREE_BIT_ENUM(VENDOR_TUNING_CNTRL0_NUM_TUNING_ITERATIONS, 13, TRIES_40, TRIES_64, TRIES_128, TRIES_192, TRIES_256, RESERVED5, RESERVED6, RESERVED7);
|
|
DEFINE_SD_REG_BIT_ENUM(VENDOR_TUNING_CNTRL0_TAP_VALUE_UPDATED_BY_HW, 17, NOT_UPDATED_BY_HW, UPDATED_BY_HW);
|
|
|
|
DEFINE_SD_REG(SDMEMCOMPPADCTRL_SDMMC2TMC_CFG_SDMEMCOMP_VREF_SEL, 0, 4);
|
|
DEFINE_SD_REG(SDMEMCOMPPADCTRL_PAD_E_INPUT_OR_E_PWRD, 31, 1);
|
|
|
|
DEFINE_SD_REG(AUTO_CAL_CONFIG_AUTO_CAL_PU_OFFSET, 0, 7);
|
|
DEFINE_SD_REG(AUTO_CAL_CONFIG_AUTO_CAL_PD_OFFSET, 8, 7);
|
|
DEFINE_SD_REG_BIT_ENUM(AUTO_CAL_CONFIG_AUTO_CAL_ENABLE, 29, DISABLED, ENABLED);
|
|
DEFINE_SD_REG_BIT_ENUM(AUTO_CAL_CONFIG_AUTO_CAL_START, 31, DISABLED, ENABLED);
|
|
|
|
DEFINE_SD_REG(AUTO_CAL_STATUS_AUTO_CAL_PULLUP, 0, 7);
|
|
DEFINE_SD_REG_BIT_ENUM(AUTO_CAL_STATUS_AUTO_CAL_ACTIVE, 31, INACTIVE, ACTIVE);
|
|
|
|
DEFINE_SD_REG_BIT_ENUM(IO_SPARE_SPARE_OUT_3, 19, TWO_CYCLE_DELAY, ONE_CYCLE_DELAY);
|
|
|
|
namespace {
|
|
|
|
constexpr inline u32 TuningCommandTimeoutMilliSeconds = 5;
|
|
|
|
constexpr void GetDividerSetting(u32 *out_target_clock_frequency_khz, u16 *out_x, SpeedMode speed_mode) {
|
|
switch (speed_mode) {
|
|
case SpeedMode_MmcIdentification:
|
|
*out_target_clock_frequency_khz = 26000;
|
|
*out_x = 66;
|
|
break;
|
|
case SpeedMode_MmcLegacySpeed:
|
|
*out_target_clock_frequency_khz = 26000;
|
|
*out_x = 1;
|
|
break;
|
|
case SpeedMode_MmcHighSpeed:
|
|
*out_target_clock_frequency_khz = 52000;
|
|
*out_x = 1;
|
|
break;
|
|
case SpeedMode_MmcHs200:
|
|
*out_target_clock_frequency_khz = 200000;
|
|
*out_x = 1;
|
|
break;
|
|
case SpeedMode_MmcHs400:
|
|
*out_target_clock_frequency_khz = 200000;
|
|
*out_x = 1;
|
|
break;
|
|
case SpeedMode_SdCardIdentification:
|
|
*out_target_clock_frequency_khz = 25000;
|
|
*out_x = 64;
|
|
break;
|
|
case SpeedMode_SdCardDefaultSpeed:
|
|
*out_target_clock_frequency_khz = 25000;
|
|
*out_x = 1;
|
|
break;
|
|
case SpeedMode_SdCardHighSpeed:
|
|
*out_target_clock_frequency_khz = 50000;
|
|
*out_x = 1;
|
|
break;
|
|
case SpeedMode_SdCardSdr12:
|
|
*out_target_clock_frequency_khz = 25000;
|
|
*out_x = 1;
|
|
break;
|
|
case SpeedMode_SdCardSdr50:
|
|
*out_target_clock_frequency_khz = 100000;
|
|
*out_x = 1;
|
|
break;
|
|
case SpeedMode_SdCardSdr104:
|
|
*out_target_clock_frequency_khz = 200000;
|
|
*out_x = 1;
|
|
break;
|
|
case SpeedMode_GcAsicFpgaSpeed:
|
|
*out_target_clock_frequency_khz = 40800;
|
|
*out_x = 1;
|
|
break;
|
|
case SpeedMode_GcAsicSpeed:
|
|
*out_target_clock_frequency_khz = 200000;
|
|
*out_x = 2;
|
|
break;
|
|
case SpeedMode_SdCardSdr25:
|
|
case SpeedMode_SdCardDdr50:
|
|
AMS_UNREACHABLE_DEFAULT_CASE();
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
namespace {
|
|
|
|
#if defined(AMS_SDMMC_THREAD_SAFE)
|
|
constinit os::SdkMutex g_soc_mutex;
|
|
|
|
#define AMS_SDMMC_LOCK_SOC_MUTEX() std::scoped_lock lk(g_soc_mutex)
|
|
|
|
#else
|
|
|
|
#define AMS_SDMMC_LOCK_SOC_MUTEX()
|
|
|
|
#endif
|
|
|
|
constinit bool g_determined_soc = false;
|
|
constinit bool g_is_soc_mariko = false;
|
|
|
|
}
|
|
|
|
bool IsSocMariko() {
|
|
if (!g_determined_soc) {
|
|
/* Ensure we have exclusive access to the soc variables. */
|
|
AMS_SDMMC_LOCK_SOC_MUTEX();
|
|
|
|
/* Check the SocType. */
|
|
#if defined(ATMOSPHERE_IS_EXOSPHERE)
|
|
{
|
|
g_is_soc_mariko = fuse::GetSocType() == fuse::SocType_Mariko;
|
|
}
|
|
#elif defined(ATMOSPHERE_IS_MESOSPHERE)
|
|
{
|
|
MESOSPHERE_TODO("Detect mariko via KSystemControl call?");
|
|
}
|
|
#elif defined(ATMOSPHERE_IS_STRATOSPHERE)
|
|
{
|
|
/* Connect to spl for the duration of our check. */
|
|
spl::Initialize();
|
|
ON_SCOPE_EXIT { spl::Finalize(); };
|
|
|
|
g_is_soc_mariko = spl::GetSocType() == spl::SocType_Mariko;
|
|
}
|
|
#else
|
|
#error "Unknown execution context for ams::sdmmc::impl::IsSocMariko"
|
|
#endif
|
|
|
|
/* Note that we determined the soc. */
|
|
g_determined_soc = true;
|
|
}
|
|
|
|
return g_is_soc_mariko;
|
|
}
|
|
|
|
void SdmmcController::ReleaseReset(SpeedMode speed_mode) {
|
|
/* Get the clock reset module. */
|
|
const auto module = this->GetClockResetModule();
|
|
|
|
/* If the module is available, disable clock. */
|
|
if (ClockResetController::IsAvailable(module)) {
|
|
SdHostStandardController::DisableDeviceClock();
|
|
SdHostStandardController::EnsureControl();
|
|
}
|
|
|
|
/* Get the correct divider setting for the speed mode. */
|
|
u32 target_clock_frequency_khz;
|
|
u16 x;
|
|
GetDividerSetting(std::addressof(target_clock_frequency_khz), std::addressof(x), speed_mode);
|
|
|
|
/* Release reset. */
|
|
ClockResetController::ReleaseReset(module, target_clock_frequency_khz);
|
|
}
|
|
|
|
void SdmmcController::AssertReset() {
|
|
return ClockResetController::AssertReset(this->GetClockResetModule());
|
|
}
|
|
|
|
Result SdmmcController::StartupCore(BusPower bus_power) {
|
|
/* Set schmitt trigger. */
|
|
this->SetSchmittTrigger(bus_power);
|
|
|
|
/* Select one-cycle delay version of cmd_oen. */
|
|
reg::ReadWrite(m_sdmmc_registers->io_spare, SD_REG_BITS_ENUM(IO_SPARE_SPARE_OUT_3, ONE_CYCLE_DELAY));
|
|
|
|
/* Select regulated reference voltage for trimmer and DLL supply. */
|
|
reg::ReadWrite(m_sdmmc_registers->vendor_io_trim_cntrl, SD_REG_BITS_VALUE(VENDOR_IO_TRIM_CNTRL_SEL_VREG, 0));
|
|
|
|
/* Configure outbound tap value. */
|
|
reg::ReadWrite(m_sdmmc_registers->vendor_clock_cntrl, SD_REG_BITS_VALUE(VENDOR_CLOCK_CNTRL_TRIM_VAL, this->GetOutboundTapValue()));
|
|
|
|
/* Configure SPI_MODE_CLKEN_OVERRIDE. */
|
|
reg::ReadWrite(m_sdmmc_registers->vendor_clock_cntrl, SD_REG_BITS_ENUM(VENDOR_CLOCK_CNTRL_SPI_MODE_CLKEN_OVERRIDE, NORMAL));
|
|
|
|
/* Set slew codes. */
|
|
this->SetSlewCodes();
|
|
|
|
/* Set vref sel. */
|
|
reg::ReadWrite(m_sdmmc_registers->sdmemcomppadctrl, SD_REG_BITS_VALUE(SDMEMCOMPPADCTRL_SDMMC2TMC_CFG_SDMEMCOMP_VREF_SEL, this->GetVrefSelValue()));
