mirror of
https://github.com/Atmosphere-NX/Atmosphere
synced 2024-11-15 01:26:34 +00:00
941 lines
40 KiB
C++
941 lines
40 KiB
C++
/*
|
|
* Copyright (c) 2018-2020 Atmosphère-NX
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <stratosphere.hpp>
|
|
#include "spl_api_impl.hpp"
|
|
#include "spl_ctr_drbg.hpp"
|
|
#include "spl_key_slot_cache.hpp"
|
|
|
|
namespace ams::spl::impl {
|
|
|
|
namespace {
|
|
|
|
/* Convenient defines. */
|
|
constexpr size_t DeviceAddressSpaceAlign = 0x400000;
|
|
constexpr u32 WorkBufferMapBase = 0x80000000u;
|
|
constexpr u32 ComputeAesInMapBase = 0x90000000u;
|
|
constexpr u32 ComputeAesOutMapBase = 0xC0000000u;
|
|
constexpr size_t ComputeAesSizeMax = static_cast<size_t>(ComputeAesOutMapBase - ComputeAesInMapBase);
|
|
|
|
constexpr size_t RsaPrivateKeySize = 0x100;
|
|
constexpr size_t DeviceUniqueDataMetaSize = 0x30;
|
|
constexpr size_t LabelDigestSizeMax = 0x20;
|
|
|
|
constexpr size_t WorkBufferSizeMax = 0x800;
|
|
|
|
constexpr s32 MaxPhysicalAesKeySlots = 6;
|
|
constexpr s32 MaxPhysicalAesKeySlotsDeprecated = 4;
|
|
|
|
constexpr s32 MaxVirtualAesKeySlots = 9;
|
|
|
|
/* KeySlot management. */
|
|
KeySlotCache g_keyslot_cache;
|
|
util::optional<KeySlotCacheEntry> g_keyslot_cache_entry[MaxPhysicalAesKeySlots];
|
|
|
|
inline s32 GetMaxPhysicalKeySlots() {
|
|
return (hos::GetVersion() >= hos::Version_6_0_0) ? MaxPhysicalAesKeySlots : MaxPhysicalAesKeySlotsDeprecated;
|
|
}
|
|
|
|
constexpr s32 VirtualKeySlotMin = 16;
|
|
constexpr s32 VirtualKeySlotMax = VirtualKeySlotMin + MaxVirtualAesKeySlots - 1;
|
|
|
|
constexpr inline bool IsVirtualKeySlot(s32 keyslot) {
|
|
return VirtualKeySlotMin <= keyslot && keyslot <= VirtualKeySlotMax;
|
|
}
|
|
|
|
inline bool IsPhysicalKeySlot(s32 keyslot) {
|
|
return keyslot < GetMaxPhysicalKeySlots();
|
|
}
|
|
|
|
constexpr inline s32 GetVirtualKeySlotIndex(s32 keyslot) {
|
|
AMS_ASSERT(IsVirtualKeySlot(keyslot));
|
|
return keyslot - VirtualKeySlotMin;
|
|
}
|
|
|
|
constexpr inline s32 MakeVirtualKeySlot(s32 index) {
|
|
const s32 virt_slot = index + VirtualKeySlotMin;
|
|
AMS_ASSERT(IsVirtualKeySlot(virt_slot));
|
|
return virt_slot;
|
|
}
|
|
|
|
void InitializeKeySlotCache() {
|
|
for (s32 i = 0; i < MaxPhysicalAesKeySlots; i++) {
|
|
g_keyslot_cache_entry[i].emplace(i);
|
|
g_keyslot_cache.AddEntry(std::addressof(g_keyslot_cache_entry[i].value()));
|
|
}
|
|
}
|
|
|
|
enum class KeySlotContentType {
|
|
None = 0,
|
|
AesKey = 1,
|
|
PreparedKey = 2,
|
|
};
|
|
|
|
struct KeySlotContents {
|
|
KeySlotContentType type;
|
|
union {
|
|
struct {
|
|
AccessKey access_key;
|
|
KeySource key_source;
|
|
} aes_key;
|
|
struct {
|
|
AccessKey access_key;
|
|
} prepared_key;
|
|
};
|
|
};
|
|
|
|
const void *g_keyslot_owners[MaxVirtualAesKeySlots];
|
|
KeySlotContents g_keyslot_contents[MaxVirtualAesKeySlots];
|
|
KeySlotContents g_physical_keyslot_contents_for_backwards_compatibility[MaxPhysicalAesKeySlots];
|
|
|
|
void ClearPhysicalKeySlot(s32 keyslot) {
|
|
AMS_ASSERT(IsPhysicalKeySlot(keyslot));
|
|
|
|
AccessKey access_key = {};
|
|
KeySource key_source = {};
|
|
smc::LoadAesKey(keyslot, access_key, key_source);
|
|
}
|
|
|
|
s32 GetPhysicalKeySlot(s32 keyslot, bool load) {
|
|
s32 phys_slot = -1;
|
|
KeySlotContents *contents = nullptr;
|
|
|
|
if (hos::GetVersion() == hos::Version_1_0_0 && IsPhysicalKeySlot(keyslot)) {
|
|
/* On 1.0.0, we allow the use of physical keyslots. */
|
|
phys_slot = keyslot;
|
|
contents = std::addressof(g_physical_keyslot_contents_for_backwards_compatibility[phys_slot]);
|
|
|
|
/* If the physical slot is already loaded, we're good. */
|
|
if (g_keyslot_cache.FindPhysical(phys_slot)) {
|
|
return phys_slot;
|
|
}
|
|
} else {
|
|
/* This should be a virtual keyslot. */
|
|
AMS_ASSERT(IsVirtualKeySlot(keyslot));
|
|
|
|
/* Try to find a physical slot in the cache. */
|
|
if (g_keyslot_cache.Find(std::addressof(phys_slot), keyslot)) {
|
|
return phys_slot;
|
|
}
|
|
|
|
/* Allocate a physical slot. */
|
|
phys_slot = g_keyslot_cache.Allocate(keyslot);
|
|
contents = std::addressof(g_keyslot_contents[GetVirtualKeySlotIndex(keyslot)]);
|
|
}
|
|
|
|
/* Ensure the contents of the keyslot. */
|
|
if (load) {
|
|
switch (contents->type) {
|
|
case KeySlotContentType::None:
|
|
ClearPhysicalKeySlot(phys_slot);
|
|
break;
|
|
case KeySlotContentType::AesKey:
|
|
R_ABORT_UNLESS(smc::ConvertResult(smc::LoadAesKey(phys_slot, contents->aes_key.access_key, contents->aes_key.key_source)));
|
|
break;
|
|
case KeySlotContentType::PreparedKey:
