mirror of
https://github.com/Atmosphere-NX/Atmosphere
synced 2024-12-23 21:01:13 +00:00
247 lines
No EOL
8.9 KiB
C++
247 lines
No EOL
8.9 KiB
C++
/*
|
|
* Copyright (c) Atmosphère-NX
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <vapours.hpp>
|
|
|
|
#if defined(ATMOSPHERE_IS_STRATOSPHERE)
|
|
#include <arm_neon.h>
|
|
|
|
namespace ams::crypto::impl {
|
|
|
|
namespace {
|
|
|
|
constexpr const u32 RoundConstants[4] = {
|
|
0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6
|
|
};
|
|
|
|
/* Define for loading work var from message. */
|
|
#define SHA1_LOAD_W_FROM_MESSAGE(which) \
|
|
w[which] = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(data))); \
|
|
data += 0x10
|
|
|
|
#define SHA1_CALCULATE_W_FROM_PREVIOUS(i) \
|
|
w[i] = vsha1su1q_u32(vsha1su0q_u32(w[i-4], w[i-3], w[i-2]), w[i-1])
|
|
|
|
/* Define for doing four rounds of SHA1. */
|
|
#define SHA1_DO_ROUND(r, insn, constant) \
|
|
do { \
|
|
const u32 a = vgetq_lane_u32(cur_abcd, 0); \
|
|
cur_abcd = v##insn##q_u32(cur_abcd, cur_e, vaddq_u32(w[r], constant)); \
|
|
cur_e = vsha1h_u32(a); \
|
|
} while (0)
|
|
|
|
|
|
}
|
|
|
|
void Sha1Impl::Initialize() {
|
|
/* Reset buffered bytes/bits. */
|
|
m_buffered_bytes = 0;
|
|
m_bits_consumed = 0;
|
|
|
|
/* Set intermediate hash. */
|
|
m_intermediate_hash[0] = 0x67452301;
|
|
m_intermediate_hash[1] = 0xEFCDAB89;
|
|
m_intermediate_hash[2] = 0x98BADCFE;
|
|
m_intermediate_hash[3] = 0x10325476;
|
|
m_intermediate_hash[4] = 0xC3D2E1F0;
|
|
|
|
/* Set state. */
|
|
m_state = State_Initialized;
|
|
}
|
|
|
|
void Sha1Impl::Update(const void *data, size_t size) {
|
|
/* Verify we're in a state to update. */
|
|
AMS_ASSERT(m_state == State_Initialized);
|
|
|
|
/* Advance our input bit count. */
|
|
m_bits_consumed += BITSIZEOF(u8) * (((m_buffered_bytes + size) / BlockSize) * BlockSize);
|
|
|
|
/* Process anything we have buffered. */
|
|
const u8 *data8 = static_cast<const u8 *>(data);
|
|
size_t remaining = size;
|
|
|
|
if (m_buffered_bytes > 0) {
|
|
const size_t copy_size = std::min(BlockSize - m_buffered_bytes, remaining);
|
|
std::memcpy(m_buffer + m_buffered_bytes, data8, copy_size);
|
|
|
|
data8 += copy_size;
|
|
remaining -= copy_size;
|
|
m_buffered_bytes += copy_size;
|
|
|
|
/* Process a block, if we filled one. */
|
|
if (m_buffered_bytes == BlockSize) {
|
|
this->ProcessBlock(m_buffer);
|
|
m_buffered_bytes = 0;
|
|
}
|
|
}
|
|
|
|
/* Process blocks, if we have any. */
|
|
if (remaining >= BlockSize) {
|
|
const size_t blocks = remaining / BlockSize;
|
|
|