|
|
|
|
/* Perform drive strength calibration at the new power. */
|
|
this->SetDriveCodeOffsets(bus_power);
|
|
this->CalibrateDriveStrength(bus_power);
|
|
|
|
/* Enable internal clock. */
|
|
R_TRY(SdHostStandardController::EnableInternalClock());
|
|
|
|
R_SUCCEED();
|
|
}
|
|
|
|
Result SdmmcController::SetClockTrimmer(SpeedMode speed_mode, u8 tap_value) {
|
|
/* If speed mode is Hs400, set the dqs trim value. */
|
|
if (speed_mode == SpeedMode_MmcHs400) {
|
|
reg::ReadWrite(m_sdmmc_registers->vendor_cap_overrides, SD_REG_BITS_VALUE(VENDOR_CAP_OVERRIDES_DQS_TRIM_VAL, 40));
|
|
}
|
|
|
|
/* Configure tap value as updated by software. */
|
|
reg::ReadWrite(m_sdmmc_registers->vendor_tuning_cntrl0, SD_REG_BITS_ENUM(VENDOR_TUNING_CNTRL0_TAP_VALUE_UPDATED_BY_HW, NOT_UPDATED_BY_HW));
|
|
|
|
/* Set the inbound tap value. */
|
|
reg::ReadWrite(m_sdmmc_registers->vendor_clock_cntrl, SD_REG_BITS_VALUE(VENDOR_CLOCK_CNTRL_TAP_VAL, tap_value));
|
|
|
|
/* Reset the cmd/dat line. */
|
|
R_TRY(SdHostStandardController::ResetCmdDatLine());
|
|
|
|
R_SUCCEED();
|
|
}
|
|
|
|
u8 SdmmcController::GetCurrentTapValue() {
|
|
return static_cast<u8>(reg::GetValue(m_sdmmc_registers->vendor_clock_cntrl, SD_REG_BITS_MASK(VENDOR_CLOCK_CNTRL_TAP_VAL)));
|
|
}
|
|
|
|
Result SdmmcController::CalibrateDll() {
|
|
/* Check if we need to temporarily re-enable the device clock. */
|
|
const bool clock_disabled = reg::HasValue(m_sdmmc_registers->sd_host_standard_registers.clock_control, SD_REG_BITS_ENUM(CLOCK_CONTROL_SD_CLOCK_ENABLE, DISABLE));
|
|
|
|
/* Ensure that the clock is enabled for the period we're using it. */
|
|
if (clock_disabled) {
|
|
/* Turn on the clock. */
|
|
reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.clock_control, SD_REG_BITS_ENUM(CLOCK_CONTROL_SD_CLOCK_ENABLE, ENABLE));
|
|
}
|
|
ON_SCOPE_EXIT { if (clock_disabled) { reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.clock_control, SD_REG_BITS_ENUM(CLOCK_CONTROL_SD_CLOCK_ENABLE, DISABLE)); } };
|
|
|
|
/* Begin calibration. */
|
|
reg::ReadWrite(m_sdmmc_registers->vendor_dllcal_cfg, SD_REG_BITS_ENUM(VENDOR_DLLCAL_CFG_CALIBRATE, ENABLE));
|
|
|
|
/* Wait up to 5ms for calibration to begin. */
|
|
{
|
|
ManualTimer timer(5);
|
|
while (true) {
|
|
/* If calibration is done, we're done. */
|
|
if (!reg::HasValue(m_sdmmc_registers->vendor_dllcal_cfg, SD_REG_BITS_ENUM(VENDOR_DLLCAL_CFG_CALIBRATE, ENABLE))) {
|
|
break;
|
|
}
|
|
|
|
/* Otherwise, check if we've timed out. */
|
|
R_UNLESS((timer.Update()), sdmmc::ResultSdmmcDllCalibrationSoftwareTimeout());
|
|
}
|
|
}
|
|
|
|
/* Wait up to 10ms for calibration to complete. */
|
|
{
|
|
ManualTimer timer(10);
|
|
while (true) {
|
|
/* If calibration is done, we're done. */
|
|
if (reg::HasValue(m_sdmmc_registers->vendor_dllcal_cfg_sta, SD_REG_BITS_ENUM(VENDOR_DLLCAL_CFG_STA_DLL_CAL_ACTIVE, DONE))) {
|
|
break;
|
|
}
|
|
|
|
/* Otherwise, check if we've timed out. */
|
|
R_UNLESS((timer.Update()), sdmmc::ResultSdmmcDllApplicationSoftwareTimeout());
|
|
}
|
|
}
|
|
|
|
R_SUCCEED();
|
|
}
|
|
|
|
Result SdmmcController::SetSpeedModeWithTapValue(SpeedMode speed_mode, u8 tap_value) {
|
|
/* Check if we need to temporarily disable the device clock. */
|
|
const bool clock_enabled = reg::HasValue(m_sdmmc_registers->sd_host_standard_registers.clock_control, SD_REG_BITS_ENUM(CLOCK_CONTROL_SD_CLOCK_ENABLE, ENABLE));
|
|
|
|
/* Ensure that the clock is disabled for the period we're using it. */
|
|
if (clock_enabled) {
|
|
/* Turn off the clock. */
|
|
reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.clock_control, SD_REG_BITS_ENUM(CLOCK_CONTROL_SD_CLOCK_ENABLE, DISABLE));
|
|
}
|
|
|
|
/* Set clock trimmer. */
|
|
/* NOTE: Nintendo does not re-enable the clock if this fails... */
|
|
R_TRY(this->SetClockTrimmer(speed_mode, tap_value));
|
|
|
|
/* Configure for the desired speed mode. */
|
|
switch (speed_mode) {
|
|
case SpeedMode_MmcIdentification:
|
|
case SpeedMode_SdCardIdentification:
|
|
case SpeedMode_MmcLegacySpeed:
|
|
case SpeedMode_SdCardDefaultSpeed:
|
|
/* Set as normal speed, 3.3V. */
|
|
reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.host_control, SD_REG_BITS_ENUM(HOST_CONTROL_HIGH_SPEED_ENABLE, NORMAL_SPEED));
|
|
reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_1_8V_SIGNALING_ENABLE, 3_3V_SIGNALING));
|
|
break;
|
|
case SpeedMode_MmcHighSpeed:
|
|
case SpeedMode_SdCardHighSpeed:
|
|
/* Set as high speed, 3.3V. */
|
|
reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.host_control, SD_REG_BITS_ENUM(HOST_CONTROL_HIGH_SPEED_ENABLE, HIGH_SPEED));
|
|
reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_1_8V_SIGNALING_ENABLE, 3_3V_SIGNALING));
|
|
break;
|
|
case SpeedMode_MmcHs200:
|
|
/* Set as HS200, 1.8V. */
|
|
reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_UHS_MODE_SELECT, HS200));
|
|
reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_1_8V_SIGNALING_ENABLE, 1_8V_SIGNALING));
|
|
break;
|
|
case SpeedMode_MmcHs400:
|
|
/* Set as HS400, 1.8V. */
|
|
reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_UHS_MODE_SELECT, HS400));
|
|
reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_1_8V_SIGNALING_ENABLE, 1_8V_SIGNALING));
|
|
break;
|
|
case SpeedMode_SdCardSdr12:
|
|
/* Set as SDR12, 1.8V. */
|
|
reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_UHS_MODE_SELECT, SDR12));
|
|
reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_1_8V_SIGNALING_ENABLE, 1_8V_SIGNALING));
|
|
break;
|
|
case SpeedMode_SdCardSdr50:
|
|
case SpeedMode_SdCardSdr104:
|
|
/* Set as SDR104, 1.8V. */
|
|
reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_UHS_MODE_SELECT, SDR104));
|
|
reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_1_8V_SIGNALING_ENABLE, 1_8V_SIGNALING));
