mirror of
https://github.com/Atmosphere-NX/Atmosphere
synced 2025-01-12 07:44:52 +00:00
247 lines
10 KiB
C++
247 lines
10 KiB
C++
/*
|
|
* Copyright (c) Atmosphère-NX
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <stratosphere.hpp>
|
|
|
|
namespace ams::fssystem {
|
|
|
|
template<fs::PointerToStorage BasePointer>
|
|
void AesXtsStorage<BasePointer>::MakeAesXtsIv(void *dst, size_t dst_size, s64 offset, size_t block_size) {
|
|
AMS_ASSERT(dst != nullptr);
|
|
AMS_ASSERT(dst_size == IvSize);
|
|
AMS_ASSERT(offset >= 0);
|
|
AMS_UNUSED(dst_size);
|
|
|
|
const uintptr_t out_addr = reinterpret_cast<uintptr_t>(dst);
|
|
|
|
util::StoreBigEndian<s64>(reinterpret_cast<s64 *>(out_addr + sizeof(s64)), offset / block_size);
|
|
}
|
|
|
|
template<fs::PointerToStorage BasePointer>
|
|
AesXtsStorage<BasePointer>::AesXtsStorage(BasePointer base, const void *key1, const void *key2, size_t key_size, const void *iv, size_t iv_size, size_t block_size) : m_base_storage(std::move(base)), m_block_size(block_size), m_mutex() {
|
|
AMS_ASSERT(m_base_storage != nullptr);
|
|
AMS_ASSERT(key1 != nullptr);
|
|
AMS_ASSERT(key2 != nullptr);
|
|
AMS_ASSERT(iv != nullptr);
|
|
AMS_ASSERT(key_size == KeySize);
|
|
AMS_ASSERT(iv_size == IvSize);
|
|
AMS_ASSERT(util::IsAligned(m_block_size, AesBlockSize));
|
|
AMS_UNUSED(key_size, iv_size);
|
|
|
|
std::memcpy(m_key[0], key1, KeySize);
|
|
std::memcpy(m_key[1], key2, KeySize);
|
|
std::memcpy(m_iv, iv, IvSize);
|
|
}
|
|
|
|
template<fs::PointerToStorage BasePointer>
|
|
Result AesXtsStorage<BasePointer>::Read(s64 offset, void *buffer, size_t size) {
|
|
/* Allow zero-size reads. */
|
|
R_SUCCEED_IF(size == 0);
|
|
|
|
/* Ensure buffer is valid. */
|
|
R_UNLESS(buffer != nullptr, fs::ResultNullptrArgument());
|
|
|
|
/* We can only read at block aligned offsets. */
|
|
R_UNLESS(util::IsAligned(offset, AesBlockSize), fs::ResultInvalidArgument());
|
|
R_UNLESS(util::IsAligned(size, AesBlockSize), fs::ResultInvalidArgument());
|
|
|
|
/* Read the data. */
|
|
R_TRY(m_base_storage->Read(offset, buffer, size));
|
|
|
|
/* Prepare to decrypt the data, with temporarily increased priority. */
|
|
ScopedThreadPriorityChanger cp(+1, ScopedThreadPriorityChanger::Mode::Relative);
|
|
|
|
/* Setup the counter. */
|
|
char ctr[IvSize];
|
|
std::memcpy(ctr, m_iv, IvSize);
|
|
AddCounter(ctr, IvSize, offset / m_block_size);
|
|
|
|
/* Handle any unaligned data before the start. */
|
|
size_t processed_size = 0;
|
|
if ((offset % m_block_size) != 0) {
|
|
/* Determine the size of the pre-data read. */
|
|
const size_t skip_size = static_cast<size_t>(offset - util::AlignDown(offset, m_block_size));
|
|
const size_t data_size = std::min(size, m_block_size - skip_size);
|
|
|
|
/* Decrypt into a pooled buffer. */
|
|
{
|
|
PooledBuffer tmp_buf(m_block_size, m_block_size);
|
|
AMS_ASSERT(tmp_buf.GetSize() >= m_block_size);
|
|
|
|
std::memset(tmp_buf.GetBuffer(), 0, skip_size);
|
|
std::memcpy(tmp_buf.GetBuffer() + skip_size, buffer, data_size);
|
|
|
|
const size_t dec_size = crypto::DecryptAes128Xts(tmp_buf.GetBuffer(), m_block_size, m_key[0], m_key[1], KeySize, ctr, IvSize, tmp_buf.GetBuffer(), m_block_size);