|
this->ProcessBlocks(data8, blocks);
|
|
data8 += BlockSize * blocks;
|
|
remaining -= BlockSize * blocks;
|
|
}
|
|
|
|
/* Copy any leftover data to our buffer. */
|
|
if (remaining > 0) {
|
|
m_buffered_bytes = remaining;
|
|
std::memcpy(m_buffer, data8, remaining);
|
|
}
|
|
}
|
|
|
|
void Sha1Impl::GetHash(void *dst, size_t size) {
|
|
/* Verify we're in a state to get hash. */
|
|
AMS_ASSERT(m_state == State_Initialized || m_state == State_Done);
|
|
AMS_ASSERT(size >= HashSize);
|
|
AMS_UNUSED(size);
|
|
|
|
/* If we need to, process the last block. */
|
|
if (m_state == State_Initialized) {
|
|
this->ProcessLastBlock();
|
|
m_state = State_Done;
|
|
}
|
|
|
|
/* Copy the output hash. */
|
|
if constexpr (util::IsLittleEndian()) {
|
|
static_assert(HashSize % sizeof(u32) == 0);
|
|
|
|
u32 *dst_32 = static_cast<u32 *>(dst);
|
|
for (size_t i = 0; i < HashSize / sizeof(u32); ++i) {
|
|
dst_32[i] = util::LoadBigEndian<u32>(m_intermediate_hash + i);
|
|
}
|
|
} else {
|
|
std::memcpy(dst, m_intermediate_hash, HashSize);
|
|
}
|
|
}
|
|
|
|
ALWAYS_INLINE void Sha1Impl::ProcessBlock(const void *data) {
|
|
return this->ProcessBlocks(static_cast<const u8 *>(data), 1);
|
|
}
|
|
|
|
void Sha1Impl::ProcessBlocks(const u8 *data, size_t block_count) {
|
|
/* Setup round constants. */
|
|
const uint32x4_t k0 = vdupq_n_u32(RoundConstants[0]);
|
|
const uint32x4_t k1 = vdupq_n_u32(RoundConstants[1]);
|
|
const uint32x4_t k2 = vdupq_n_u32(RoundConstants[2]);
|
|
const uint32x4_t k3 = vdupq_n_u32(RoundConstants[3]);
|
|
|
|
/* Load hash variables with intermediate state. */
|
|
uint32x4_t cur_abcd = vld1q_u32(m_intermediate_hash + 0);
|
|
u32 cur_e = m_intermediate_hash[4];
|
|
|
|
/* Actually do hash processing blocks. */
|
|
do {
|
|
/* Save current state. */
|
|
const uint32x4_t prev_abcd = cur_abcd;
|
|
const u32 prev_e = cur_e;
|
|
|
|
uint32x4_t w[20];
|
|
|
|
/* Setup w[0-3] with message. */
|
|
SHA1_LOAD_W_FROM_MESSAGE(0);
|
|
SHA1_LOAD_W_FROM_MESSAGE(1);
|
|
SHA1_LOAD_W_FROM_MESSAGE(2);
|
|
SHA1_LOAD_W_FROM_MESSAGE(3);
|
|
|
|
/* Calculate w[4-19], w[i] = sha1su1(sha1su0(w[i-4], w[i-3], w[i-2]), w[i-1]); */
|
|
SHA1_CALCULATE_W_FROM_PREVIOUS(4);
|
|
SHA1_CALCULATE_W_FROM_PREVIOUS(5);
|
|
SHA1_CALCULATE_W_FROM_PREVIOUS(6);
|
|
SHA1_CALCULATE_W_FROM_PREVIOUS(7);
|
|
SHA1_CALCULATE_W_FROM_PREVIOUS(8);
|
|
SHA1_CALCULATE_W_FROM_PREVIOUS(9);
|
|
SHA1_CALCULATE_W_FROM_PREVIOUS(10);
|
|
SHA1_CALCULATE_W_FROM_PREVIOUS(11);
|
|
SHA1_CALCULATE_W_FROM_PREVIOUS(12);
|
|
SHA1_CALCULATE_W_FROM_PREVIOUS(13);