|
|
R_ABORT_UNLESS(smc::ConvertResult(smc::LoadPreparedAesKey(phys_slot, contents->prepared_key.access_key)));
|
|
break;
|
|
AMS_UNREACHABLE_DEFAULT_CASE();
|
|
}
|
|
}
|
|
|
|
return phys_slot;
|
|
}
|
|
|
|
Result LoadVirtualAesKey(s32 keyslot, const AccessKey &access_key, const KeySource &key_source) {
|
|
/* Ensure we can load into the slot. */
|
|
const s32 phys_slot = GetPhysicalKeySlot(keyslot, false);
|
|
R_TRY(smc::ConvertResult(smc::LoadAesKey(phys_slot, access_key, key_source)));
|
|
|
|
/* Update our contents. */
|
|
const s32 index = GetVirtualKeySlotIndex(keyslot);
|
|
|
|
g_keyslot_contents[index].type = KeySlotContentType::AesKey;
|
|
g_keyslot_contents[index].aes_key.access_key = access_key;
|
|
g_keyslot_contents[index].aes_key.key_source = key_source;
|
|
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result LoadVirtualPreparedAesKey(s32 keyslot, const AccessKey &access_key) {
|
|
/* Ensure we can load into the slot. */
|
|
const s32 phys_slot = GetPhysicalKeySlot(keyslot, false);
|
|
R_TRY(smc::ConvertResult(smc::LoadPreparedAesKey(phys_slot, access_key)));
|
|
|
|
/* Update our contents. */
|
|
const s32 index = GetVirtualKeySlotIndex(keyslot);
|
|
|
|
g_keyslot_contents[index].type = KeySlotContentType::PreparedKey;
|
|
g_keyslot_contents[index].prepared_key.access_key = access_key;
|
|
|
|
return ResultSuccess();
|
|
}
|
|
|
|
/* Type definitions. */
|
|
class ScopedAesKeySlot {
|
|
private:
|
|
s32 slot;
|
|
bool has_slot;
|
|
public:
|
|
ScopedAesKeySlot() : slot(-1), has_slot(false) {
|
|
/* ... */
|
|
}
|
|
~ScopedAesKeySlot() {
|
|
if (this->has_slot) {
|
|
DeallocateAesKeySlot(slot, this);
|
|
}
|
|
}
|
|
|
|
u32 GetKeySlot() const {
|
|
return this->slot;
|
|
}
|
|
|
|
Result Allocate() {
|
|
R_TRY(AllocateAesKeySlot(&this->slot, this));
|
|
this->has_slot = true;
|
|
return ResultSuccess();
|
|
}
|
|
};
|
|
|
|
struct SeLinkedListEntry {
|
|
u32 num_entries;
|
|
u32 address;
|
|
u32 size;
|
|
};
|
|
|
|
struct SeCryptContext {
|
|
SeLinkedListEntry in;
|
|
SeLinkedListEntry out;
|
|
};
|
|
|
|
class DeviceAddressSpaceMapHelper {
|
|
private:
|
|
Handle das_hnd;
|
|
u64 dst_addr;
|
|
u64 src_addr;
|
|
size_t size;
|
|
u32 perm;
|
|
public:
|
|
DeviceAddressSpaceMapHelper(Handle h, u64 dst, u64 src, size_t sz, u32 p) : das_hnd(h), dst_addr(dst), src_addr(src), size(sz), perm(p) {
|
|
R_ABORT_UNLESS(svcMapDeviceAddressSpaceAligned(this->das_hnd, dd::GetCurrentProcessHandle(), this->src_addr, this->size, this->dst_addr, this->perm));
|
|
}
|
|
~DeviceAddressSpaceMapHelper() {
|
|
R_ABORT_UNLESS(svcUnmapDeviceAddressSpace(this->das_hnd, dd::GetCurrentProcessHandle(), this->src_addr, this->size, this->dst_addr));
|
|
}
|
|
};
|
|
|
|
/* Global variables. */
|
|
CtrDrbg g_drbg;
|
|
os::InterruptEventType g_se_event;
|
|
os::SystemEventType g_se_keyslot_available_event;
|
|
|
|
Handle g_se_das_hnd;
|
|
u32 g_se_mapped_work_buffer_addr;
|
|
alignas(os::MemoryPageSize) u8 g_work_buffer[2 * WorkBufferSizeMax];
|
|
|
|
os::Mutex g_async_op_lock(false);
|
|
|
|
BootReasonValue g_boot_reason;
|
|
bool g_boot_reason_set;
|
|
|
|
/* Boot Reason accessors. */
|
|
BootReasonValue GetBootReason() {
|
|
return g_boot_reason;
|
|
}
|
|
|
|
bool IsBootReasonSet() {
|
|
return g_boot_reason_set;
|
|
}
|
|
|
|
/* Initialization functionality. */
|
|
void InitializeCtrDrbg() {
|
|
u8 seed[CtrDrbg::SeedSize];
|
|
AMS_ABORT_UNLESS(smc::GenerateRandomBytes(seed, sizeof(seed)) == smc::Result::Success);
|
|
|
|
g_drbg.Initialize(seed);
|
|
}
|
|
|
|
void InitializeSeEvents() {
|
|
u64 irq_num;
|
|
AMS_ABORT_UNLESS(smc::GetConfig(&irq_num, 1, ConfigItem::SecurityEngineInterruptNumber) == smc::Result::Success);
|
|
os::InitializeInterruptEvent(std::addressof(g_se_event), irq_num, os::EventClearMode_AutoClear);
|
|
|
|
R_ABORT_UNLESS(os::CreateSystemEvent(std::addressof(g_se_keyslot_available_event), os::EventClearMode_AutoClear, true));
|
|
os::SignalSystemEvent(std::addressof(g_se_keyslot_available_event));
|
|
}
|
|
|
|
void InitializeDeviceAddressSpace() {
|
|
|
|
/* Create Address Space. */
|
|
R_ABORT_UNLESS(svcCreateDeviceAddressSpace(&g_se_das_hnd, 0, (1ul << 32)));
|
|
|
|
/* Attach it to the SE. */
|
|
R_ABORT_UNLESS(svcAttachDeviceAddressSpace(svc::DeviceName_Se, g_se_das_hnd));
|
|
|
|
const u64 work_buffer_addr = reinterpret_cast<u64>(g_work_buffer);
|
|
g_se_mapped_work_buffer_addr = WorkBufferMapBase + (work_buffer_addr % DeviceAddressSpaceAlign);
|
|
|
|
/* Map the work buffer for the SE. */
