mirror of
https://github.com/Atmosphere-NX/Atmosphere
synced 2025-01-07 04:47:58 +00:00
335 lines
No EOL
11 KiB
C
335 lines
No EOL
11 KiB
C
/*
|
|
* Copyright (c) 2018-2020 Atmosphère-NX
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <vapours/ams_version.h>
|
|
|
|
#include "car.h"
|
|
#include "fuse.h"
|
|
#include "masterkey.h"
|
|
#include "pmc.h"
|
|
#include "timers.h"
|
|
|
|
static bool g_has_checked_for_rcm_bug_patch = false;
|
|
static bool g_has_rcm_bug_patch = false;
|
|
|
|
/* Prototypes for internal commands. */
|
|
void fuse_enable_power(void);
|
|
void fuse_disable_power(void);
|
|
void fuse_wait_idle(void);
|
|
|
|
/* Initialize the fuse driver */
|
|
void fuse_init(void) {
|
|
/* Make all fuse registers visible, disable the private key and disable programming. */
|
|
clkrst_enable_fuse_regs(true);
|
|
fuse_disable_private_key();
|
|
fuse_disable_programming();
|
|
|
|
/* TODO: Should we allow this to be done later? */
|
|
if (!g_has_checked_for_rcm_bug_patch) {
|
|
(void)(fuse_has_rcm_bug_patch());
|
|
}
|
|
}
|
|
|
|
/* Disable access to the private key and set the TZ sticky bit. */
|
|
void fuse_disable_private_key(void) {
|
|
FUSE_REGS->FUSE_PRIVATEKEYDISABLE = 0x10;
|
|
}
|
|
|
|
/* Disables all fuse programming. */
|
|
void fuse_disable_programming(void) {
|
|
FUSE_REGS->FUSE_DISABLEREGPROGRAM = 1;
|
|
}
|
|
|
|
/* Enable power to the fuse hardware array. */
|
|
void fuse_enable_power(void) {
|
|
APBDEV_PMC_FUSE_CTRL &= ~(0x200); /* Clear PMC_FUSE_CTRL_PS18_LATCH_CLEAR. */
|
|
mdelay(1);
|
|
APBDEV_PMC_FUSE_CTRL |= 0x100; /* Set PMC_FUSE_CTRL_PS18_LATCH_SET. */
|
|
mdelay(1);
|
|
}
|
|
|
|
/* Disable power to the fuse hardware array. */
|
|
void fuse_disable_power(void) {
|
|
APBDEV_PMC_FUSE_CTRL &= ~(0x100); /* Clear PMC_FUSE_CTRL_PS18_LATCH_SET. */
|
|
mdelay(1);
|
|
APBDEV_PMC_FUSE_CTRL |= 0x200; /* Set PMC_FUSE_CTRL_PS18_LATCH_CLEAR. */
|
|
mdelay(1);
|
|
}
|
|
|
|
/* Wait for the fuse driver to go idle. */
|
|
void fuse_wait_idle(void) {
|
|
uint32_t ctrl_val = 0;
|
|
|
|
/* Wait for STATE_IDLE */
|
|
while ((ctrl_val & (0xF0000)) != 0x40000)
|
|
ctrl_val = FUSE_REGS->FUSE_FUSECTRL;
|
|
}
|
|
|
|
/* Read a fuse from the hardware array. */
|
|
uint32_t fuse_hw_read(uint32_t addr) {
|
|
/* Wait for idle state. */
|
|
fuse_wait_idle();
|
|
|
|
/* Program the target address. */
|
|
FUSE_REGS->FUSE_FUSEADDR = addr;
|
|
|
|
/* Enable read operation in control register. */
|
|
uint32_t ctrl_val = FUSE_REGS->FUSE_FUSECTRL;
|
|
ctrl_val &= ~0x3;
|
|
ctrl_val |= 0x1; /* Set READ command. */
|
|
FUSE_REGS->FUSE_FUSECTRL = ctrl_val;
|
|
|
|
/* Wait for idle state. */
|
|
fuse_wait_idle();
|
|
|
|
return FUSE_REGS->FUSE_FUSERDATA;
|
|
}
|
|
|
|
/* Write a fuse in the hardware array. */
|
|