|
|
break;
|
|
case SpeedMode_GcAsicFpgaSpeed:
|
|
case SpeedMode_GcAsicSpeed:
|
|
/* Set as HS200, 1.8V. */
|
|
reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_UHS_MODE_SELECT, HS200));
|
|
reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_1_8V_SIGNALING_ENABLE, 1_8V_SIGNALING));
|
|
break;
|
|
AMS_UNREACHABLE_DEFAULT_CASE();
|
|
}
|
|
SdHostStandardController::EnsureControl();
|
|
|
|
/* Get the divider setting. */
|
|
u32 target_source_clock_frequency_khz;
|
|
u16 x;
|
|
GetDividerSetting(std::addressof(target_source_clock_frequency_khz), std::addressof(x), speed_mode);
|
|
|
|
/* Set the clock frequency. */
|
|
u32 actual_source_clock_frequency_khz;
|
|
ClockResetController::SetClockFrequencyKHz(std::addressof(actual_source_clock_frequency_khz), this->GetClockResetModule(), target_source_clock_frequency_khz);
|
|
|
|
/* Set the device clock frequency. */
|
|
const u32 actual_device_clock_frequency_khz = util::DivideUp(actual_source_clock_frequency_khz, x);
|
|
SdHostStandardController::SetDeviceClockFrequencyKHz(actual_device_clock_frequency_khz);
|
|
|
|
/* Check that the divider is correct. */
|
|
AMS_ABORT_UNLESS((x == 1) || util::IsAligned(x, 2));
|
|
|
|
/* Write the divider val to clock control. */
|
|
const u16 n = x / 2;
|
|
const u16 upper_n = n >> 8;
|
|
reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.clock_control, SD_REG_BITS_VALUE(CLOCK_CONTROL_SDCLK_FREQUENCY_SELECT, n),
|
|
SD_REG_BITS_VALUE(CLOCK_CONTROL_UPPER_BITS_OF_SDCLK_FREQUENCY_SELECT, upper_n));
|
|
|
|
/* Re-enable the clock, if we should. */
|
|
if (clock_enabled) {
|
|
/* Turn on the clock. */
|
|
reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.clock_control, SD_REG_BITS_ENUM(CLOCK_CONTROL_SD_CLOCK_ENABLE, ENABLE));
|
|
}
|
|
|
|
/* If speed mode is Hs400, calibrate dll. */
|
|
if (speed_mode == SpeedMode_MmcHs400) {
|
|
R_TRY(this->CalibrateDll());
|
|
}
|
|
|
|
/* Set the current speed mode. */
|
|
m_current_speed_mode = speed_mode;
|
|
|
|
R_SUCCEED();
|
|
}
|
|
|
|
Result SdmmcController::IssueTuningCommand(u32 command_index) {
|
|
/* Check that we're not power saving enable. */
|
|
AMS_ABORT_UNLESS(!SdHostStandardController::IsPowerSavingEnable());
|
|
|
|
/* Wait until command inhibit is done. */
|
|
R_TRY(SdHostStandardController::WaitWhileCommandInhibit(true));
|
|
|
|
/* Set transfer for tuning. */
|
|
SdHostStandardController::SetTransferForTuning();
|
|
|
|
/* If necessary, clear interrupt and enable buffer read ready signal. */
|
|
#if defined(AMS_SDMMC_USE_OS_EVENTS)
|
|
{
|
|
this->ClearInterrupt();
|
|
|
|
reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.normal_signal_enable, SD_REG_BITS_ENUM(NORMAL_INTERRUPT_BUFFER_READ_READY, ENABLED));
|
|
}
|
|
#endif
|
|
|
|
/* Set the buffer read ready enable, and read status to ensure it takes. */
|
|
reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.normal_int_enable, SD_REG_BITS_ENUM(NORMAL_INTERRUPT_BUFFER_READ_READY, ENABLED));
|
|
reg::Write(m_sdmmc_registers->sd_host_standard_registers.normal_int_status, reg::Read(m_sdmmc_registers->sd_host_standard_registers.normal_int_status));
|
|
|
|
/* Issue command with clock disabled. */
|
|
reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.clock_control, SD_REG_BITS_ENUM(CLOCK_CONTROL_SD_CLOCK_ENABLE, DISABLE));
|
|
{
|
|
SdHostStandardController::SetCommandForTuning(command_index);
|
|
|
|
SdHostStandardController::EnsureControl();
|
|
WaitMicroSeconds(1);
|
|
SdHostStandardController::AbortTransaction();
|
|
}
|
|
reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.clock_control, SD_REG_BITS_ENUM(CLOCK_CONTROL_SD_CLOCK_ENABLE, ENABLE));
|
|
|
|
/* When we're done waiting, ensure that we clean up appropriately. */
|
|
ON_SCOPE_EXIT {
|
|
/* Clear the buffer read ready signal, if we should. */
|
|
#if defined(AMS_SDMMC_USE_OS_EVENTS)
|
|
reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.normal_signal_enable, SD_REG_BITS_ENUM(NORMAL_INTERRUPT_BUFFER_READ_READY, MASKED));
|
|
#endif
|
|
|
|
/* Clear the buffer read ready enable. */
|
|
reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.normal_int_enable, SD_REG_BITS_ENUM(NORMAL_INTERRUPT_BUFFER_READ_READY, MASKED));
|
|
|
|
/* Wait 8 clocks to ensure configuration takes. */
|
|
SdHostStandardController::EnsureControl();
|
|
WaitClocks(8, SdHostStandardController::GetDeviceClockFrequencyKHz());
|
|
};
|
|
|
|
/* Wait for the command to finish. */
|
|
#if defined(AMS_SDMMC_USE_OS_EVENTS)
|
|
{
|
|
const auto result = SdHostStandardController::WaitInterrupt(TuningCommandTimeoutMilliSeconds);
|
|
if (R_SUCCEEDED(result)) {
|
|
/* If we succeeded, clear the interrupt. */
|
|
reg::Write(m_sdmmc_registers->sd_host_standard_registers.normal_int_status, SD_REG_BITS_ENUM(NORMAL_INTERRUPT_BUFFER_READ_READY, ENABLED));
|
|
this->ClearInterrupt();
|
|
R_SUCCEED();
|
|
} else if (sdmmc::ResultWaitInterruptSoftwareTimeout::Includes(result)) {
|
|
SdHostStandardController::AbortTransaction();
|
|
R_THROW(sdmmc::ResultIssueTuningCommandSoftwareTimeout());
|
|
} else {
|
|
R_RETURN(result);
|
|
}
|
|
}
|
|
#else
|
|
{
|
|
SdHostStandardController::EnsureControl();
|
|
ManualTimer timer(TuningCommandTimeoutMilliSeconds);
|
|
while (true) {
|
|
/* Check if we received the interrupt. */
|
|
if (reg::HasValue(m_sdmmc_registers->sd_host_standard_registers.normal_int_status, SD_REG_BITS_ENUM(NORMAL_INTERRUPT_BUFFER_READ_READY, ENABLED))) {
|
|
/* If we did, acknowledge it. */
|
|
reg::Write(m_sdmmc_registers->sd_host_standard_registers.normal_int_status, SD_REG_BITS_ENUM(NORMAL_INTERRUPT_BUFFER_READ_READY, ENABLED));
|
|
R_SUCCEED();
|
|
}
|
|
|
|
/* Otherwise, check if we timed out. */
|
|
if (!timer.Update()) {
|
|
SdHostStandardController::AbortTransaction();
|
|
R_THROW(sdmmc::ResultIssueTuningCommandSoftwareTimeout());