|
|
R_ABORT_UNLESS(svcMapDeviceAddressSpaceAligned(g_se_das_hnd, dd::GetCurrentProcessHandle(), work_buffer_addr, sizeof(g_work_buffer), g_se_mapped_work_buffer_addr, 3));
|
|
}
|
|
|
|
/* Internal RNG functionality. */
|
|
Result GenerateRandomBytesInternal(void *out, size_t size) {
|
|
if (!g_drbg.GenerateRandomBytes(out, size)) {
|
|
/* We need to reseed. */
|
|
{
|
|
u8 seed[CtrDrbg::SeedSize];
|
|
|
|
smc::Result res = smc::GenerateRandomBytes(seed, sizeof(seed));
|
|
if (res != smc::Result::Success) {
|
|
return smc::ConvertResult(res);
|
|
}
|
|
|
|
g_drbg.Reseed(seed);
|
|
g_drbg.GenerateRandomBytes(out, size);
|
|
}
|
|
}
|
|
|
|
return ResultSuccess();
|
|
}
|
|
|
|
/* Internal async implementation functionality. */
|
|
void WaitSeOperationComplete() {
|
|
os::WaitInterruptEvent(std::addressof(g_se_event));
|
|
}
|
|
|
|
smc::Result WaitCheckStatus(smc::AsyncOperationKey op_key) {
|
|
WaitSeOperationComplete();
|
|
|
|
smc::Result op_res;
|
|
smc::Result res = smc::GetResult(&op_res, op_key);
|
|
if (res != smc::Result::Success) {
|
|
return res;
|
|
}
|
|
|
|
return op_res;
|
|
}
|
|
|
|
smc::Result WaitGetResult(void *out_buf, size_t out_buf_size, smc::AsyncOperationKey op_key) {
|
|
WaitSeOperationComplete();
|
|
|
|
smc::Result op_res;
|
|
smc::Result res = smc::GetResultData(&op_res, out_buf, out_buf_size, op_key);
|
|
if (res != smc::Result::Success) {
|
|
return res;
|
|
}
|
|
|
|
return op_res;
|
|
}
|
|
|
|
/* Internal KeySlot utility. */
|
|
Result ValidateAesKeySlot(s32 keyslot, const void *owner) {
|
|
/* Allow the use of physical keyslots on 1.0.0. */
|
|
if (hos::GetVersion() == hos::Version_1_0_0) {
|
|
R_SUCCEED_IF(IsPhysicalKeySlot(keyslot));
|
|
}
|
|
|
|
R_UNLESS(IsVirtualKeySlot(keyslot), spl::ResultInvalidKeySlot());
|
|
|
|
const s32 index = GetVirtualKeySlotIndex(keyslot);
|
|
R_UNLESS(g_keyslot_owners[index] == owner, spl::ResultInvalidKeySlot());
|
|
return ResultSuccess();
|
|
}
|
|
|
|
/* Helper to do a single AES block decryption. */
|
|
smc::Result DecryptAesBlock(s32 keyslot, void *dst, const void *src) {
|
|
struct DecryptAesBlockLayout {
|
|
SeCryptContext crypt_ctx;
|
|
u8 in_block[AES_BLOCK_SIZE] __attribute__((aligned(AES_BLOCK_SIZE)));
|
|
u8 out_block[AES_BLOCK_SIZE] __attribute__((aligned(AES_BLOCK_SIZE)));
|
|
};
|
|
DecryptAesBlockLayout *layout = reinterpret_cast<DecryptAesBlockLayout *>(g_work_buffer);
|
|
|
|
layout->crypt_ctx.in.num_entries = 0;
|
|
layout->crypt_ctx.in.address = g_se_mapped_work_buffer_addr + offsetof(DecryptAesBlockLayout, in_block);
|
|
layout->crypt_ctx.in.size = sizeof(layout->in_block);
|
|
layout->crypt_ctx.out.num_entries = 0;
|
|
layout->crypt_ctx.out.address = g_se_mapped_work_buffer_addr + offsetof(DecryptAesBlockLayout, out_block);
|
|
layout->crypt_ctx.out.size = sizeof(layout->out_block);
|
|
|
|
std::memcpy(layout->in_block, src, sizeof(layout->in_block));
|
|
|
|
armDCacheFlush(layout, sizeof(*layout));
|
|
{
|
|
std::scoped_lock lk(g_async_op_lock);
|
|
smc::AsyncOperationKey op_key;
|
|
const IvCtr iv_ctr = {};
|
|
const u32 mode = smc::GetComputeAesMode(smc::CipherMode::CbcDecrypt, GetPhysicalKeySlot(keyslot, true));
|
|
const u32 dst_ll_addr = g_se_mapped_work_buffer_addr + offsetof(DecryptAesBlockLayout, crypt_ctx.out);
|
|
const u32 src_ll_addr = g_se_mapped_work_buffer_addr + offsetof(DecryptAesBlockLayout, crypt_ctx.in);
|
|
|
|
smc::Result res = smc::ComputeAes(&op_key, mode, iv_ctr, dst_ll_addr, src_ll_addr, sizeof(layout->in_block));
|
|
if (res != smc::Result::Success) {
|
|
return res;
|
|
}
|
|
|
|
if ((res = WaitCheckStatus(op_key)) != smc::Result::Success) {
|
|
return res;
|
|
}
|
|
}
|
|
armDCacheFlush(layout, sizeof(*layout));
|
|
|
|
std::memcpy(dst, layout->out_block, sizeof(layout->out_block));
|
|
return smc::Result::Success;
|
|
}
|
|
|
|
/* Implementation wrappers for API commands. */
|
|
Result DecryptAndStoreDeviceUniqueKey(const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source, u32 option) {
|
|
struct DecryptAndStoreDeviceUniqueKeyLayout {
|
|
u8 data[DeviceUniqueDataMetaSize + 2 * RsaPrivateKeySize + 0x10];
|
|
};
|
|
DecryptAndStoreDeviceUniqueKeyLayout *layout = reinterpret_cast<DecryptAndStoreDeviceUniqueKeyLayout *>(g_work_buffer);
|
|
|
|
/* Validate size. */
|
|
R_UNLESS(src_size <= sizeof(DecryptAndStoreDeviceUniqueKeyLayout), spl::ResultInvalidSize());
|
|
std::memcpy(layout, src, src_size);
|
|
|
|
armDCacheFlush(layout, sizeof(*layout));
|
|
smc::Result smc_res;
|
|