void fuse_hw_write(uint32_t value, uint32_t addr) {
|
|
/* Wait for idle state. */
|
|
fuse_wait_idle();
|
|
|
|
/* Program the target address and value. */
|
|
FUSE_REGS->FUSE_FUSEADDR = addr;
|
|
FUSE_REGS->FUSE_FUSEWDATA = value;
|
|
|
|
/* Enable write operation in control register. */
|
|
uint32_t ctrl_val = FUSE_REGS->FUSE_FUSECTRL;
|
|
ctrl_val &= ~0x3;
|
|
ctrl_val |= 0x2; /* Set WRITE command. */
|
|
FUSE_REGS->FUSE_FUSECTRL = ctrl_val;
|
|
|
|
/* Wait for idle state. */
|
|
fuse_wait_idle();
|
|
}
|
|
|
|
/* Sense the fuse hardware array into the shadow cache. */
|
|
void fuse_hw_sense(void) {
|
|
/* Wait for idle state. */
|
|
fuse_wait_idle();
|
|
|
|
/* Enable sense operation in control register */
|
|
uint32_t ctrl_val = FUSE_REGS->FUSE_FUSECTRL;
|
|
ctrl_val &= ~0x3;
|
|
ctrl_val |= 0x3; /* Set SENSE_CTRL command */
|
|
FUSE_REGS->FUSE_FUSECTRL = ctrl_val;
|
|
|
|
/* Wait for idle state. */
|
|
fuse_wait_idle();
|
|
}
|
|
|
|
/* Read the SKU info register from the shadow cache. */
|
|
uint32_t fuse_get_sku_info(void) {
|
|
return FUSE_CHIP_REGS->FUSE_SKU_INFO;
|
|
}
|
|
|
|
/* Read the bootrom patch version from a register in the shadow cache. */
|
|
uint32_t fuse_get_bootrom_patch_version(void) {
|
|
return FUSE_CHIP_REGS->FUSE_SOC_SPEEDO_1_CALIB;
|
|
}
|
|
|
|
/* Read a spare bit register from the shadow cache */
|
|
uint32_t fuse_get_spare_bit(uint32_t idx) {
|
|
if (idx < 32) {
|
|
return FUSE_CHIP_REGS->FUSE_SPARE_BIT[idx];
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Read a reserved ODM register from the shadow cache. */
|
|
uint32_t fuse_get_reserved_odm(uint32_t idx) {
|
|
if (idx < 8) {
|
|
return FUSE_CHIP_REGS->FUSE_RESERVED_ODM[idx];
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Get the DRAM ID using values in the shadow cache. */
|
|
uint32_t fuse_get_dram_id(void) {
|
|
return ((fuse_get_reserved_odm(4) >> 3) & 0x7);
|
|
}
|
|
|
|
/* Derive the Device ID using values in the shadow cache. */
|
|
uint64_t fuse_get_device_id(void) {
|
|
uint64_t device_id = 0;
|
|
uint64_t y_coord = FUSE_CHIP_REGS->FUSE_OPT_Y_COORDINATE & 0x1FF;
|
|
uint64_t x_coord = FUSE_CHIP_REGS->FUSE_OPT_X_COORDINATE & 0x1FF;
|
|
uint64_t wafer_id = FUSE_CHIP_REGS->FUSE_OPT_WAFER_ID & 0x3F;
|
|
uint32_t lot_code = FUSE_CHIP_REGS->FUSE_OPT_LOT_CODE_0;
|
|
uint64_t fab_code = FUSE_CHIP_REGS->FUSE_OPT_FAB_CODE & 0x3F;
|
|
|
|
uint64_t derived_lot_code = 0;
|
|
for (unsigned int i = 0; i < 5; i++) {
|
|
derived_lot_code = (derived_lot_code * 0x24) + ((lot_code >> (24 - 6*i)) & 0x3F);
|
|
}
|
|
derived_lot_code &= 0x03FFFFFF;
|
|
|
|
device_id |= y_coord << 0;
|
|
device_id |= x_coord << 9;
|
|
device_id |= wafer_id << 18;
|
|
device_id |= derived_lot_code << 24;
|
|
device_id |= fab_code << 50;
|
|
|
|
return device_id;
|
|
}
|
|
|
|