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void SdmmcController::SetDriveCodeOffsets(BusPower bus_power) {
|
|
/* Get the offsets. */
|
|
u8 pd, pu;
|
|
this->GetAutoCalOffsets(std::addressof(pd), std::addressof(pu), bus_power);
|
|
|
|
/* Set the offsets. */
|
|
reg::ReadWrite(m_sdmmc_registers->auto_cal_config, SD_REG_BITS_VALUE(AUTO_CAL_CONFIG_AUTO_CAL_PD_OFFSET, pd),
|
|
SD_REG_BITS_VALUE(AUTO_CAL_CONFIG_AUTO_CAL_PU_OFFSET, pu));
|
|
|
|
/* Wait for 1ms to ensure that our configuration takes. */
|
|
/* NOTE/HACK: Nintendo does not (need) to do this, but they use SvcSleepThread for waits. */
|
|
/* It's unclear why this wait is necessary, but not doing it causes drive strength calibration to fail if done immediately afterwards. */
|
|
util::WaitMicroSeconds(1000);
|
|
}
|
|
|
|
void SdmmcController::CalibrateDriveStrength(BusPower bus_power) {
|
|
/* Reset drive strength calibration status. */
|
|
m_drive_strength_calibration_status = sdmmc::ResultDriveStrengthCalibrationNotCompleted();
|
|
|
|
/* Check if we need to temporarily disable the device clock. */
|
|
const bool clock_enabled = reg::HasValue(m_sdmmc_registers->sd_host_standard_registers.clock_control, SD_REG_BITS_ENUM(CLOCK_CONTROL_SD_CLOCK_ENABLE, ENABLE));
|
|
|
|
/* Ensure that the clock is disabled for the period we're using it. */
|
|
if (clock_enabled) {
|
|
/* Turn off the clock. */
|
|
reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.clock_control, SD_REG_BITS_ENUM(CLOCK_CONTROL_SD_CLOCK_ENABLE, DISABLE));
|
|
}
|
|
|
|
/* Calibrate with the clock disabled. */
|
|
{
|
|
/* Set SDMEMCOMPPADCTRL_PAD_E_INPUT_OR_E_PWRD. */
|
|
if (reg::HasValue(m_sdmmc_registers->sdmemcomppadctrl, SD_REG_BITS_VALUE(SDMEMCOMPPADCTRL_PAD_E_INPUT_OR_E_PWRD, 0))) {
|
|
reg::ReadWrite(m_sdmmc_registers->sdmemcomppadctrl, SD_REG_BITS_VALUE(SDMEMCOMPPADCTRL_PAD_E_INPUT_OR_E_PWRD, 1));
|
|
SdHostStandardController::EnsureControl();
|
|
WaitMicroSeconds(1);
|
|
}
|
|
|
|
/* Calibrate with SDMEMCOMPPADCTRL_PAD_E_INPUT_OR_E_PWRD set. */
|
|
{
|
|
/* Begin autocal. */
|
|
reg::ReadWrite(m_sdmmc_registers->auto_cal_config, SD_REG_BITS_ENUM(AUTO_CAL_CONFIG_AUTO_CAL_START, ENABLED),
|
|
SD_REG_BITS_ENUM(AUTO_CAL_CONFIG_AUTO_CAL_ENABLE, ENABLED));
|
|
SdHostStandardController::EnsureControl();
|
|
WaitMicroSeconds(2);
|
|
|
|
/* Wait up to 10ms for auto cal to complete. */
|
|
ManualTimer timer(10);
|
|
while (true) {
|
|
/* Check if auto cal is inactive. */
|
|
if (reg::HasValue(m_sdmmc_registers->auto_cal_status, SD_REG_BITS_ENUM(AUTO_CAL_STATUS_AUTO_CAL_ACTIVE, INACTIVE))) {
|
|
/* Check the pullup status. */
|
|
const u32 pullup = (reg::GetValue(m_sdmmc_registers->auto_cal_status, SD_REG_BITS_MASK(AUTO_CAL_STATUS_AUTO_CAL_PULLUP))) & 0x1F;
|
|
if (pullup == 0x1F) {
|
|
m_drive_strength_calibration_status = sdmmc::ResultSdmmcCompShortToGnd();
|
|
}
|
|
if (pullup == 0) {
|
|
m_drive_strength_calibration_status = sdmmc::ResultSdmmcCompOpen();
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
/* Otherwise, check if we've timed out. */
|
|
if (!timer.Update()) {
|
|
m_drive_strength_calibration_status = sdmmc::ResultDriveStrengthCalibrationSoftwareTimeout();
|
|
|
|
this->SetDriveStrengthToDefaultValues(bus_power);
|
|
reg::ReadWrite(m_sdmmc_registers->auto_cal_config, SD_REG_BITS_ENUM(AUTO_CAL_CONFIG_AUTO_CAL_ENABLE, DISABLED));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Clear SDMEMCOMPPADCTRL_PAD_E_INPUT_OR_E_PWRD. */
|
|
reg::ReadWrite(m_sdmmc_registers->sdmemcomppadctrl, SD_REG_BITS_VALUE(SDMEMCOMPPADCTRL_PAD_E_INPUT_OR_E_PWRD, 0));
|
|
}
|
|
|
|
/* Re-enable the clock, if we should. */
|
|
if (clock_enabled) {
|
|
/* Turn on the clock. */
|
|
reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.clock_control, SD_REG_BITS_ENUM(CLOCK_CONTROL_SD_CLOCK_ENABLE, ENABLE));
|
|
}
|
|
|
|
/* If calibration didn't receive a replacement error, set internal state to success. */
|
|
if (sdmmc::ResultDriveStrengthCalibrationNotCompleted::Includes(m_drive_strength_calibration_status)) {
|
|
m_drive_strength_calibration_status = ResultSuccess();
|
|
}
|
|
}
|
|
|
|
Result SdmmcController::Startup(BusPower bus_power, BusWidth bus_width, SpeedMode speed_mode, bool power_saving_enable) {
|
|
/* Verify that we're awake. */
|
|
AMS_ABORT_UNLESS(m_is_awake);
|
|
|
|
/* Release the controller from reset. */
|
|
this->ReleaseReset(speed_mode);
|
|
|
|
/* Mark that we're not shutdown. */
|
|
m_is_shutdown = false;
|
|
|
|
/* Power on the controller. */
|
|
R_TRY(this->PowerOn(bus_power));
|
|
|
|
/* Start up for the specific power. */
|
|
R_TRY(this->StartupCore(bus_power));
|
|
|
|
/* Set our current power/width/speed. */
|
|
SdHostStandardController::SetBusWidth(bus_width);
|
|
SdHostStandardController::SetBusPower(bus_power);
|
|
R_TRY(this->SetSpeedMode(speed_mode));
|
|
this->SetPowerSaving(power_saving_enable);
|
|
|
|
/* Enable clock to the device. */
|
|
SdHostStandardController::EnableDeviceClock();
|
|
|
|
/* Ensure that we can control the device. */
|
|
SdHostStandardController::EnsureControl();
|
|
|
|
R_SUCCEED();
|
|
}
|
|
|
|
void SdmmcController::Shutdown() {
|
|
/* If we're already shut down, there's nothing to do. */
|
|
if (m_is_shutdown) {
|
|
return;
|
|
}
|
|
|
|
/* If we're currently awake, we need to disable clock/power. */
|
|
if (m_is_awake) {
|
|
SdHostStandardController::DisableDeviceClock();
|
|
SdHostStandardController::SetBusPower(BusPower_Off);
|
|
SdHostStandardController::EnsureControl();
|
|
}
|
|
|
|
/* Power off. */
|
|
this->PowerOff();
|
|
|
|
/* If awake, assert reset. */
|
|
if (m_is_awake) {
|
|
this->AssertReset();
|
|
}
|
|
|
|
/* Mark that we're shutdown. */
|
|
m_is_shutdown = true;
|
|
}
|
|
|
|
void SdmmcController::PutToSleep() {
|
|
