1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere synced 2025-01-12 15:54:47 +00:00
Atmosphere/exosphere/program/source/smc/secmon_smc_device_unique_data.cpp
2020-06-14 22:07:45 -07:00

206 lines
9.1 KiB
C++

/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <exosphere.hpp>
#include "../secmon_error.hpp"
#include "secmon_smc_device_unique_data.hpp"
namespace ams::secmon::smc {
namespace {
void GenerateIv(void *dst, size_t dst_size) {
/* Flush the region we're about to fill to ensure consistency with the SE. */
hw::FlushDataCache(dst, dst_size);
hw::DataSynchronizationBarrierInnerShareable();
/* Generate random bytes. */
se::GenerateRandomBytes(dst, dst_size);
hw::DataSynchronizationBarrierInnerShareable();
/* Flush to ensure the CPU sees consistent data for the region. */
hw::FlushDataCache(dst, dst_size);
hw::DataSynchronizationBarrierInnerShareable();
}
void PrepareDeviceUniqueDataKey(const void *seal_key_source, size_t seal_key_source_size, const void *access_key, size_t access_key_size, const void *key_source, size_t key_source_size) {
/* Derive the seal key. */
se::SetEncryptedAesKey128(pkg1::AesKeySlot_Smc, pkg1::AesKeySlot_RandomForUserWrap, seal_key_source, seal_key_source_size);
/* Derive the device unique data kek. */
se::SetEncryptedAesKey128(pkg1::AesKeySlot_Smc, pkg1::AesKeySlot_Smc, access_key, access_key_size);
/* Derive the actual device unique data key. */
se::SetEncryptedAesKey128(pkg1::AesKeySlot_Smc, pkg1::AesKeySlot_Smc, key_source, key_source_size);
}
void ComputeAes128Ctr(void *dst, size_t dst_size, int slot, const void *src, size_t src_size, const void *iv, size_t iv_size) {
/* Ensure that the SE sees consistent data. */
hw::FlushDataCache(src, src_size);
hw::FlushDataCache(dst, dst_size);
hw::DataSynchronizationBarrierInnerShareable();
/* Use the security engine to transform the data. */
se::ComputeAes128Ctr(dst, dst_size, slot, src, src_size, iv, iv_size);
hw::DataSynchronizationBarrierInnerShareable();
/* Ensure the CPU sees consistent data. */
hw::FlushDataCache(dst, dst_size);
hw::DataSynchronizationBarrierInnerShareable();
}
void ComputeGmac(void *dst, size_t dst_size, const void *data, size_t data_size, const void *iv, size_t iv_size) {
/* Declare keyslot (as encryptor will need to take it by pointer/reference). */
constexpr int Slot = pkg1::AesKeySlot_Smc;
/* Calculate the mac. */
crypto::Aes128GcmEncryptor gcm;
gcm.Initialize(std::addressof(Slot), sizeof(Slot), iv, iv_size);
gcm.UpdateAad(data, data_size);
gcm.GetMac(dst, dst_size);
}
constexpr u64 GetDeviceIdLow(u64 device_id) {
/* Mask out the top byte. */
constexpr u64 ByteMask = (static_cast<u64>(1) << BITSIZEOF(u8)) - 1;
constexpr u64 LowMask = ~(ByteMask << (BITSIZEOF(u64) - BITSIZEOF(u8)));
return device_id & LowMask;
}
constexpr u8 GetDeviceIdHigh(u64 device_id) {
/* Get the top byte. */
return static_cast<u8>(device_id >> (BITSIZEOF(u64) - BITSIZEOF(u8)));
}
constexpr u64 EncodeDeviceId(u8 device_id_high, u64 device_id_low) {
return (static_cast<u64>(device_id_high) << (BITSIZEOF(u64) - BITSIZEOF(u8))) | device_id_low;
}
}
bool DecryptDeviceUniqueData(void *dst, size_t dst_size, u8 *out_device_id_high, const void *seal_key_source, size_t seal_key_source_size, const void *access_key, size_t access_key_size, const void *key_source, size_t key_source_size, const void *src, size_t src_size, bool enforce_device_unique) {
/* Determine how much decrypted data there will be. */
const size_t enc_size = src_size - (enforce_device_unique ? DeviceUniqueDataOuterMetaSize : DeviceUniqueDataIvSize);
const size_t dec_size = enc_size - DeviceUniqueDataInnerMetaSize;
/* Ensure that our sizes are allowed. */