/* Derive the Hardware Type using values in the shadow cache. */
|
|
uint32_t fuse_get_hardware_type(uint32_t target_firmware) {
|
|
uint32_t fuse_reserved_odm4 = fuse_get_reserved_odm(4);
|
|
uint32_t hardware_type = (((fuse_reserved_odm4 >> 7) & 2) | ((fuse_reserved_odm4 >> 2) & 1));
|
|
|
|
/* Firmware from versions 1.0.0 to 3.0.2. */
|
|
if (target_firmware < ATMOSPHERE_TARGET_FIRMWARE_4_0_0) {
|
|
volatile tegra_fuse_chip_t *fuse_chip = fuse_chip_get_regs();
|
|
if (hardware_type >= 1) {
|
|
return (hardware_type > 2) ? 3 : hardware_type - 1;
|
|
} else if ((fuse_chip->FUSE_SPARE_BIT[9] & 1) == 0) {
|
|
return 0;
|
|
} else {
|
|
return 3;
|
|
}
|
|
} else if (target_firmware < ATMOSPHERE_TARGET_FIRMWARE_7_0_0) { /* Firmware versions from 4.0.0 to 6.2.0. */
|
|
static const uint32_t types[] = {0,1,4,3};
|
|
hardware_type |= ((fuse_reserved_odm4 >> 14) & 0x3C);
|
|
hardware_type--;
|
|
return (hardware_type > 3) ? 4 : types[hardware_type];
|
|
} else { /* Firmware versions from 7.0.0 onwards. */
|
|
/* Always return 0 in retail. */
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Derive the Retail Type using values in the shadow cache. */
|
|
uint32_t fuse_get_retail_type(void) {
|
|
/* Retail Type = IS_RETAIL | UNIT_TYPE. */
|
|
uint32_t fuse_reserved_odm4 = fuse_get_reserved_odm(4);
|
|
uint32_t retail_type = (((fuse_reserved_odm4 >> 7) & 4) | (fuse_reserved_odm4 & 3));
|
|
if (retail_type == 4) { /* Standard retail unit, IS_RETAIL | 0. */
|
|
return 1;
|
|
} else if (retail_type == 3) { /* Standard dev unit, 0 | DEV_UNIT. */
|
|
return 0;
|
|
}
|
|
return 2; /* IS_RETAIL | DEV_UNIT */
|
|
}
|
|
|
|
/* Derive the 16-byte Hardware Info using values in the shadow cache, and copy to output buffer. */
|
|
void fuse_get_hardware_info(void *dst) {
|
|
uint32_t hw_info[0x4];
|
|
|
|
uint32_t ops_reserved = FUSE_CHIP_REGS->FUSE_OPT_OPS_RESERVED & 0x3F;
|
|
uint32_t y_coord = FUSE_CHIP_REGS->FUSE_OPT_Y_COORDINATE & 0x1FF;
|
|
uint32_t x_coord = FUSE_CHIP_REGS->FUSE_OPT_X_COORDINATE & 0x1FF;
|
|
uint32_t wafer_id = FUSE_CHIP_REGS->FUSE_OPT_WAFER_ID & 0x3F;
|
|
uint32_t lot_code_0 = FUSE_CHIP_REGS->FUSE_OPT_LOT_CODE_0;
|
|
uint32_t lot_code_1 = FUSE_CHIP_REGS->FUSE_OPT_LOT_CODE_1 & 0x0FFFFFFF;
|
|
uint32_t fab_code = FUSE_CHIP_REGS->FUSE_OPT_FAB_CODE & 0x3F;
|
|
uint32_t vendor_code = FUSE_CHIP_REGS->FUSE_OPT_VENDOR_CODE & 0xF;
|
|
|
|
/* Hardware Info = OPS_RESERVED || Y_COORD || X_COORD || WAFER_ID || LOT_CODE || FAB_CODE || VENDOR_ID */
|
|
hw_info[0] = (uint32_t)((lot_code_1 << 30) | (wafer_id << 24) | (x_coord << 15) | (y_coord << 6) | (ops_reserved));
|
|
hw_info[1] = (uint32_t)((lot_code_0 << 26) | (lot_code_1 >> 2));
|
|
hw_info[2] = (uint32_t)((fab_code << 26) | (lot_code_0 >> 6));
|
|
hw_info[3] = (uint32_t)(vendor_code);