/* If we're already shut down or asleep, there's nothing to do. */
|
|
if (m_is_shutdown || !m_is_awake) {
|
|
return;
|
|
}
|
|
|
|
/* Save values before sleep. */
|
|
m_bus_power_before_sleep = SdHostStandardController::GetBusPower();
|
|
m_bus_width_before_sleep = SdHostStandardController::GetBusWidth();
|
|
m_speed_mode_before_sleep = m_current_speed_mode;
|
|
m_tap_value_before_sleep = this->GetCurrentTapValue();
|
|
m_is_powersaving_enable_before_sleep = SdHostStandardController::IsPowerSavingEnable();
|
|
|
|
/* Disable clock/power to the device. */
|
|
SdHostStandardController::DisableDeviceClock();
|
|
SdHostStandardController::SetBusPower(BusPower_Off);
|
|
SdHostStandardController::EnsureControl();
|
|
|
|
/* Assert reset. */
|
|
this->AssertReset();
|
|
|
|
/* Mark that we're asleep. */
|
|
m_is_awake = false;
|
|
}
|
|
|
|
Result SdmmcController::Awaken() {
|
|
/* If we're shut down, or if we're awake already, there's nothing to do. */
|
|
R_SUCCEED_IF(m_is_shutdown);
|
|
R_SUCCEED_IF(m_is_awake);
|
|
|
|
/* Mark that we're awake. */
|
|
m_is_awake = true;
|
|
|
|
/* Clear pad parked status. */
|
|
this->ClearPadParked();
|
|
|
|
/* Release reset. */
|
|
this->ReleaseReset(m_speed_mode_before_sleep);
|
|
|
|
/* Start up for the correct power. */
|
|
R_TRY(this->StartupCore(m_bus_power_before_sleep));
|
|
|
|
/* Configure values to what they were before sleep. */
|
|
SdHostStandardController::SetBusWidth(m_bus_width_before_sleep);
|
|
SdHostStandardController::SetBusPower(m_bus_power_before_sleep);
|
|
R_TRY(this->SetSpeedModeWithTapValue(m_speed_mode_before_sleep, m_tap_value_before_sleep));
|
|
this->SetPowerSaving(m_is_powersaving_enable_before_sleep);
|
|
|
|
/* Enable clock to the device. */
|
|
SdHostStandardController::EnableDeviceClock();
|
|
SdHostStandardController::EnsureControl();
|
|
|
|
R_SUCCEED();
|
|
}
|
|
|
|
Result SdmmcController::SwitchToSdr12() {
|
|
/* Disable clock. */
|
|
reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.clock_control, SD_REG_BITS_ENUM(CLOCK_CONTROL_SD_CLOCK_ENABLE, DISABLE));
|
|
|
|
/* Check that the dat lines are all low. */
|
|
R_UNLESS(reg::HasValue(m_sdmmc_registers->sd_host_standard_registers.present_state, SD_REG_BITS_VALUE(PRESENT_STATE_DAT0_3_LINE_SIGNAL_LEVEL, 0b0000)), sdmmc::ResultSdCardNotReadyToVoltageSwitch());
|
|
|
|
/* Set Speed Mode. */
|
|
R_TRY(this->SetSpeedMode(SpeedMode_SdCardSdr12));
|
|
|
|
/* Set voltage to 1.8V. */
|
|
SdHostStandardController::EnsureControl();
|
|
R_TRY(this->LowerBusPower());
|
|
this->SetSchmittTrigger(BusPower_1_8V);
|
|
|
|
/* Perform drive strength calibration at the new power. */
|
|
this->SetDriveCodeOffsets(BusPower_1_8V);
|
|
this->CalibrateDriveStrength(BusPower_1_8V);
|
|
|
|
/* Set the bus power in standard controller. */
|
|
SdHostStandardController::SetBusPower(BusPower_1_8V);
|
|
|
|
/* Wait up to 5ms for the switch to take. */
|
|
SdHostStandardController::EnsureControl();
|
|
WaitMicroSeconds(5000);
|
|
|
|
/* Check that we switched to 1.8V. */
|
|
R_UNLESS(reg::HasValue(m_sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_1_8V_SIGNALING_ENABLE, 1_8V_SIGNALING)), sdmmc::ResultSdHostStandardFailSwitchTo1_8V());
|
|
|
|
/* Enable clock, and wait 1ms. */
|
|
reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.clock_control, SD_REG_BITS_ENUM(CLOCK_CONTROL_SD_CLOCK_ENABLE, ENABLE));
|
|
SdHostStandardController::EnsureControl();
|
|
WaitMicroSeconds(1000);
|
|
|
|
/* Check that the dat lines are all high. */
|
|
R_UNLESS(reg::HasValue(m_sdmmc_registers->sd_host_standard_registers.present_state, SD_REG_BITS_VALUE(PRESENT_STATE_DAT0_3_LINE_SIGNAL_LEVEL, 0b1111)), sdmmc::ResultSdCardNotCompleteVoltageSwitch());
|
|
|
|
R_SUCCEED();
|
|
}
|
|
|
|
Result SdmmcController::SetSpeedMode(SpeedMode speed_mode) {
|
|
/* Get the tap value. */
|
|
u8 tap_value;
|
|
if (speed_mode == SpeedMode_MmcHs400) {
|
|
AMS_ABORT_UNLESS(m_is_valid_tap_value_for_hs_400);
|
|
tap_value = m_tap_value_for_hs_400;
|
|
} else {
|
|
tap_value = this->GetDefaultInboundTapValue();
|
|
}
|
|
|
|
/* Set the speed mode. */
|
|
R_TRY(this->SetSpeedModeWithTapValue(speed_mode, tap_value));
|
|
|
|
R_SUCCEED();
|
|
}
|
|
|
|
void SdmmcController::SetPowerSaving(bool en) {
|
|
/* If necessary, calibrate the drive strength. */
|
|
if (this->IsNeedPeriodicDriveStrengthCalibration() && !en && SdHostStandardController::IsDeviceClockEnable()) {
|
|
this->CalibrateDriveStrength(SdHostStandardController::GetBusPower());
|
|
}
|
|
|
|
return SdHostStandardController::SetPowerSaving(en);
|
|
}
|
|
|
|
void SdmmcController::EnableDeviceClock() {
|
|
/* If necessary, calibrate the drive strength. */
|
|
if (this->IsNeedPeriodicDriveStrengthCalibration() && !SdHostStandardController::IsPowerSavingEnable()) {
|
|
this->CalibrateDriveStrength(SdHostStandardController::GetBusPower());
|
|
}
|
|
|
|
return SdHostStandardController::EnableDeviceClock();
|
|
}
|
|
|
|
Result SdmmcController::IssueCommand(const Command *command, TransferData *xfer_data, u32 *out_num_transferred_blocks) {
|
|
/* If necessary, calibrate the drive strength. */
|
|
if (this->IsNeedPeriodicDriveStrengthCalibration() && SdHostStandardController::IsPowerSavingEnable()) {
|
|
this->CalibrateDriveStrength(SdHostStandardController::GetBusPower());
|
|
}
|
|
|
|
R_RETURN(SdHostStandardController::IssueCommand(command, xfer_data, out_num_transferred_blocks));
|
|
}
|
|
|
|
Result SdmmcController::IssueStopTransmissionCommand(u32 *out_response) {
|
|
/* If necessary, calibrate the drive strength. */
|
|
if (this->IsNeedPeriodicDriveStrengthCalibration() && SdHostStandardController::IsPowerSavingEnable()) {
|
|
this->CalibrateDriveStrength(SdHostStandardController::GetBusPower());
|
|
}
|
|
|
|
R_RETURN(SdHostStandardController::IssueStopTransmissionCommand(out_response));