if (hos::GetVersion() >= hos::Version_5_0_0) {
|
|
smc_res = smc::DecryptDeviceUniqueData(layout->data, src_size, access_key, key_source, static_cast<smc::DeviceUniqueDataMode>(option));
|
|
} else {
|
|
smc_res = smc::DecryptAndStoreGcKey(layout->data, src_size, access_key, key_source, option);
|
|
}
|
|
|
|
return smc::ConvertResult(smc_res);
|
|
}
|
|
|
|
Result ModularExponentiateWithStorageKey(void *out, size_t out_size, const void *base, size_t base_size, const void *mod, size_t mod_size, smc::ModularExponentiateWithStorageKeyMode mode) {
|
|
struct ModularExponentiateWithStorageKeyLayout {
|
|
u8 base[0x100];
|
|
u8 mod[0x100];
|
|
};
|
|
ModularExponentiateWithStorageKeyLayout *layout = reinterpret_cast<ModularExponentiateWithStorageKeyLayout *>(g_work_buffer);
|
|
|
|
/* Validate sizes. */
|
|
R_UNLESS(base_size <= sizeof(layout->base), spl::ResultInvalidSize());
|
|
R_UNLESS(mod_size <= sizeof(layout->mod), spl::ResultInvalidSize());
|
|
R_UNLESS(out_size <= WorkBufferSizeMax, spl::ResultInvalidSize());
|
|
|
|
/* Copy data into work buffer. */
|
|
const size_t base_ofs = sizeof(layout->base) - base_size;
|
|
const size_t mod_ofs = sizeof(layout->mod) - mod_size;
|
|
std::memset(layout, 0, sizeof(*layout));
|
|
std::memcpy(layout->base + base_ofs, base, base_size);
|
|
std::memcpy(layout->mod + mod_ofs, mod, mod_size);
|
|
|
|
/* Do exp mod operation. */
|
|
armDCacheFlush(layout, sizeof(*layout));
|
|
{
|
|
std::scoped_lock lk(g_async_op_lock);
|
|
smc::AsyncOperationKey op_key;
|
|
|
|
smc::Result res = smc::ModularExponentiateWithStorageKey(&op_key, layout->base, layout->mod, mode);
|
|
if (res != smc::Result::Success) {
|
|
return smc::ConvertResult(res);
|
|
}
|
|
|
|
if ((res = WaitGetResult(g_work_buffer, out_size, op_key)) != smc::Result::Success) {
|
|
return smc::ConvertResult(res);
|
|
}
|
|
}
|
|
armDCacheFlush(g_work_buffer, sizeof(out_size));
|
|
|
|
std::memcpy(out, g_work_buffer, out_size);
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result PrepareEsDeviceUniqueKey(AccessKey *out_access_key, const void *base, size_t base_size, const void *mod, size_t mod_size, const void *label_digest, size_t label_digest_size, u32 generation, smc::EsCommonKeyType type) {
|
|
struct PrepareEsDeviceUniqueKeyLayout {
|
|
u8 base[0x100];
|
|
u8 mod[0x100];
|
|
};
|
|
PrepareEsDeviceUniqueKeyLayout *layout = reinterpret_cast<PrepareEsDeviceUniqueKeyLayout *>(g_work_buffer);
|
|
|
|
/* Validate sizes. */
|
|
R_UNLESS(base_size <= sizeof(layout->base), spl::ResultInvalidSize());
|
|
R_UNLESS(mod_size <= sizeof(layout->mod), spl::ResultInvalidSize());
|
|
R_UNLESS(label_digest_size <= LabelDigestSizeMax, spl::ResultInvalidSize());
|
|
|
|
/* Copy data into work buffer. */
|
|
const size_t base_ofs = sizeof(layout->base) - base_size;
|
|
const size_t mod_ofs = sizeof(layout->mod) - mod_size;
|
|
std::memset(layout, 0, sizeof(*layout));
|
|
std::memcpy(layout->base + base_ofs, base, base_size);
|
|
std::memcpy(layout->mod + mod_ofs, mod, mod_size);
|
|
|
|
/* Do exp mod operation. */
|
|
armDCacheFlush(layout, sizeof(*layout));
|
|
{
|
|
std::scoped_lock lk(g_async_op_lock);
|
|
smc::AsyncOperationKey op_key;
|
|
|
|
smc::Result res = smc::PrepareEsDeviceUniqueKey(&op_key, layout->base, layout->mod, label_digest, label_digest_size, smc::GetPrepareEsDeviceUniqueKeyOption(type, generation));
|
|
if (res != smc::Result::Success) {
|
|
return smc::ConvertResult(res);
|
|
}
|
|
|
|
if ((res = WaitGetResult(g_work_buffer, sizeof(*out_access_key), op_key)) != smc::Result::Success) {
|
|
return smc::ConvertResult(res);
|
|
}
|
|
}
|
|
armDCacheFlush(g_work_buffer, sizeof(*out_access_key));
|
|
|
|
std::memcpy(out_access_key, g_work_buffer, sizeof(*out_access_key));
|
|
return ResultSuccess();
|
|
}
|
|
|
|
|
|
}
|
|
|
|
/* Initialization. */
|
|
void Initialize() {
|
|
/* Initialize the Drbg. */
|
|
InitializeCtrDrbg();
|
|
/* Initialize SE interrupt + keyslot events. */
|
|
InitializeSeEvents();
|
|
/* Initialize DAS for the SE. */
|
|
InitializeDeviceAddressSpace();
|
|
/* Initialize the keyslot cache. */
|
|
InitializeKeySlotCache();
|
|
}
|
|
|
|
/* General. */
|
|
Result GetConfig(u64 *out, ConfigItem which) {
|
|
/* Nintendo explicitly blacklists package2 hash here, amusingly. */
|
|
/* This is not blacklisted in safemode, but we're never in safe mode... */
|
|
R_UNLESS(which != ConfigItem::Package2Hash, spl::ResultInvalidArgument());
|
|
|
|
smc::Result res = smc::GetConfig(out, 1, which);
|
|
|
|