|
|
R_UNLESS(dec_size == m_block_size, fs::ResultUnexpectedInAesXtsStorageA());
|
|
|
|
std::memcpy(buffer, tmp_buf.GetBuffer() + skip_size, data_size);
|
|
}
|
|
|
|
AddCounter(ctr, IvSize, 1);
|
|
processed_size += data_size;
|
|
AMS_ASSERT(processed_size == std::min(size, m_block_size - skip_size));
|
|
}
|
|
|
|
/* Decrypt aligned chunks. */
|
|
char *cur = static_cast<char *>(buffer) + processed_size;
|
|
size_t remaining = size - processed_size;
|
|
while (remaining > 0) {
|
|
const size_t cur_size = std::min(m_block_size, remaining);
|
|
const size_t dec_size = crypto::DecryptAes128Xts(cur, cur_size, m_key[0], m_key[1], KeySize, ctr, IvSize, cur, cur_size);
|
|
R_UNLESS(cur_size == dec_size, fs::ResultUnexpectedInAesXtsStorageA());
|
|
|
|
remaining -= cur_size;
|
|
cur += cur_size;
|
|
|
|
AddCounter(ctr, IvSize, 1);
|
|
}
|
|
|
|
R_SUCCEED();
|
|
}
|
|
|
|
template<fs::PointerToStorage BasePointer>
|
|
Result AesXtsStorage<BasePointer>::Write(s64 offset, const void *buffer, size_t size) {
|
|
/* Allow zero-size writes. */
|
|
R_SUCCEED_IF(size == 0);
|
|
|
|
/* Ensure buffer is valid. */
|
|
R_UNLESS(buffer != nullptr, fs::ResultNullptrArgument());
|
|
|
|
/* We can only read at block aligned offsets. */
|
|
R_UNLESS(util::IsAligned(offset, AesBlockSize), fs::ResultInvalidArgument());
|
|
R_UNLESS(util::IsAligned(size, AesBlockSize), fs::ResultInvalidArgument());
|
|
|
|
/* Get a pooled buffer. */
|
|
PooledBuffer pooled_buffer;
|
|
const bool use_work_buffer = !IsDeviceAddress(buffer);
|
|
if (use_work_buffer) {
|
|
pooled_buffer.Allocate(size, m_block_size);
|
|
}
|
|
|
|
/* Setup the counter. */
|
|
char ctr[IvSize];
|
|
std::memcpy(ctr, m_iv, IvSize);
|
|
AddCounter(ctr, IvSize, offset / m_block_size);
|
|
|
|
/* Handle any unaligned data before the start. */
|
|
size_t processed_size = 0;
|
|
if ((offset % m_block_size) != 0) {
|
|
/* Determine the size of the pre-data read. */
|
|
const size_t skip_size = static_cast<size_t>(offset - util::AlignDown(offset, m_block_size));
|
|
const size_t data_size = std::min(size, m_block_size - skip_size);
|
|
|
|
/* Create an encryptor. */
|
|
/* NOTE: This is completely unnecessary, because crypto::EncryptAes128Xts is used below. */
|
|
/* However, Nintendo does it, so we will too. */
|
|
crypto::Aes128XtsEncryptor xts;
|
|
xts.Initialize(m_key[0], m_key[1], KeySize, ctr, IvSize);
|
|
|
|
/* Encrypt into a pooled buffer. */
|
|
{
|
|
/* NOTE: Nintendo allocates a second pooled buffer here despite having one already allocated above. */
|
|
PooledBuffer tmp_buf(m_block_size, m_block_size);
|
|
AMS_ASSERT(tmp_buf.GetSize() >= m_block_size);
|
|
|
|
std::memset(tmp_buf.GetBuffer(), 0, skip_size);
|
|
std::memcpy(tmp_buf.GetBuffer() + skip_size, buffer, data_size);
|
|
|
|
const size_t enc_size = crypto::EncryptAes128Xts(tmp_buf.GetBuffer(), m_block_size, m_key[0], m_key[1], KeySize, ctr, IvSize, tmp_buf.GetBuffer(), m_block_size);
|
|
R_UNLESS(enc_size == m_block_size, fs::ResultUnexpectedInAesXtsStorageA());
|
|
|
|
R_TRY(m_base_storage->Write(offset, tmp_buf.GetBuffer() + skip_size, data_size));