|
|
}
|
|
|
|
Result SdmmcController::Tuning(SpeedMode speed_mode, u32 command_index) {
|
|
/* Clear vendor tuning control 1. */
|
|
reg::Write(m_sdmmc_registers->vendor_tuning_cntrl1, 0);
|
|
|
|
/* Determine/configure the number of tries. */
|
|
int num_tries;
|
|
switch (speed_mode) {
|
|
case SpeedMode_MmcHs200:
|
|
case SpeedMode_MmcHs400:
|
|
case SpeedMode_SdCardSdr104:
|
|
num_tries = 128;
|
|
reg::ReadWrite(m_sdmmc_registers->vendor_tuning_cntrl0, SD_REG_BITS_ENUM(VENDOR_TUNING_CNTRL0_NUM_TUNING_ITERATIONS, TRIES_128));
|
|
break;
|
|
case SpeedMode_SdCardSdr50:
|
|
case SpeedMode_GcAsicFpgaSpeed:
|
|
case SpeedMode_GcAsicSpeed:
|
|
num_tries = 256;
|
|
reg::ReadWrite(m_sdmmc_registers->vendor_tuning_cntrl0, SD_REG_BITS_ENUM(VENDOR_TUNING_CNTRL0_NUM_TUNING_ITERATIONS, TRIES_256));
|
|
break;
|
|
AMS_UNREACHABLE_DEFAULT_CASE();
|
|
}
|
|
|
|
/* Configure the multiplier. */
|
|
reg::ReadWrite(m_sdmmc_registers->vendor_tuning_cntrl0, SD_REG_BITS_VALUE(VENDOR_TUNING_CNTRL0_MUL_M, 1));
|
|
|
|
/* Configure tap value to be updated by hardware. */
|
|
reg::ReadWrite(m_sdmmc_registers->vendor_tuning_cntrl0, SD_REG_BITS_ENUM(VENDOR_TUNING_CNTRL0_TAP_VALUE_UPDATED_BY_HW, UPDATED_BY_HW));
|
|
|
|
/* Configure to execute tuning. */
|
|
reg::ReadWrite(m_sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_EXECUTE_TUNING, EXECUTE_TUNING));
|
|
|
|
/* Perform tuning num_tries times. */
|
|
for (int i = 0; /* ... */; ++i) {
|
|
/* Check if we've been removed. */
|
|
R_TRY(this->CheckRemoved());
|
|
|
|
/* Issue the command. */
|
|
this->IssueTuningCommand(command_index);
|
|
|
|
/* Check if tuning is done. */
|
|
if (i >= num_tries) {
|
|
break;
|
|
}
|
|
|
|
if (reg::HasValue(m_sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_EXECUTE_TUNING, TUNING_COMPLETED))) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Check if we're using the tuned clock. */
|
|
R_UNLESS(reg::HasValue(m_sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_SAMPLING_CLOCK, USING_TUNED_CLOCK)), sdmmc::ResultTuningFailed());
|
|
|
|
R_SUCCEED();
|
|
}
|
|
|
|
void SdmmcController::SaveTuningStatusForHs400() {
|
|
/* Save the current tap value. */
|
|
m_tap_value_for_hs_400 = GetCurrentTapValue();
|
|
m_is_valid_tap_value_for_hs_400 = true;
|
|
}
|
|
|
|
Result Sdmmc1Controller::PowerOnForRegisterControl(BusPower bus_power) {
|
|
AMS_ABORT_UNLESS(bus_power == BusPower_3_3V);
|
|
|
|
/* Nintendo sets the current bus power regardless of whether the call succeeds. */
|
|
ON_SCOPE_EXIT { m_current_bus_power = BusPower_3_3V; };
|
|
|
|
/* pcv::PowerOn(pcv::PowerControlTarget_SdCard, 3300000); */
|
|
R_TRY(m_power_controller->PowerOn(BusPower_3_3V));
|
|
|
|
R_SUCCEED();
|
|
}
|
|
|
|
void Sdmmc1Controller::PowerOffForRegisterControl() {
|
|
/* If we're already off, there's nothing to do. */
|
|
if (m_current_bus_power == BusPower_Off) {
|
|
return;
|
|
}
|
|
|
|
/* If we're at 3.3V, lower to 1.8V. */
|
|
if (m_current_bus_power == BusPower_3_3V) {
|
|
/* pcv::ChangeVoltage(pcv::PowerControlTarget_SdCard, 1800000); */
|
|
m_power_controller->LowerBusPower();
|
|
|
|
/* Set our bus power. */
|
|
m_current_bus_power = BusPower_1_8V;
|
|
}
|
|
|
|
/* pinmux::SetPinAssignment(std::addressof(m_pinmux_session), pinmux::PinAssignment_Sdmmc1OutputHigh); */
|
|
pinmux_impl::SetPinAssignment(pinmux_impl::PinAssignment_Sdmmc1OutputHigh);
|
|
|
|
|
|
/* pcv::PowerOff(pcv::PowerControlTarget_SdCard); */
|
|
m_power_controller->PowerOff();
|
|
|
|
/* Set our bus power. */
|
|
m_current_bus_power = BusPower_Off;
|
|
|
|
/* pinmux::SetPinAssignment(std::addressof(m_pinmux_session), pinmux::PinAssignment_Sdmmc1ResetState); */
|
|
pinmux_impl::SetPinAssignment(pinmux_impl::PinAssignment_Sdmmc1ResetState);
|
|
}
|
|
|
|
Result Sdmmc1Controller::LowerBusPowerForRegisterControl() {
|
|
/* Nintendo sets the current bus power regardless of whether the call succeeds. */
|
|
ON_SCOPE_EXIT { m_current_bus_power = BusPower_1_8V; };
|
|
|
|
/* pcv::ChangeVoltage(pcv::PowerControlTarget_SdCard, 1800000); */
|
|
R_TRY(m_power_controller->LowerBusPower());
|
|
|
|
R_SUCCEED();
|
|
}
|
|
|
|
void Sdmmc1Controller::SetSchmittTriggerForRegisterControl(BusPower bus_power) {
|
|
SdHostStandardController::EnsureControl();
|
|
|
|
if (IsSocMariko()) {
|
|
/* pinmux::SetPinAssignment(std::addressof(m_pinmux_session), pinmux::PinAssignment_Sdmmc1SchmtEnable); */
|
|
pinmux_impl::SetPinAssignment(pinmux_impl::PinAssignment_Sdmmc1SchmtEnable);
|
|
} else {
|
|
switch (bus_power) {
|
|
case BusPower_1_8V:
|
|
/* pinmux::SetPinAssignment(std::addressof(m_pinmux_session), pinmux::PinAssignment_Sdmmc1SchmtEnable); */
|
|
pinmux_impl::SetPinAssignment(pinmux_impl::PinAssignment_Sdmmc1SchmtEnable);
|
|
break;
|
|
case BusPower_3_3V:
|
|
/* pinmux::SetPinAssignment(std::addressof(m_pinmux_session), pinmux::PinAssignment_Sdmmc1SchmtDisable); */
|
|
pinmux_impl::SetPinAssignment(pinmux_impl::PinAssignment_Sdmmc1SchmtDisable);
|
|
break;
|
|
case BusPower_Off:
|
|
AMS_UNREACHABLE_DEFAULT_CASE();
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(AMS_SDMMC_USE_PCV_CLOCK_RESET_CONTROL)
|
|
Result Sdmmc1Controller::PowerOnForPcvControl(BusPower bus_power) {
|
|
AMS_ABORT_UNLESS(bus_power == BusPower_3_3V);
|
|
|
|
/* Nintendo sets the current bus power regardless of whether the call succeeds. */
|
|
ON_SCOPE_EXIT { m_current_bus_power = BusPower_3_3V; };
|
|
|
|
/* TODO: R_RETURN(pcv::PowerOn(pcv::PowerControlTarget_SdCard, 3300000)); */
|
|
R_SUCCEED();
|
|
}
|
|
|
|
void Sdmmc1Controller::PowerOffForPcvControl() {
|
|
/* If we're already off, there's nothing to do. */
|
|
if (m_current_bus_power == BusPower_Off) {
|
|
return;
|
|
}
|
|
|
|
/* If we're at 3.3V, lower to 1.8V. */
|
|
{
|
|
/* TODO: pcv::ChangeVoltage(pcv::PowerControlTarget_SdCard, 1800000); */