/* Nintendo has some special handling here for hardware type/is_retail. */
|
|
if (res == smc::Result::InvalidArgument) {
|
|
switch (which) {
|
|
case ConfigItem::HardwareType:
|
|
*out = static_cast<u64>(HardwareType::Icosa);
|
|
res = smc::Result::Success;
|
|
break;
|
|
case ConfigItem::HardwareState:
|
|
*out = HardwareState_Development;
|
|
res = smc::Result::Success;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return smc::ConvertResult(res);
|
|
}
|
|
|
|
Result ModularExponentiate(void *out, size_t out_size, const void *base, size_t base_size, const void *exp, size_t exp_size, const void *mod, size_t mod_size) {
|
|
struct ModularExponentiateLayout {
|
|
u8 base[0x100];
|
|
u8 exp[0x100];
|
|
u8 mod[0x100];
|
|
};
|
|
ModularExponentiateLayout *layout = reinterpret_cast<ModularExponentiateLayout *>(g_work_buffer);
|
|
|
|
/* Validate sizes. */
|
|
R_UNLESS(base_size <= sizeof(layout->base), spl::ResultInvalidSize());
|
|
R_UNLESS(exp_size <= sizeof(layout->exp), spl::ResultInvalidSize());
|
|
R_UNLESS(mod_size <= sizeof(layout->mod), spl::ResultInvalidSize());
|
|
R_UNLESS(out_size <= WorkBufferSizeMax, spl::ResultInvalidSize());
|
|
|
|
/* Copy data into work buffer. */
|
|
const size_t base_ofs = sizeof(layout->base) - base_size;
|
|
const size_t mod_ofs = sizeof(layout->mod) - mod_size;
|
|
std::memset(layout, 0, sizeof(*layout));
|
|
std::memcpy(layout->base + base_ofs, base, base_size);
|
|
std::memcpy(layout->exp, exp, exp_size);
|
|
std::memcpy(layout->mod + mod_ofs, mod, mod_size);
|
|
|
|
/* Do exp mod operation. */
|
|
armDCacheFlush(layout, sizeof(*layout));
|
|
{
|
|
std::scoped_lock lk(g_async_op_lock);
|
|
smc::AsyncOperationKey op_key;
|
|
|
|
smc::Result res = smc::ModularExponentiate(&op_key, layout->base, layout->exp, exp_size, layout->mod);
|
|
if (res != smc::Result::Success) {
|
|
return smc::ConvertResult(res);
|
|
}
|
|
|
|
if ((res = WaitGetResult(g_work_buffer, out_size, op_key)) != smc::Result::Success) {
|
|
return smc::ConvertResult(res);
|
|
}
|
|
}
|
|
armDCacheFlush(g_work_buffer, sizeof(out_size));
|
|
|
|
std::memcpy(out, g_work_buffer, out_size);
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result SetConfig(ConfigItem which, u64 value) {
|
|
return smc::ConvertResult(smc::SetConfig(which, &value, 1));
|
|
}
|
|
|
|
Result GenerateRandomBytes(void *out, size_t size) {
|
|
u8 *cur_dst = reinterpret_cast<u8 *>(out);
|
|
|
|
for (size_t ofs = 0; ofs < size; ofs += CtrDrbg::MaxRequestSize) {
|
|
const size_t cur_size = std::min(size - ofs, CtrDrbg::MaxRequestSize);
|
|
|
|
R_TRY(GenerateRandomBytesInternal(cur_dst, size));
|
|
cur_dst += cur_size;
|
|
}
|
|
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result IsDevelopment(bool *out) {
|
|
u64 hardware_state;
|
|
R_TRY(impl::GetConfig(&hardware_state, ConfigItem::HardwareState));
|
|
|
|
*out = (hardware_state == HardwareState_Development);
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result SetBootReason(BootReasonValue boot_reason) {
|
|
R_UNLESS(!IsBootReasonSet(), spl::ResultBootReasonAlreadySet());
|
|
|
|
g_boot_reason = boot_reason;
|
|
g_boot_reason_set = true;
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result GetBootReason(BootReasonValue *out) {
|
|
R_UNLESS(IsBootReasonSet(), spl::ResultBootReasonNotSet());
|
|
|
|
*out = GetBootReason();
|
|
return ResultSuccess();
|
|
}
|
|
|
|
/* Crypto. */
|
|
Result GenerateAesKek(AccessKey *out_access_key, const KeySource &key_source, u32 generation, u32 option) {
|
|
return smc::ConvertResult(smc::GenerateAesKek(out_access_key, key_source, generation, option));
|
|
}
|
|
|
|
Result LoadAesKey(s32 keyslot, const void *owner, const AccessKey &access_key, const KeySource &key_source) {
|
|
R_TRY(ValidateAesKeySlot(keyslot, owner));
|
|
return LoadVirtualAesKey(keyslot, access_key, key_source);
|
|
}
|
|
|
|
Result GenerateAesKey(AesKey *out_key, const AccessKey &access_key, const KeySource &key_source) {
|
|
static constexpr KeySource s_generate_aes_key_source = {
|
|
.data = {0x89, 0x61, 0x5E, 0xE0, 0x5C, 0x31, 0xB6, 0x80, 0x5F, 0xE5, 0x8F, 0x3D, 0xA2, 0x4F, 0x7A, 0xA8}
|
|
};
|
|
|
|
ScopedAesKeySlot keyslot_holder;
|
|
R_TRY(keyslot_holder.Allocate());
|
|
|
|
R_TRY(LoadVirtualAesKey(keyslot_holder.GetKeySlot(), access_key, s_generate_aes_key_source));
|
|
|
|
return smc::ConvertResult(DecryptAesBlock(keyslot_holder.GetKeySlot(), out_key, &key_source));
|
|
}
|
|
|
|
Result DecryptAesKey(AesKey *out_key, const KeySource &key_source, u32 generation, u32 option) {
|
|