|
|
|
|
memcpy(dst, hw_info, 0x10);
|
|
}
|
|
|
|
/* Get the Key Generation value. */
|
|
uint32_t fuse_get_5x_key_generation(void) {
|
|
if ((fuse_get_reserved_odm(4) & 0x800) && (fuse_get_reserved_odm(0) == 0x8E61ECAE) && (fuse_get_reserved_odm(1) == 0xF2BA3BB2)) {
|
|
return (fuse_get_reserved_odm(2) & 0x1F);
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Returns the fuse version expected for the firmware. */
|
|
uint32_t fuse_get_expected_fuse_version(uint32_t target_firmware) {
|
|
if (fuse_get_retail_type() != 0) {
|
|
if (target_firmware >= ATMOSPHERE_TARGET_FIRMWARE_10_0_0) {
|
|
return 13;
|
|
} else if (target_firmware >= ATMOSPHERE_TARGET_FIRMWARE_9_1_0) {
|
|
return 12;
|
|
} else if (target_firmware >= ATMOSPHERE_TARGET_FIRMWARE_9_0_0) {
|
|
return 11;
|
|
} else if (target_firmware >= ATMOSPHERE_TARGET_FIRMWARE_8_1_0) {
|
|
return 10;
|
|
} else if (target_firmware >= ATMOSPHERE_TARGET_FIRMWARE_7_0_0) {
|
|
return 9;
|
|
} else if (target_firmware >= ATMOSPHERE_TARGET_FIRMWARE_6_2_0) {
|
|
return 8;
|
|
} else if (target_firmware >= ATMOSPHERE_TARGET_FIRMWARE_6_0_0) {
|
|
return 7;
|
|
} else if (target_firmware >= ATMOSPHERE_TARGET_FIRMWARE_5_0_0) {
|
|
return 6;
|
|
} else if (target_firmware >= ATMOSPHERE_TARGET_FIRMWARE_4_0_0) {
|
|
return 5;
|
|
} else if (target_firmware >= ATMOSPHERE_TARGET_FIRMWARE_3_0_2) {
|
|
return 4;
|
|
} else if (target_firmware >= ATMOSPHERE_TARGET_FIRMWARE_3_0_0) {
|
|
return 3;
|
|
} else if (target_firmware >= ATMOSPHERE_TARGET_FIRMWARE_2_0_0) {
|
|
return 2;
|
|
} else if (target_firmware >= ATMOSPHERE_TARGET_FIRMWARE_1_0_0) {
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
} else {
|
|
return (target_firmware >= ATMOSPHERE_TARGET_FIRMWARE_3_0_0) ? 1 : 0;
|
|
}
|
|
}
|
|
|
|
/* Check for RCM bug patches. */
|
|
bool fuse_has_rcm_bug_patch(void) {
|
|
/* Only check for RCM bug patch once, and cache our result. */
|
|
if (!g_has_checked_for_rcm_bug_patch) {
|
|
/* Some patched units use XUSB in RCM. */
|
|
if (FUSE_CHIP_REGS->FUSE_RESERVED_SW & 0x80) {
|
|
g_has_rcm_bug_patch = true;
|
|
}
|
|
|
|
/* Other units have a proper ipatch instead. */
|
|
{
|
|
uint32_t word_count = FUSE_CHIP_REGS->FUSE_FIRST_BOOTROM_PATCH_SIZE & 0x7f;
|
|
uint32_t word_addr = 191;
|
|
|
|
while (word_count) {
|
|
uint32_t word0 = fuse_hw_read(word_addr);
|
|
uint32_t ipatch_count = (word0 >> 16) & 0xf;
|
|
|
|
for (uint32_t i = 0; i < ipatch_count; i++) {
|
|
uint32_t word = fuse_hw_read(word_addr - (i + 1));
|
|
uint32_t addr = (word >> 16) * 2;
|
|
|
|
if (addr == 0x769a) {
|
|
g_has_rcm_bug_patch = true;
|
|
}
|
|
}
|
|
|
|
word_addr -= word_count;
|
|
word_count = word0 >> 25;
|
|
}
|
|
}
|
|
}
|
|
g_has_checked_for_rcm_bug_patch = true;
|
|
|
|
return g_has_rcm_bug_patch;
|
|
} |