Atmosphere/libraries/libmesosphere/include/mesosphere/kern_k_memory_manager.hpp

308 lines
13 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <mesosphere/kern_common.hpp>
#include <mesosphere/kern_k_light_lock.hpp>
#include <mesosphere/kern_k_memory_layout.hpp>
#include <mesosphere/kern_k_page_heap.hpp>
namespace ams::kern {
class KPageGroup;
class KMemoryManager {
public:
enum Pool {
Pool_Application = 0,
Pool_Applet = 1,
Pool_System = 2,
Pool_SystemNonSecure = 3,
Pool_Count,
Pool_Shift = 4,
Pool_Mask = (0xF << Pool_Shift),
/* Aliases. */
Pool_Unsafe = Pool_Application,
Pool_Secure = Pool_System,
};
enum Direction {
Direction_FromFront = 0,
Direction_FromBack = 1,
Direction_Shift = 0,
Direction_Mask = (0xF << Direction_Shift),
};
static constexpr size_t MaxManagerCount = 10;
private:
class Impl {
private:
using RefCount = u16;
public:
static size_t CalculateManagementOverheadSize(size_t region_size);
static constexpr size_t CalculateOptimizedProcessOverheadSize(size_t region_size) {
return (util::AlignUp((region_size / PageSize), BITSIZEOF(u64)) / BITSIZEOF(u64)) * sizeof(u64);
}
private:
KPageHeap m_heap;
RefCount *m_page_reference_counts;
KVirtualAddress m_management_region;
Pool m_pool;
Impl *m_next;
Impl *m_prev;
public:
Impl() : m_heap(), m_page_reference_counts(), m_management_region(Null<KVirtualAddress>), m_pool(), m_next(), m_prev() { /* ... */ }
size_t Initialize(KPhysicalAddress address, size_t size, KVirtualAddress management, KVirtualAddress management_end, Pool p);
KPhysicalAddress AllocateBlock(s32 index, bool random) { return m_heap.AllocateBlock(index, random); }
void Free(KPhysicalAddress addr, size_t num_pages) { m_heap.Free(addr, num_pages); }
void SetInitialUsedHeapSize(size_t reserved_size) { m_heap.SetInitialUsedSize(reserved_size); }
void InitializeOptimizedMemory() { std::memset(GetVoidPointer(m_management_region), 0, CalculateOptimizedProcessOverheadSize(m_heap.GetSize())); }
void TrackUnoptimizedAllocation(KPhysicalAddress block, size_t num_pages);
void TrackOptimizedAllocation(KPhysicalAddress block, size_t num_pages);
bool ProcessOptimizedAllocation(KPhysicalAddress block, size_t num_pages, u8 fill_pattern);
constexpr Pool GetPool() const { return m_pool; }
constexpr size_t GetSize() const { return m_heap.GetSize(); }
constexpr KPhysicalAddress GetEndAddress() const { return m_heap.GetEndAddress(); }
size_t GetFreeSize() const { return m_heap.GetFreeSize(); }
void DumpFreeList() const { return m_heap.DumpFreeList(); }
constexpr size_t GetPageOffset(KPhysicalAddress address) const { return m_heap.GetPageOffset(address); }
constexpr size_t GetPageOffsetToEnd(KPhysicalAddress address) const { return m_heap.GetPageOffsetToEnd(address); }
constexpr void SetNext(Impl *n) { m_next = n; }
constexpr void SetPrev(Impl *n) { m_prev = n; }
constexpr Impl *GetNext() const { return m_next; }
constexpr Impl *GetPrev() const { return m_prev; }
void OpenFirst(KPhysicalAddress address, size_t num_pages) {
size_t index = this->GetPageOffset(address);
const size_t end = index + num_pages;
while (index < end) {
const RefCount ref_count = (++m_page_reference_counts[index]);
MESOSPHERE_ABORT_UNLESS(ref_count == 1);
index++;
}
}
void Open(KPhysicalAddress address, size_t num_pages) {
size_t index = this->GetPageOffset(address);
const size_t end = index + num_pages;
while (index < end) {
const RefCount ref_count = (++m_page_reference_counts[index]);
MESOSPHERE_ABORT_UNLESS(ref_count > 1);
index++;
}
}
void Close(KPhysicalAddress address, size_t num_pages) {
size_t index = this->GetPageOffset(address);
const size_t end = index + num_pages;
size_t free_start = 0;
size_t free_count = 0;
while (index < end) {
MESOSPHERE_ABORT_UNLESS(m_page_reference_counts[index] > 0);
const RefCount ref_count = (--m_page_reference_counts[index]);
/* Keep track of how many zero refcounts we see in a row, to minimize calls to free. */
if (ref_count == 0) {
if (free_count > 0) {
free_count++;
} else {
free_start = index;
free_count = 1;
}
} else {
if (free_count > 0) {
this->Free(m_heap.GetAddress() + free_start * PageSize, free_count);
free_count = 0;
}
}
index++;
}
if (free_count > 0) {
this->Free(m_heap.GetAddress() + free_start * PageSize, free_count);
}
}
};
private:
KLightLock m_pool_locks[Pool_Count];
Impl *m_pool_managers_head[Pool_Count];
Impl *m_pool_managers_tail[Pool_Count];
Impl m_managers[MaxManagerCount];
size_t m_num_managers;