static constexpr KeySource s_decrypt_aes_key_source = {
|
|
.data = {0x11, 0x70, 0x24, 0x2B, 0x48, 0x69, 0x11, 0xF1, 0x11, 0xB0, 0x0C, 0x47, 0x7C, 0xC3, 0xEF, 0x7E}
|
|
};
|
|
|
|
AccessKey access_key;
|
|
R_TRY(GenerateAesKek(&access_key, s_decrypt_aes_key_source, generation, option));
|
|
|
|
return GenerateAesKey(out_key, access_key, key_source);
|
|
}
|
|
|
|
Result ComputeCtr(void *dst, size_t dst_size, s32 keyslot, const void *owner, const void *src, size_t src_size, const IvCtr &iv_ctr) {
|
|
R_TRY(ValidateAesKeySlot(keyslot, owner));
|
|
|
|
/* Succeed immediately if there's nothing to crypt. */
|
|
if (src_size == 0) {
|
|
return ResultSuccess();
|
|
}
|
|
|
|
/* Validate sizes. */
|
|
R_UNLESS(src_size <= dst_size, spl::ResultInvalidSize());
|
|
R_UNLESS(util::IsAligned(src_size, AES_BLOCK_SIZE), spl::ResultInvalidSize());
|
|
|
|
/* We can only map 0x400000 aligned buffers for the SE. With that in mind, we have some math to do. */
|
|
const uintptr_t src_addr = reinterpret_cast<uintptr_t>(src);
|
|
const uintptr_t dst_addr = reinterpret_cast<uintptr_t>(dst);
|
|
const uintptr_t src_addr_page_aligned = util::AlignDown(src_addr, os::MemoryPageSize);
|
|
const uintptr_t dst_addr_page_aligned = util::AlignDown(dst_addr, os::MemoryPageSize);
|
|
const size_t src_size_page_aligned = util::AlignUp(src_addr + src_size, os::MemoryPageSize) - src_addr_page_aligned;
|
|
const size_t dst_size_page_aligned = util::AlignUp(dst_addr + dst_size, os::MemoryPageSize) - dst_addr_page_aligned;
|
|
const u32 src_se_map_addr = ComputeAesInMapBase + (src_addr_page_aligned % DeviceAddressSpaceAlign);
|
|
const u32 dst_se_map_addr = ComputeAesOutMapBase + (dst_addr_page_aligned % DeviceAddressSpaceAlign);
|
|
const u32 src_se_addr = ComputeAesInMapBase + (src_addr % DeviceAddressSpaceAlign);
|
|
const u32 dst_se_addr = ComputeAesOutMapBase + (dst_addr % DeviceAddressSpaceAlign);
|
|
|
|
/* Validate aligned sizes. */
|
|
R_UNLESS(src_size_page_aligned <= ComputeAesSizeMax, spl::ResultInvalidSize());
|
|
R_UNLESS(dst_size_page_aligned <= ComputeAesSizeMax, spl::ResultInvalidSize());
|
|
|
|
/* Helpers for mapping/unmapping. */
|
|
DeviceAddressSpaceMapHelper in_mapper(g_se_das_hnd, src_se_map_addr, src_addr_page_aligned, src_size_page_aligned, 1);
|
|
DeviceAddressSpaceMapHelper out_mapper(g_se_das_hnd, dst_se_map_addr, dst_addr_page_aligned, dst_size_page_aligned, 2);
|
|
|
|
/* Setup SE linked list entries. */
|
|
SeCryptContext *crypt_ctx = reinterpret_cast<SeCryptContext *>(g_work_buffer);
|
|
crypt_ctx->in.num_entries = 0;
|
|
crypt_ctx->in.address = src_se_addr;
|
|
crypt_ctx->in.size = src_size;
|
|
crypt_ctx->out.num_entries = 0;
|
|
crypt_ctx->out.address = dst_se_addr;
|
|
crypt_ctx->out.size = dst_size;
|
|
|
|
armDCacheFlush(crypt_ctx, sizeof(*crypt_ctx));
|
|
armDCacheFlush(const_cast<void *>(src), src_size);
|
|
armDCacheFlush(dst, dst_size);
|
|
{
|
|
std::scoped_lock lk(g_async_op_lock);
|
|
smc::AsyncOperationKey op_key;
|
|
const u32 mode = smc::GetComputeAesMode(smc::CipherMode::Ctr, GetPhysicalKeySlot(keyslot, true));
|
|
const u32 dst_ll_addr = g_se_mapped_work_buffer_addr + offsetof(SeCryptContext, out);
|
|
const u32 src_ll_addr = g_se_mapped_work_buffer_addr + offsetof(SeCryptContext, in);
|
|
|
|
smc::Result res = smc::ComputeAes(&op_key, mode, iv_ctr, dst_ll_addr, src_ll_addr, src_size);
|
|
if (res != smc::Result::Success) {
|
|
return smc::ConvertResult(res);
|
|
}
|
|
|
|
if ((res = WaitCheckStatus(op_key)) != smc::Result::Success) {
|
|
return smc::ConvertResult(res);
|
|
}
|
|
}
|
|
armDCacheFlush(dst, dst_size);
|
|
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result ComputeCmac(Cmac *out_cmac, s32 keyslot, const void *owner, const void *data, size_t size) {
|
|
R_TRY(ValidateAesKeySlot(keyslot, owner));
|
|
|
|
R_UNLESS(size <= WorkBufferSizeMax, spl::ResultInvalidSize());
|
|
|
|
std::memcpy(g_work_buffer, data, size);
|
|
return smc::ConvertResult(smc::ComputeCmac(out_cmac, GetPhysicalKeySlot(keyslot, true), g_work_buffer, size));
|
|
}
|
|
|
|
Result AllocateAesKeySlot(s32 *out_keyslot, const void *owner) {
|
|
/* Find a virtual keyslot. */
|
|
for (s32 i = 0; i < MaxVirtualAesKeySlots; i++) {
|
|
if (g_keyslot_owners[i] == nullptr) {
|
|
g_keyslot_owners[i] = owner;
|
|
g_keyslot_contents[i] = { .type = KeySlotContentType::None };
|
|
*out_keyslot = MakeVirtualKeySlot(i);
|
|
return ResultSuccess();
|
|
}
|
|
}
|
|
|
|
os::ClearSystemEvent(std::addressof(g_se_keyslot_available_event));
|
|