AMS_ABORT_UNLESS(src_size > (enforce_device_unique ? DeviceUniqueDataTotalMetaSize : DeviceUniqueDataIvSize));
AMS_ABORT_UNLESS(dst_size >= enc_size);
/* Determine the extents of the data. */
const u8 * const iv = static_cast<const u8 *>(src);
const u8 * const enc = iv + DeviceUniqueDataIvSize;
const u8 * const mac = enc + enc_size;
/* Decrypt the data. */
{
/* Declare temporaries. */
u8 temp_iv[DeviceUniqueDataIvSize];
u8 calc_mac[DeviceUniqueDataMacSize];
ON_SCOPE_EXIT { crypto::ClearMemory(temp_iv, sizeof(temp_iv)); crypto::ClearMemory(calc_mac, sizeof(calc_mac)); };
/* Prepare the key used to decrypt the data. */
PrepareDeviceUniqueDataKey(seal_key_source, seal_key_source_size, access_key, access_key_size, key_source, key_source_size);
/* Copy the iv to stack. */
std::memcpy(temp_iv, iv, sizeof(temp_iv));
/* Decrypt the data. */
ComputeAes128Ctr(dst, dst_size, pkg1::AesKeySlot_Smc, enc, enc_size, temp_iv, DeviceUniqueDataIvSize);
/* If we're not enforcing device unique, there's no mac/device id. */
if (!enforce_device_unique) {
return true;
}
/* Compute the gmac. */
ComputeGmac(calc_mac, DeviceUniqueDataMacSize, dst, enc_size, temp_iv, DeviceUniqueDataIvSize);
/* Validate the gmac. */
if (!crypto::IsSameBytes(mac, calc_mac, sizeof(calc_mac))) {
return false;
}
}
/* Validate device id, output device id if needed. */
{
/* Locate the device id in the decryption output. */
const u8 * const padding = static_cast<const u8 *>(dst) + dec_size;
const u8 * const device_id = padding + DeviceUniqueDataPaddingSize;
/* Load the big endian device id. */
const u64 device_id_val = util::LoadBigEndian(static_cast<const u64 *>(static_cast<const void *>(device_id)));
/* Validate that the device id low matches the value in fuses. */
if (GetDeviceIdLow(device_id_val) != fuse::GetDeviceId()) {
return false;
}
/* Set the output device id high, if needed. */
if (out_device_id_high != nullptr) {
*out_device_id_high = GetDeviceIdHigh(device_id_val);
}
}
return true;
}
void EncryptDeviceUniqueData(void *dst, size_t dst_size, const void *seal_key_source, size_t seal_key_source_size, const void *access_key, size_t access_key_size, const void *key_source, size_t key_source_size, const void *src, size_t src_size, u8 device_id_high) {
/* Determine metadata locations. */
u8 * const dst_iv = static_cast<u8 *>(dst);
u8 * const dst_data = dst_iv + DeviceUniqueDataIvSize;
u8 * const dst_pad = dst_data + src_size;
u8 * const dst_did = dst_pad + DeviceUniqueDataPaddingSize;
u8 * const dst_mac = dst_did + DeviceUniqueDataDeviceIdSize;
/* Verify that our sizes are okay. */
const size_t enc_size = src_size + DeviceUniqueDataInnerMetaSize;
const size_t res_size = src_size + DeviceUniqueDataTotalMetaSize;
AMS_ABORT_UNLESS(res_size <= dst_size);
/* Layout the image as expected. */
{
/* Generate a random iv. */
util::AlignedBuffer<hw::DataCacheLineSize, DeviceUniqueDataIvSize> iv;
GenerateIv(iv, DeviceUniqueDataIvSize);
/* Move the data to the output image. */
std::memmove(dst_data, src, src_size);
/* Copy the iv. */
std::memcpy(dst_iv, iv, DeviceUniqueDataIvSize);
/* Clear the padding. */
std::memset(dst_pad, 0, DeviceUniqueDataPaddingSize);
/* Store the device id. */
util::StoreBigEndian(reinterpret_cast<u64 *>(dst_did), EncodeDeviceId(device_id_high, fuse::GetDeviceId()));
}
/* Encrypt and mac. */
{
/* Prepare the key used to encrypt the data. */
PrepareDeviceUniqueDataKey(seal_key_source, seal_key_source_size, access_key, access_key_size, key_source, key_source_size);
/* Compute the gmac. */
ComputeGmac(dst_mac, DeviceUniqueDataMacSize, dst_data, enc_size, dst_iv, DeviceUniqueDataIvSize);
/* Encrypt the data. */
ComputeAes128Ctr(dst_data, enc_size, pkg1::AesKeySlot_Smc, dst_data, enc_size, dst_iv, DeviceUniqueDataIvSize);
}
}
}