|
|
m_current_bus_power = BusPower_1_8V;
|
|
}
|
|
|
|
/* TODO: pinmux::SetPinAssignment(std::addressof(m_pinmux_session), pinmux::PinAssignment_Sdmmc1OutputHigh); */
|
|
|
|
/* TODO: pcv::PowerOff(pcv::PowerControlTarget_SdCard); */
|
|
m_current_bus_power = BusPower_Off;
|
|
|
|
/* TODO: pinmux::SetPinAssignment(std::addressof(m_pinmux_session), pinmux::PinAssignment_Sdmmc1ResetState); */
|
|
|
|
}
|
|
|
|
Result Sdmmc1Controller::LowerBusPowerForPcvControl() {
|
|
/* Nintendo sets the current bus power regardless of whether the call succeeds. */
|
|
ON_SCOPE_EXIT { m_current_bus_power = BusPower_1_8V; };
|
|
|
|
/* TODO: R_RETURN(pcv::ChangeVoltage(pcv::PowerControlTarget_SdCard, 1800000)); */
|
|
R_SUCCEED();
|
|
}
|
|
|
|
void Sdmmc1Controller::SetSchmittTriggerForPcvControl(BusPower bus_power) {
|
|
SdHostStandardController::EnsureControl();
|
|
|
|
if (IsSocMariko()) {
|
|
/* TODO: pinmux::SetPinAssignment(std::addressof(m_pinmux_session), pinmux::PinAssignment_Sdmmc1SchmtEnable); */
|
|
} else {
|
|
switch (bus_power) {
|
|
case BusPower_1_8V:
|
|
/* TODO: pinmux::SetPinAssignment(std::addressof(m_pinmux_session), pinmux::PinAssignment_Sdmmc1SchmtEnable); */
|
|
break;
|
|
case BusPower_3_3V:
|
|
/* TODO: pinmux::SetPinAssignment(std::addressof(m_pinmux_session), pinmux::PinAssignment_Sdmmc1SchmtDisable); */
|
|
break;
|
|
case BusPower_Off:
|
|
AMS_UNREACHABLE_DEFAULT_CASE();
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
Result Sdmmc1Controller::PowerOn(BusPower bus_power) {
|
|
#if defined(AMS_SDMMC_USE_PCV_CLOCK_RESET_CONTROL)
|
|
if (m_is_pcv_control) {
|
|
R_RETURN(this->PowerOnForPcvControl(bus_power));
|
|
} else
|
|
#endif
|
|
{
|
|
R_RETURN(this->PowerOnForRegisterControl(bus_power));
|
|
}
|
|
}
|
|
|
|
void Sdmmc1Controller::PowerOff() {
|
|
#if defined(AMS_SDMMC_USE_PCV_CLOCK_RESET_CONTROL)
|
|
if (m_is_pcv_control) {
|
|
return this->PowerOffForPcvControl();
|
|
} else
|
|
#endif
|
|
{
|
|
return this->PowerOffForRegisterControl();
|
|
}
|
|
}
|
|
|
|
Result Sdmmc1Controller::LowerBusPower() {
|
|
#if defined(AMS_SDMMC_USE_PCV_CLOCK_RESET_CONTROL)
|
|
if (m_is_pcv_control) {
|
|
R_RETURN(this->LowerBusPowerForPcvControl());
|
|
} else
|
|
#endif
|
|
{
|
|
R_RETURN(this->LowerBusPowerForRegisterControl());
|
|
}
|
|
}
|
|
|
|
void Sdmmc1Controller::SetSchmittTrigger(BusPower bus_power) {
|
|
#if defined(AMS_SDMMC_USE_PCV_CLOCK_RESET_CONTROL)
|
|
if (m_is_pcv_control) {
|
|
return this->SetSchmittTriggerForPcvControl(bus_power);
|
|
} else
|
|
#endif
|
|
{
|
|
return this->SetSchmittTriggerForRegisterControl(bus_power);
|
|
}
|
|
}
|
|
|
|
void Sdmmc1Controller::Initialize() {
|
|
return this->InitializeForRegisterControl();
|
|
}
|
|
|
|
void Sdmmc1Controller::Finalize() {
|
|
#if defined(AMS_SDMMC_USE_PCV_CLOCK_RESET_CONTROL)
|
|
if (m_is_pcv_control) {
|
|
return this->FinalizeForPcvControl();
|
|
} else
|
|
#endif
|
|
{
|
|
return this->FinalizeForRegisterControl();
|
|
}
|
|
}
|
|
|
|
void Sdmmc1Controller::InitializeForRegisterControl() {
|
|
#if defined(AMS_SDMMC_USE_PCV_CLOCK_RESET_CONTROL)
|
|
/* Mark ourselves as initialized by register control. */
|
|
m_is_pcv_control = false;
|
|
#endif
|
|
|
|
/* pinmux::Initialize(); */
|
|
/* This just opens a session handle to pinmux service, no work to do. */
|
|
|
|
/* pinmux::OpenSession(std::addressof(m_pinmux_session), pinmux::AssignablePinGroupName_Sdmmc1); */
|
|
/* This just sets the session's internal value to the pin group name, so nothing to do here either. */
|
|
|
|
/* pcv::Initialize(); */
|
|
/* This initializes a lot of globals in pcv, most of which we don't care about. */
|
|
/* However, we do care about the Sdmmc1PowerController. */
|
|
AMS_ABORT_UNLESS(m_power_controller == nullptr);
|
|
m_power_controller = util::ConstructAt(m_power_controller_storage);
|
|
|
|
/* Perform base initialization. */
|
|
SdmmcController::Initialize();
|
|
}
|
|
|
|
void Sdmmc1Controller::FinalizeForRegisterControl() {
|
|
/* Perform base finalization. */
|
|
SdmmcController::Finalize();
|
|
|
|
/* pcv::Finalize(); */
|
|
/* As with initialize, we mostly don't care about the globals this touches. */
|
|
/* However, we do want to finalize the Sdmmc1PowerController. */
|
|
AMS_ABORT_UNLESS(m_power_controller != nullptr);
|
|
m_power_controller = nullptr;
|
|
util::DestroyAt(m_power_controller_storage);
|
|
|
|
/* pinmux::CloseSession(std::addressof(m_pinmux_session)); */
|
|
/* This does nothing. */
|
|
|
|
/* pinmux::Finalize(); */
|
|
/* This does nothing. */
|
|
|
|
#if defined(AMS_SDMMC_USE_PCV_CLOCK_RESET_CONTROL)
|
|
/* Mark ourselves as initialized by register control. */
|
|
m_is_pcv_control = false;
|
|
#endif
|
|
}
|
|
|
|
#if defined(AMS_SDMMC_USE_PCV_CLOCK_RESET_CONTROL)
|
|
void Sdmmc1Controller::InitializeForPcvControl() {
|
|
/* Mark ourselves as initialized by pcv control. */
|
|
m_is_pcv_control = true;
|
|
|
|
/* TODO: pinmux::Initialize(); */
|
|
/* TODO: pinmux::OpenSession(std::addressof(m_pinmux_session), pinmux::AssignablePinGroupName_Sdmmc1); */
|
|
/* TODO: pcv::Initialize(); */
|
|
|
|
/* Perform base initialization. */
|
|
SdmmcController::Initialize();
|
|
}
|
|
|
|
void Sdmmc1Controller::FinalizeForPcvControl() {
|
|
/* Perform base finalization. */
|
|
SdmmcController::Finalize();
|
|
|
|
/* TODO: pcv::Finalize(); */
|
|
/* TODO: pinmux::CloseSession(std::addressof(m_pinmux_session)); */
|
|
/* TODO: pinmux::Finalize(); */
|
|
|
|
/* Mark ourselves as initialized by register control. */
|
|
m_is_pcv_control = false;
|
|
}
|
|
#endif
|
|
|
|
namespace {
|
|
|
|
constexpr inline dd::PhysicalAddress PmcRegistersPhysicalAddress = 0x7000E400;
|
|
|
|
}
|
|
|
|
Result Sdmmc1Controller::PowerController::ControlVddioSdmmc1(BusPower bus_power) {
|
|
/* Configure appropriate voltage. */
