Atmosphere/libraries/libstratosphere/include/stratosphere/fs/fs_memory_management.hpp
SciresM 64c6ef2de7
fs: reduce path size 0x28 -> 0x18
This implements two optimizations on fs::Path, which N added in 12.0.0.

The current structure looks like: 

```cpp
struct Path {
    const char *m_str; // Points to the read-only path string
    char *m_write_buffer_buffer; // Part of std::unique_ptr<char[], ams::fs::impl::Deleter>
    ams::fs::impl::Deleter m_write_buffer_deleter; // Parse of std::unique_ptr<char[], ams::fs::impl::Deleter>, stores the size of the buffer.
    size_t m_write_buffer_length; // Copy of the write buffer's size accessible to the Path() structure.
    bool m_is_normalized; // Whether the path buffer is normalized
};
```

This is pretty wasteful. The write buffer size is stored twice, wasting 8 bytes, because one copy of the size isn't accessible to the path.

In addition, due to alignment, the bool wastes 7 padding bytes.

This commit:

* Encodes normalized in the low bit of the write buffer length, saving 8 bytes.
* Use a custom WriteBuffer class rather than generic unique_ptr, to avoid needing to store the WriteBuffer twice.


These each save 8 bytes, for a final size of 0x18 rather than 0x28.
2022-03-24 20:22:47 -07:00

165 lines
6.5 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <stratosphere/fs/fs_common.hpp>
namespace ams::fs {
/* ACCURATE_TO_VERSION: Unknown */
using AllocateFunction = void *(*)(size_t);
using DeallocateFunction = void (*)(void *, size_t);
void SetAllocator(AllocateFunction allocator, DeallocateFunction deallocator);
namespace impl {
class Newable;
void *Allocate(size_t size);
void Deallocate(void *ptr, size_t size);
void LockAllocatorMutex();
void UnlockAllocatorMutex();
void *AllocateUnsafe(size_t size);
void DeallocateUnsafe(void *ptr, size_t size);
class AllocatorImpl {
public:
static ALWAYS_INLINE void *Allocate(size_t size) { return ::ams::fs::impl::Allocate(size); }
static ALWAYS_INLINE void *AllocateUnsafe(size_t size) { return ::ams::fs::impl::AllocateUnsafe(size); }
static ALWAYS_INLINE void Deallocate(void *ptr, size_t size) { return ::ams::fs::impl::Deallocate(ptr, size); }
static ALWAYS_INLINE void DeallocateUnsafe(void *ptr, size_t size) { return ::ams::fs::impl::DeallocateUnsafe(ptr, size); }
static ALWAYS_INLINE void LockAllocatorMutex() { return ::ams::fs::impl::LockAllocatorMutex(); }
static ALWAYS_INLINE void UnlockAllocatorMutex() { return ::ams::fs::impl::UnlockAllocatorMutex(); }
};
template<typename T, typename Impl, bool AllocateWhileLocked>
class AllocatorTemplate : public std::allocator<T> {
public:
template<typename U>
struct rebind {
using other = AllocatorTemplate<U, Impl, AllocateWhileLocked>;
};
private:
bool m_allocation_failed;
private:
static ALWAYS_INLINE T *AllocateImpl(::std::size_t n) {
if constexpr (AllocateWhileLocked) {
auto * const p = Impl::AllocateUnsafe(sizeof(T) * n);
Impl::UnlockAllocatorMutex();
return static_cast<T *>(p);
} else {
return static_cast<T *>(Impl::Allocate(sizeof(T) * n));
}
}
public:
AllocatorTemplate() : m_allocation_failed(false) { /* ... */ }
template<typename U>
AllocatorTemplate(const AllocatorTemplate<U, Impl, AllocateWhileLocked> &rhs) : m_allocation_failed(rhs.IsAllocationFailed()) { /* ... */ }
bool IsAllocationFailed() const { return m_allocation_failed; }
[[nodiscard]] T *allocate(::std::size_t n) {
auto * const p = AllocateImpl(n);
if (AMS_UNLIKELY(p == nullptr) && n) {
m_allocation_failed = true;
}
return p;
}
void deallocate(T *p, ::std::size_t n) {
Impl::Deallocate(p, sizeof(T) * n);
}
};
template<typename T, typename Impl>
using AllocatorTemplateForAllocateShared = AllocatorTemplate<T, Impl, true>;
template<typename T, template<typename, typename> class AllocatorTemplateT, typename Impl, typename... Args>
std::shared_ptr<T> AllocateSharedImpl(Args &&... args) {
/* Try to allocate. */
{
/* Acquire exclusive access to the allocator. */
Impl::LockAllocatorMutex();
/* Check that we can allocate memory (using overestimate of 0x80 + sizeof(T)). */
if (auto * const p = Impl::AllocateUnsafe(0x80 + sizeof(T)); AMS_LIKELY(p != nullptr)) {
/* Free the memory we allocated. */
Impl::DeallocateUnsafe(p, 0x80 + sizeof(T));
/* Get allocator type. */
using AllocatorType = AllocatorTemplateT<T, Impl>;
/* Allocate the shared pointer. */
return std::allocate_shared<T>(AllocatorType{}, std::forward<Args>(args)...);
} else {
/* We can't allocate. */
Impl::UnlockAllocatorMutex();
}
}
/* We failed. */
return nullptr;
}
class Deleter {
private:
size_t m_size;
public:
Deleter() : m_size() { /* ... */ }
explicit Deleter(size_t sz) : m_size(sz) { /* ... */ }
void operator()(void *ptr) const {
::ams::fs::impl::Deallocate(ptr, m_size);
}
};
template<typename T>
auto MakeUnique() {
/* Check that we're not using MakeUnique unnecessarily. */
static_assert(!std::derived_from<T, ::ams::fs::impl::Newable>);
return std::unique_ptr<T, Deleter>(static_cast<T *>(::ams::fs::impl::Allocate(sizeof(T))), Deleter(sizeof(T)));
}
template<typename ArrayT>
auto MakeUnique(size_t size) {
using T = typename std::remove_extent<ArrayT>::type;
static_assert(util::is_pod<ArrayT>::value);
static_assert(std::is_array<ArrayT>::value);
/* Check that we're not using MakeUnique unnecessarily. */
static_assert(!std::derived_from<T, ::ams::fs::impl::Newable>);
using ReturnType = std::unique_ptr<ArrayT, Deleter>;
const size_t alloc_size = sizeof(T) * size;
return ReturnType(static_cast<T *>(::ams::fs::impl::Allocate(alloc_size)), Deleter(alloc_size));
}
}
template<typename T, typename... Args>
std::shared_ptr<T> AllocateShared(Args &&... args) {
return ::ams::fs::impl::AllocateSharedImpl<T, ::ams::fs::impl::AllocatorTemplateForAllocateShared, ::ams::fs::impl::AllocatorImpl>(std::forward<Args>(args)...);
}
}