return spl::ResultOutOfKeySlots();
|
|
}
|
|
|
|
Result DeallocateAesKeySlot(s32 keyslot, const void *owner) {
|
|
/* Only virtual keyslots can be freed. */
|
|
R_UNLESS(IsVirtualKeySlot(keyslot), spl::ResultInvalidKeySlot());
|
|
|
|
/* Ensure the keyslot is owned. */
|
|
R_TRY(ValidateAesKeySlot(keyslot, owner));
|
|
|
|
/* Clear the physical keyslot, if we're cached. */
|
|
s32 phys_slot;
|
|
if (g_keyslot_cache.Release(std::addressof(phys_slot), keyslot)) {
|
|
ClearPhysicalKeySlot(phys_slot);
|
|
}
|
|
|
|
/* Clear the virtual keyslot. */
|
|
const auto index = GetVirtualKeySlotIndex(keyslot);
|
|
g_keyslot_owners[index] = nullptr;
|
|
g_keyslot_contents[index].type = KeySlotContentType::None;
|
|
|
|
os::SignalSystemEvent(std::addressof(g_se_keyslot_available_event));
|
|
return ResultSuccess();
|
|
}
|
|
|
|
/* RSA. */
|
|
Result DecryptDeviceUniqueData(void *dst, size_t dst_size, const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source, u32 option) {
|
|
struct DecryptDeviceUniqueDataLayout {
|
|
u8 data[RsaPrivateKeySize + DeviceUniqueDataMetaSize];
|
|
};
|
|
DecryptDeviceUniqueDataLayout *layout = reinterpret_cast<DecryptDeviceUniqueDataLayout *>(g_work_buffer);
|
|
|
|
/* Validate size. */
|
|
R_UNLESS(src_size >= DeviceUniqueDataMetaSize, spl::ResultInvalidSize());
|
|
R_UNLESS(src_size <= sizeof(DecryptDeviceUniqueDataLayout), spl::ResultInvalidSize());
|
|
|
|
std::memcpy(layout->data, src, src_size);
|
|
armDCacheFlush(layout, sizeof(*layout));
|
|
|
|
smc::Result smc_res;
|
|
size_t copy_size = 0;
|
|
if (hos::GetVersion() >= hos::Version_5_0_0) {
|
|
copy_size = std::min(dst_size, src_size - DeviceUniqueDataMetaSize);
|
|
smc_res = smc::DecryptDeviceUniqueData(layout->data, src_size, access_key, key_source, static_cast<smc::DeviceUniqueDataMode>(option));
|
|
} else {
|
|
smc_res = smc::DecryptDeviceUniqueData(©_size, layout->data, src_size, access_key, key_source, option);
|
|
copy_size = std::min(dst_size, copy_size);
|
|
}
|
|
|
|
armDCacheFlush(layout, sizeof(*layout));
|
|
if (smc_res == smc::Result::Success) {
|
|
std::memcpy(dst, layout->data, copy_size);
|
|
}
|
|
|
|
return smc::ConvertResult(smc_res);
|
|
}
|
|
|
|
/* SSL */
|
|
Result DecryptAndStoreSslClientCertKey(const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source) {
|
|
return DecryptAndStoreDeviceUniqueKey(src, src_size, access_key, key_source, static_cast<u32>(smc::DeviceUniqueDataMode::DecryptAndStoreSslKey));
|
|
}
|
|
|
|
Result ModularExponentiateWithSslClientCertKey(void *out, size_t out_size, const void *base, size_t base_size, const void *mod, size_t mod_size) {
|
|
return ModularExponentiateWithStorageKey(out, out_size, base, base_size, mod, mod_size, smc::ModularExponentiateWithStorageKeyMode::Ssl);
|
|
}
|
|
|
|
/* ES */
|
|
Result LoadEsDeviceKey(const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source, u32 option) {
|
|
if (hos::GetVersion() >= hos::Version_5_0_0) {
|
|
return DecryptAndStoreDeviceUniqueKey(src, src_size, access_key, key_source, option);
|
|
} else {
|
|
struct LoadEsDeviceKeyLayout {
|
|
u8 data[DeviceUniqueDataMetaSize + 2 * RsaPrivateKeySize + 0x10];
|
|
};
|
|
LoadEsDeviceKeyLayout *layout = reinterpret_cast<LoadEsDeviceKeyLayout *>(g_work_buffer);
|
|
|
|
/* Validate size. */
|
|
R_UNLESS(src_size <= sizeof(LoadEsDeviceKeyLayout), spl::ResultInvalidSize());
|
|
|
|
std::memcpy(layout, src, src_size);
|
|
|
|
armDCacheFlush(layout, sizeof(*layout));
|
|
return smc::ConvertResult(smc::LoadEsDeviceKey(layout->data, src_size, access_key, key_source, option));
|
|
}
|
|
}
|
|
|
|
Result PrepareEsTitleKey(AccessKey *out_access_key, const void *base, size_t base_size, const void *mod, size_t mod_size, const void *label_digest, size_t label_digest_size, u32 generation) {
|
|
return PrepareEsDeviceUniqueKey(out_access_key, base, base_size, mod, mod_size, label_digest, label_digest_size, generation, smc::EsCommonKeyType::TitleKey);
|
|
}
|
|
|
|
Result PrepareCommonEsTitleKey(AccessKey *out_access_key, const KeySource &key_source, u32 generation) {
|
|
return smc::ConvertResult(smc::PrepareCommonEsTitleKey(out_access_key, key_source, generation));
|
|
}
|
|
|
|
Result DecryptAndStoreDrmDeviceCertKey(const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source) {
|
|
return DecryptAndStoreDeviceUniqueKey(src, src_size, access_key, key_source, static_cast<u32>(smc::DeviceUniqueDataMode::DecryptAndStoreDrmDeviceCertKey));
|
|
}
|
|
|
|