|
|
switch (bus_power) {
|
|
case BusPower_Off:
|
|
R_TRY(SetSdCardVoltageEnabled(false));
|
|
break;
|
|
case BusPower_1_8V:
|
|
R_TRY(SetSdCardVoltageValue(1'800'000));
|
|
R_TRY(SetSdCardVoltageEnabled(true));
|
|
break;
|
|
case BusPower_3_3V:
|
|
R_TRY(SetSdCardVoltageValue(3'300'000));
|
|
R_TRY(SetSdCardVoltageEnabled(true));
|
|
break;
|
|
AMS_UNREACHABLE_DEFAULT_CASE();
|
|
}
|
|
|
|
R_SUCCEED();
|
|
}
|
|
|
|
void Sdmmc1Controller::PowerController::SetSdmmcIoMode(bool is_3_3V) {
|
|
/* Determine the address we're updating. */
|
|
constexpr dd::PhysicalAddress ApbdevPmcPwrDetValAddress = PmcRegistersPhysicalAddress + APBDEV_PMC_PWR_DET_VAL;
|
|
|
|
/* Read the current value. */
|
|
u32 value = dd::ReadIoRegister(ApbdevPmcPwrDetValAddress);
|
|
|
|
/* Mask out the existing bits. */
|
|
value &= ~(reg::EncodeMask(PMC_REG_BITS_MASK(PWR_DET_VAL_SDMMC1)));
|
|
|
|
/* ORR in the new bits. */
|
|
value |= reg::Encode(PMC_REG_BITS_ENUM_SEL(PWR_DET_VAL_SDMMC1, is_3_3V, ENABLE, DISABLE));
|
|
|
|
/* Write the new value. */
|
|
dd::WriteIoRegister(ApbdevPmcPwrDetValAddress, value);
|
|
|
|
/* Read the value back to be sure our write takes. */
|
|
dd::ReadIoRegister(ApbdevPmcPwrDetValAddress);
|
|
}
|
|
|
|
void Sdmmc1Controller::PowerController::ControlRailSdmmc1Io(bool is_power_on) {
|
|
/* Determine the address we're updating. */
|
|
constexpr dd::PhysicalAddress ApbdevPmcNoIoPowerAddress = PmcRegistersPhysicalAddress + APBDEV_PMC_NO_IOPOWER;
|
|
|
|
/* Read the current value. */
|
|
u32 value = dd::ReadIoRegister(ApbdevPmcNoIoPowerAddress);
|
|
|
|
/* Mask out the existing bits. */
|
|
value &= ~(reg::EncodeMask(PMC_REG_BITS_MASK(NO_IOPOWER_SDMMC1)));
|
|
|
|
/* ORR in the new bits. */
|
|
value |= reg::Encode(PMC_REG_BITS_ENUM_SEL(NO_IOPOWER_SDMMC1, is_power_on, DISABLE, ENABLE));
|
|
|
|
/* Write the new value. */
|
|
dd::WriteIoRegister(ApbdevPmcNoIoPowerAddress, value);
|
|
|
|
/* Read the value back to be sure our write takes. */
|
|
dd::ReadIoRegister(ApbdevPmcNoIoPowerAddress);
|
|
}
|
|
|
|
Sdmmc1Controller::PowerController::PowerController() : m_current_bus_power(BusPower_Off) {
|
|
/* gpio::Initialize(); */
|
|
/* ... */
|
|
|
|
/* Open gpio session. */
|
|
/* gpio::OpenSession(std::addressof(m_gpio_pad_session), gpio::GpioPadName_PowSdEn); */
|
|
gpio_impl::OpenSession(gpio_impl::GpioPadName_PowSdEn);
|
|
|
|
/* Configure the gpio as low/output. */
|
|
/* gpio::SetValue(std::addressof(m_gpio_pad_session), gpio::GpioValue_Low); */
|
|
gpio_impl::SetValue(gpio_impl::GpioPadName_PowSdEn, gpio_impl::GpioValue_Low);
|
|
|
|
/* gpio::SetDirection(std::addressof(m_gpio_pad_session), gpio::Direction_Output); */
|
|
gpio_impl::SetDirection(gpio_impl::GpioPadName_PowSdEn, gpio_impl::Direction_Output);
|
|
}
|
|
|
|
Sdmmc1Controller::PowerController::~PowerController() {
|
|
/* gpio::CloseSession(std::addressof(m_gpio_pad_session)); */
|
|
gpio_impl::CloseSession(gpio_impl::GpioPadName_PowSdEn);
|
|
|
|
/* gpio::Finalize(); */
|
|
/* ... */
|
|
}
|
|
|
|
Result Sdmmc1Controller::PowerController::PowerOn(BusPower bus_power) {
|
|
/* Bus power should be off, and if it's not we don't need to do anything. */
|
|
AMS_ASSERT(m_current_bus_power == BusPower_Off);
|
|
R_SUCCEED_IF(m_current_bus_power != BusPower_Off);
|
|
|
|
/* Power on requires the target bus power be 3.3V. */
|
|
AMS_ABORT_UNLESS(bus_power == BusPower_3_3V);
|
|
|
|
/* Enable the rail. */
|
|
this->ControlRailSdmmc1Io(true);
|
|
|
|
/* Set the SD power GPIO to high. */
|
|
/* gpio::SetValue(std::addressof(m_gpio_pad_session), gpio::GpioValue_High); */
|
|
gpio_impl::SetValue(gpio_impl::GpioPadName_PowSdEn, gpio_impl::GpioValue_High);
|
|
|
|
/* Wait 10ms for power change to take. */
|
|
WaitMicroSeconds(10000);
|
|
|
|
/* Configure Sdmmc1 IO as 3.3V. */
|
|
this->SetSdmmcIoMode(true);
|
|
R_TRY(this->ControlVddioSdmmc1(BusPower_3_3V));
|
|
|
|
/* Wait 130 us for changes to take. */
|
|
WaitMicroSeconds(130);
|
|
|
|
/* Update our current bus power. */
|
|
m_current_bus_power = bus_power;
|
|
|
|
R_SUCCEED();
|
|
}
|
|
|
|
Result Sdmmc1Controller::PowerController::PowerOff() {
|
|
/* Bus power should be on, and if it's not we don't need to do anything. */
|
|
AMS_ASSERT(m_current_bus_power != BusPower_Off);
|
|
R_SUCCEED_IF(m_current_bus_power == BusPower_Off);
|
|
|
|
/* Bus power should be 1.8V. */
|
|
/* NOTE: the result returned here is 0x8C0 (regulator::ResultIllegalRequest()) on newer firmwares. */
|
|
AMS_ASSERT(m_current_bus_power == BusPower_1_8V);
|
|
R_UNLESS(m_current_bus_power == BusPower_1_8V, pcv::ResultIllegalRequest());
|
|
|
|
/* Disable vddio, and wait 4 ms. */
|
|
this->ControlVddioSdmmc1(BusPower_Off);
|
|
WaitMicroSeconds(4000);
|
|
|
|
/* Set the SD power GPIO to low. */
|
|
/* gpio::SetValue(std::addressof(m_gpio_pad_session), gpio::GpioValue_Low); */
|
|
gpio_impl::SetValue(gpio_impl::GpioPadName_PowSdEn, gpio_impl::GpioValue_Low);
|
|
|
|
/* Wait 239ms for the gpio config to take. */
|
|
WaitMicroSeconds(239000);
|
|
|
|
/* Disable the rail. */
|
|
this->ControlRailSdmmc1Io(false);
|
|
this->SetSdmmcIoMode(true);
|
|
|
|
/* Update our current bus power. */
|
|
m_current_bus_power = BusPower_Off;
|
|
|
|
R_SUCCEED();
|
|
}
|
|
|
|
Result Sdmmc1Controller::PowerController::LowerBusPower() {
|
|
/* Bus power should be 3.3V, and if it's not we don't need to do anything. */
|
|
AMS_ASSERT(m_current_bus_power == BusPower_3_3V);
|
|
R_SUCCEED_IF(m_current_bus_power != BusPower_3_3V);
|
|
|
|
/* Configure as 1.8V, then wait 150us for it to take. */
|
|
R_TRY(this->ControlVddioSdmmc1(BusPower_1_8V));
|
|
WaitMicroSeconds(150);
|
|
this->SetSdmmcIoMode(false);
|
|
|
|
/* Update our current bus power. */
|
|
m_current_bus_power = BusPower_1_8V;
|
|
|
|
R_SUCCEED();
|
|
}
|
|
|
|
}
|