|
|
}
|
|
|
|
AddCounter(ctr, IvSize, 1);
|
|
processed_size += data_size;
|
|
AMS_ASSERT(processed_size == std::min(size, m_block_size - skip_size));
|
|
}
|
|
|
|
/* Encrypt aligned chunks. */
|
|
size_t remaining = size - processed_size;
|
|
s64 cur_offset = offset + processed_size;
|
|
while (remaining > 0) {
|
|
/* Determine data we're writing and where. */
|
|
const size_t write_size = use_work_buffer ? std::min(pooled_buffer.GetSize(), remaining) : remaining;
|
|
|
|
/* Encrypt the data, with temporarily increased priority. */
|
|
{
|
|
ScopedThreadPriorityChanger cp(+1, ScopedThreadPriorityChanger::Mode::Relative);
|
|
|
|
size_t remaining_write = write_size;
|
|
size_t encrypt_offset = 0;
|
|
while (remaining_write > 0) {
|
|
const size_t cur_size = std::min(remaining_write, m_block_size);
|
|
const void *src = static_cast<const char *>(buffer) + processed_size + encrypt_offset;
|
|
void *dst = use_work_buffer ? pooled_buffer.GetBuffer() + encrypt_offset : const_cast<void *>(src);
|
|
|
|
const size_t enc_size = crypto::EncryptAes128Xts(dst, cur_size, m_key[0], m_key[1], KeySize, ctr, IvSize, src, cur_size);
|
|
R_UNLESS(enc_size == cur_size, fs::ResultUnexpectedInAesXtsStorageA());
|
|
|
|
AddCounter(ctr, IvSize, 1);
|
|
|
|
encrypt_offset += cur_size;
|
|
remaining_write -= cur_size;
|
|
}
|
|
}
|
|
|
|
/* Write the encrypted data. */
|
|
const void *write_buf = use_work_buffer ? pooled_buffer.GetBuffer() : static_cast<const char *>(buffer) + processed_size;
|
|
R_TRY(m_base_storage->Write(cur_offset, write_buf, write_size));
|
|
|
|
/* Advance. */
|
|
cur_offset += write_size;
|
|
processed_size += write_size;
|
|
remaining -= write_size;
|
|
}
|
|
|
|
R_SUCCEED();
|
|
}
|
|
|
|
template<fs::PointerToStorage BasePointer>
|
|
Result AesXtsStorage<BasePointer>::Flush() {
|
|
R_RETURN(m_base_storage->Flush());
|
|
}
|
|
|
|
template<fs::PointerToStorage BasePointer>
|
|
Result AesXtsStorage<BasePointer>::SetSize(s64 size) {
|
|
R_UNLESS(util::IsAligned(size, AesBlockSize), fs::ResultUnexpectedInAesXtsStorageA());
|
|
|
|
R_RETURN(m_base_storage->SetSize(size));
|
|
}
|
|
|
|
template<fs::PointerToStorage BasePointer>
|
|
Result AesXtsStorage<BasePointer>::GetSize(s64 *out) {
|
|
R_RETURN(m_base_storage->GetSize(out));
|
|
}
|
|
|
|
template<fs::PointerToStorage BasePointer>
|
|
Result AesXtsStorage<BasePointer>::OperateRange(void *dst, size_t dst_size, fs::OperationId op_id, s64 offset, s64 size, const void *src, size_t src_size) {
|
|
/* Unless invalidating cache, check the arguments. */
|
|
if (op_id != fs::OperationId::Invalidate) {
|
|
/* Handle the zero size case. */
|
|
R_SUCCEED_IF(size == 0);
|
|
|
|
/* Ensure alignment. */
|
|
R_UNLESS(util::IsAligned(offset, AesBlockSize), fs::ResultInvalidArgument());
|
|
R_UNLESS(util::IsAligned(size, AesBlockSize), fs::ResultInvalidArgument());
|
|
}
|
|
|
|
R_RETURN(m_base_storage->OperateRange(dst, dst_size, op_id, offset, size, src, src_size));
|
|
}
|
|
|
|
template class AesXtsStorage<fs::IStorage *>;
|
|
template class AesXtsStorage<std::shared_ptr<fs::IStorage>>;
|
|
|
|
}
|