u64 m_optimized_process_ids[Pool_Count];
bool m_has_optimized_process[Pool_Count];
private:
Impl &GetManager(KPhysicalAddress address) {
return m_managers[KMemoryLayout::GetPhysicalLinearRegion(address).GetAttributes()];
}
const Impl &GetManager(KPhysicalAddress address) const {
return m_managers[KMemoryLayout::GetPhysicalLinearRegion(address).GetAttributes()];
}
constexpr Impl *GetFirstManager(Pool pool, Direction dir) {
return dir == Direction_FromBack ? m_pool_managers_tail[pool] : m_pool_managers_head[pool];
}
constexpr Impl *GetNextManager(Impl *cur, Direction dir) {
if (dir == Direction_FromBack) {
return cur->GetPrev();
} else {
return cur->GetNext();
}
}
Result AllocatePageGroupImpl(KPageGroup *out, size_t num_pages, Pool pool, Direction dir, bool unoptimized, bool random);
public:
KMemoryManager()
: m_pool_locks(), m_pool_managers_head(), m_pool_managers_tail(), m_managers(), m_num_managers(), m_optimized_process_ids(), m_has_optimized_process()
{
/* ... */
}
NOINLINE void Initialize(KVirtualAddress management_region, size_t management_region_size);
NOINLINE Result InitializeOptimizedMemory(u64 process_id, Pool pool);
NOINLINE void FinalizeOptimizedMemory(u64 process_id, Pool pool);
NOINLINE KPhysicalAddress AllocateAndOpenContinuous(size_t num_pages, size_t align_pages, u32 option);
NOINLINE Result AllocateAndOpen(KPageGroup *out, size_t num_pages, u32 option);
NOINLINE Result AllocateAndOpenForProcess(KPageGroup *out, size_t num_pages, u32 option, u64 process_id, u8 fill_pattern);
Pool GetPool(KPhysicalAddress address) const {
return this->GetManager(address).GetPool();
}
void Open(KPhysicalAddress address, size_t num_pages) {
/* Repeatedly open references until we've done so for all pages. */
while (num_pages) {
auto &manager = this->GetManager(address);
const size_t cur_pages = std::min(num_pages, manager.GetPageOffsetToEnd(address));
{
KScopedLightLock lk(m_pool_locks[manager.GetPool()]);
manager.Open(address, cur_pages);
}
num_pages -= cur_pages;
address += cur_pages * PageSize;
}
}
void Close(KPhysicalAddress address, size_t num_pages) {
/* Repeatedly close references until we've done so for all pages. */
while (num_pages) {
auto &manager = this->GetManager(address);
const size_t cur_pages = std::min(num_pages, manager.GetPageOffsetToEnd(address));
{
KScopedLightLock lk(m_pool_locks[manager.GetPool()]);
manager.Close(address, cur_pages);
}
num_pages -= cur_pages;
address += cur_pages * PageSize;
}
}
size_t GetSize() {
size_t total = 0;
for (size_t i = 0; i < m_num_managers; i++) {
total += m_managers[i].GetSize();
}
return total;
}
size_t GetSize(Pool pool) {
constexpr Direction GetSizeDirection = Direction_FromFront;
size_t total = 0;
for (auto *manager = this->GetFirstManager(pool, GetSizeDirection); manager != nullptr; manager = this->GetNextManager(manager, GetSizeDirection)) {
total += manager->GetSize();
}
return total;
}
size_t GetFreeSize() {
size_t total = 0;
for (size_t i = 0; i < m_num_managers; i++) {
KScopedLightLock lk(m_pool_locks[m_managers[i].GetPool()]);
total += m_managers[i].GetFreeSize();
}
return total;
}
size_t GetFreeSize(Pool pool) {
KScopedLightLock lk(m_pool_locks[pool]);
constexpr Direction GetSizeDirection = Direction_FromFront;
size_t total = 0;
for (auto *manager = this->GetFirstManager(pool, GetSizeDirection); manager != nullptr; manager = this->GetNextManager(manager, GetSizeDirection)) {
total += manager->GetFreeSize();
}
return total;
}
void DumpFreeList(Pool pool) {
KScopedLightLock lk(m_pool_locks[pool]);
constexpr Direction DumpDirection = Direction_FromFront;
for (auto *manager = this->GetFirstManager(pool, DumpDirection); manager != nullptr; manager = this->GetNextManager(manager, DumpDirection)) {
manager->DumpFreeList();
}
}
public:
static size_t CalculateManagementOverheadSize(size_t region_size) {
return Impl::CalculateManagementOverheadSize(region_size);
}
static constexpr ALWAYS_INLINE u32 EncodeOption(Pool pool, Direction dir) {
return (pool << Pool_Shift) | (dir << Direction_Shift);
}
static constexpr ALWAYS_INLINE Pool GetPool(u32 option) {
return static_cast<Pool>((option & Pool_Mask) >> Pool_Shift);
}
static constexpr ALWAYS_INLINE Direction GetDirection(u32 option) {
return static_cast<Direction>((option & Direction_Mask) >> Direction_Shift);
}
static constexpr ALWAYS_INLINE std::tuple<Pool, Direction> DecodeOption(u32 option) {
return std::make_tuple(GetPool(option), GetDirection(option));
}
};
}