Result ModularExponentiateWithDrmDeviceCertKey(void *out, size_t out_size, const void *base, size_t base_size, const void *mod, size_t mod_size) {
|
|
return ModularExponentiateWithStorageKey(out, out_size, base, base_size, mod, mod_size, smc::ModularExponentiateWithStorageKeyMode::DrmDeviceCert);
|
|
}
|
|
|
|
Result PrepareEsArchiveKey(AccessKey *out_access_key, const void *base, size_t base_size, const void *mod, size_t mod_size, const void *label_digest, size_t label_digest_size, u32 generation) {
|
|
return PrepareEsDeviceUniqueKey(out_access_key, base, base_size, mod, mod_size, label_digest, label_digest_size, generation, smc::EsCommonKeyType::ArchiveKey);
|
|
}
|
|
|
|
/* FS */
|
|
Result DecryptAndStoreGcKey(const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source, u32 option) {
|
|
return DecryptAndStoreDeviceUniqueKey(src, src_size, access_key, key_source, option);
|
|
}
|
|
|
|
Result DecryptGcMessage(u32 *out_size, void *dst, size_t dst_size, const void *base, size_t base_size, const void *mod, size_t mod_size, const void *label_digest, size_t label_digest_size) {
|
|
/* Validate sizes. */
|
|
R_UNLESS(dst_size <= WorkBufferSizeMax, spl::ResultInvalidSize());
|
|
R_UNLESS(label_digest_size == LabelDigestSizeMax, spl::ResultInvalidSize());
|
|
|
|
/* Nintendo doesn't check this result code, but we will. */
|
|
R_TRY(ModularExponentiateWithStorageKey(g_work_buffer, 0x100, base, base_size, mod, mod_size, smc::ModularExponentiateWithStorageKeyMode::Gc));
|
|
|
|
size_t data_size = crypto::DecodeRsa2048OaepSha256(dst, dst_size, label_digest, label_digest_size, g_work_buffer, 0x100);
|
|
R_UNLESS(data_size > 0, spl::ResultDecryptionFailed());
|
|
|
|
*out_size = static_cast<u32>(data_size);
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result GenerateSpecificAesKey(AesKey *out_key, const KeySource &key_source, u32 generation, u32 which) {
|
|
return smc::ConvertResult(smc::GenerateSpecificAesKey(out_key, key_source, generation, which));
|
|
}
|
|
|
|
Result LoadPreparedAesKey(s32 keyslot, const void *owner, const AccessKey &access_key) {
|
|
R_TRY(ValidateAesKeySlot(keyslot, owner));
|
|
return LoadVirtualPreparedAesKey(keyslot, access_key);
|
|
}
|
|
|
|
Result GetPackage2Hash(void *dst, const size_t size) {
|
|
u64 hash[4];
|
|
R_UNLESS(size >= sizeof(hash), spl::ResultInvalidSize());
|
|
|
|
smc::Result smc_res;
|
|
if ((smc_res = smc::GetConfig(hash, 4, ConfigItem::Package2Hash)) != smc::Result::Success) {
|
|
return smc::ConvertResult(smc_res);
|
|
}
|
|
|
|
std::memcpy(dst, hash, sizeof(hash));
|
|
return ResultSuccess();
|
|
}
|
|
|
|
/* Manu. */
|
|
Result ReencryptDeviceUniqueData(void *dst, size_t dst_size, const void *src, size_t src_size, const AccessKey &access_key_dec, const KeySource &source_dec, const AccessKey &access_key_enc, const KeySource &source_enc, u32 option) {
|
|
struct ReencryptDeviceUniqueDataLayout {
|
|
u8 data[DeviceUniqueDataMetaSize + 2 * RsaPrivateKeySize + 0x10];
|
|
AccessKey access_key_dec;
|
|
KeySource source_dec;
|
|
AccessKey access_key_enc;
|
|
KeySource source_enc;
|
|
};
|
|
ReencryptDeviceUniqueDataLayout *layout = reinterpret_cast<ReencryptDeviceUniqueDataLayout *>(g_work_buffer);
|
|
|
|
/* Validate size. */
|
|
R_UNLESS(src_size >= DeviceUniqueDataMetaSize, spl::ResultInvalidSize());
|
|
R_UNLESS(src_size <= sizeof(ReencryptDeviceUniqueDataLayout), spl::ResultInvalidSize());
|
|
|
|
std::memcpy(layout, src, src_size);
|
|
layout->access_key_dec = access_key_dec;
|
|
layout->source_dec = source_dec;
|
|
layout->access_key_enc = access_key_enc;
|
|
layout->source_enc = source_enc;
|
|
|
|
armDCacheFlush(layout, sizeof(*layout));
|
|
|
|
smc::Result smc_res = smc::ReencryptDeviceUniqueData(layout->data, src_size, layout->access_key_dec, layout->source_dec, layout->access_key_enc, layout->source_enc, option);
|
|
if (smc_res == smc::Result::Success) {
|
|
size_t copy_size = std::min(dst_size, src_size);
|
|
armDCacheFlush(layout, copy_size);
|
|
std::memcpy(dst, layout->data, copy_size);
|
|
}
|
|
|
|
return smc::ConvertResult(smc_res);
|
|
}
|
|
|
|
/* Helper. */
|
|
Result DeallocateAllAesKeySlots(const void *owner) {
|
|
for (s32 slot = VirtualKeySlotMin; slot <= VirtualKeySlotMax; ++slot) {
|
|
if (g_keyslot_owners[GetVirtualKeySlotIndex(slot)] == owner) {
|
|
DeallocateAesKeySlot(slot, owner);
|
|
}
|
|
}
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Handle GetAesKeySlotAvailableEventHandle() {
|
|
return os::GetReadableHandleOfSystemEvent(std::addressof(g_se_keyslot_available_event));
|
|
}
|
|
|
|
}
|