|
|
SHA1_CALCULATE_W_FROM_PREVIOUS(14);
|
|
SHA1_CALCULATE_W_FROM_PREVIOUS(15);
|
|
SHA1_CALCULATE_W_FROM_PREVIOUS(16);
|
|
SHA1_CALCULATE_W_FROM_PREVIOUS(17);
|
|
SHA1_CALCULATE_W_FROM_PREVIOUS(18);
|
|
SHA1_CALCULATE_W_FROM_PREVIOUS(19);
|
|
|
|
/* Do round calculations 0-20. Uses sha1c, k0. */
|
|
SHA1_DO_ROUND(0, sha1c, k0);
|
|
SHA1_DO_ROUND(1, sha1c, k0);
|
|
SHA1_DO_ROUND(2, sha1c, k0);
|
|
SHA1_DO_ROUND(3, sha1c, k0);
|
|
SHA1_DO_ROUND(4, sha1c, k0);
|
|
|
|
/* Do round calculations 20-40. Uses sha1p, k1. */
|
|
SHA1_DO_ROUND(5, sha1p, k1);
|
|
SHA1_DO_ROUND(6, sha1p, k1);
|
|
SHA1_DO_ROUND(7, sha1p, k1);
|
|
SHA1_DO_ROUND(8, sha1p, k1);
|
|
SHA1_DO_ROUND(9, sha1p, k1);
|
|
|
|
/* Do round calculations 40-60. Uses sha1m, k2. */
|
|
SHA1_DO_ROUND(10, sha1m, k2);
|
|
SHA1_DO_ROUND(11, sha1m, k2);
|
|
SHA1_DO_ROUND(12, sha1m, k2);
|
|
SHA1_DO_ROUND(13, sha1m, k2);
|
|
SHA1_DO_ROUND(14, sha1m, k2);
|
|
|
|
/* Do round calculations 60-80. Uses sha1p, k3. */
|
|
SHA1_DO_ROUND(15, sha1p, k3);
|
|
SHA1_DO_ROUND(16, sha1p, k3);
|
|
SHA1_DO_ROUND(17, sha1p, k3);
|
|
SHA1_DO_ROUND(18, sha1p, k3);
|
|
SHA1_DO_ROUND(19, sha1p, k3);
|
|
|
|
/* Add to previous. */
|
|
cur_abcd = vaddq_u32(cur_abcd, prev_abcd);
|
|
cur_e = cur_e + prev_e;
|
|
} while (--block_count != 0);
|
|
|
|
/* Save result to intermediate hash. */
|
|
vst1q_u32(m_intermediate_hash, cur_abcd);
|
|
m_intermediate_hash[4] = cur_e;
|
|
}
|
|
|
|
void Sha1Impl::ProcessLastBlock() {
|
|
/* Setup the final block. */
|
|
constexpr const auto BlockSizeWithoutSizeField = BlockSize - sizeof(u64);
|
|
|
|
/* Increment our bits consumed. */
|
|
m_bits_consumed += BITSIZEOF(u8) * m_buffered_bytes;
|
|
|
|
/* Add 0x80 terminator. */
|
|
m_buffer[m_buffered_bytes++] = 0x80;
|
|
|
|
/* If we can process the size field directly, do so, otherwise set up to process it. */
|
|
if (m_buffered_bytes <= BlockSizeWithoutSizeField) {
|
|
/* Clear up to size field. */
|
|
std::memset(m_buffer + m_buffered_bytes, 0, BlockSizeWithoutSizeField - m_buffered_bytes);
|
|
} else {
|
|
/* Consume full block */
|
|
std::memset(m_buffer + m_buffered_bytes, 0, BlockSize - m_buffered_bytes);
|
|
this->ProcessBlock(m_buffer);
|
|
|
|
/* Clear up to size field. */
|
|
std::memset(m_buffer, 0, BlockSizeWithoutSizeField);
|
|
}
|
|
|
|
/* Store the size field. */
|
|
util::StoreBigEndian<u64>(reinterpret_cast<u64 *>(m_buffer + BlockSizeWithoutSizeField), m_bits_consumed);
|
|
|
|
/* Process the final block. */
|
|
this->ProcessBlock(m_buffer);
|
|
}
|
|
|
|
}
|
|
#endif |