mirror of
https://github.com/Atmosphere-NX/Atmosphere
synced 2025-01-22 06:36:10 +00:00
257 lines
No EOL
19 KiB
C++
257 lines
No EOL
19 KiB
C++
/*
|
|
* Copyright (c) 2018-2020 Atmosphère-NX
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <mesosphere.hpp>
|
|
|
|
namespace ams::kern {
|
|
|
|
namespace {
|
|
|
|
constexpr uintptr_t DramPhysicalAddress = 0x80000000;
|
|
constexpr size_t ReservedEarlyDramSize = 0x60000;
|
|
|
|
constexpr size_t CarveoutAlignment = 0x20000;
|
|
constexpr size_t CarveoutSizeMax = 512_MB - CarveoutAlignment;
|
|
|
|
ALWAYS_INLINE bool SetupUartPhysicalMemoryRegion() {
|
|
#if defined(MESOSPHERE_DEBUG_LOG_USE_UART_A)
|
|
return KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x70006000, 0x40, KMemoryRegionType_Uart | KMemoryRegionAttr_ShouldKernelMap);
|
|
#elif defined(MESOSPHERE_DEBUG_LOG_USE_UART_B)
|
|
return KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x70006040, 0x40, KMemoryRegionType_Uart | KMemoryRegionAttr_ShouldKernelMap);
|
|
#elif defined(MESOSPHERE_DEBUG_LOG_USE_UART_C)
|
|
return KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x70006200, 0x100, KMemoryRegionType_Uart | KMemoryRegionAttr_ShouldKernelMap);
|
|
#elif defined(MESOSPHERE_DEBUG_LOG_USE_UART_D)
|
|
return KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x70006300, 0x100, KMemoryRegionType_Uart | KMemoryRegionAttr_ShouldKernelMap);
|
|
#elif defined(MESOSPHERE_DEBUG_LOG_USE_IRAM_RINGBUFFER)
|
|
return true;
|
|
#else
|
|
#error "Unknown Debug UART device!"
|
|
#endif
|
|
}
|
|
|
|
ALWAYS_INLINE bool SetupPowerManagementControllerMemoryRegion() {
|
|
/* For backwards compatibility, the PMC must remain mappable on < 2.0.0. */
|
|
const auto rtc_restrict_attr = GetTargetFirmware() >= TargetFirmware_2_0_0 ? KMemoryRegionAttr_NoUserMap : static_cast<KMemoryRegionAttr>(0);
|
|
const auto pmc_restrict_attr = GetTargetFirmware() >= TargetFirmware_2_0_0 ? KMemoryRegionAttr_NoUserMap : KMemoryRegionAttr_ShouldKernelMap;
|
|
|
|
return KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x7000E000, 0x400, KMemoryRegionType_None | rtc_restrict_attr) &&
|
|
KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x7000E400, 0xC00, KMemoryRegionType_PowerManagementController | pmc_restrict_attr);
|
|
}
|
|
|
|
void InsertPoolPartitionRegionIntoBothTrees(size_t start, size_t size, KMemoryRegionType phys_type, KMemoryRegionType virt_type, u32 &cur_attr) {
|
|
const u32 attr = cur_attr++;
|
|
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(start, size, phys_type, attr));
|
|
const KMemoryRegion *phys = KMemoryLayout::GetPhysicalMemoryRegionTree().FindByTypeAndAttribute(phys_type, attr);
|
|
MESOSPHERE_INIT_ABORT_UNLESS(phys != nullptr);
|
|
MESOSPHERE_INIT_ABORT_UNLESS(phys->GetEndAddress() != 0);
|
|
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetVirtualMemoryRegionTree().Insert(phys->GetPairAddress(), size, virt_type, attr));
|
|
}
|
|
|
|
}
|
|
|
|
namespace init {
|
|
|
|
void SetupDevicePhysicalMemoryRegions() {
|
|
/* TODO: Give these constexpr defines somewhere? */
|
|
MESOSPHERE_INIT_ABORT_UNLESS(SetupUartPhysicalMemoryRegion());
|
|
MESOSPHERE_INIT_ABORT_UNLESS(SetupPowerManagementControllerMemoryRegion());
|
|
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x70019000, 0x1000, KMemoryRegionType_MemoryController | KMemoryRegionAttr_NoUserMap));
|
|
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x7001C000, 0x1000, KMemoryRegionType_MemoryController0 | KMemoryRegionAttr_NoUserMap));
|
|
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x7001D000, 0x1000, KMemoryRegionType_MemoryController1 | KMemoryRegionAttr_NoUserMap));
|
|
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x50040000, 0x1000, KMemoryRegionType_None | KMemoryRegionAttr_NoUserMap));
|
|
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x50041000, 0x1000, KMemoryRegionType_InterruptDistributor | KMemoryRegionAttr_ShouldKernelMap));
|
|
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x50042000, 0x1000, KMemoryRegionType_InterruptCpuInterface | KMemoryRegionAttr_ShouldKernelMap));
|
|
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x50043000, 0x1D000, KMemoryRegionType_None | KMemoryRegionAttr_NoUserMap));
|
|
|
|
/* Map IRAM unconditionally, to support debug-logging-to-iram build config. */
|
|
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x40000000, 0x40000, KMemoryRegionType_LegacyLpsIram | KMemoryRegionAttr_ShouldKernelMap));
|
|
|
|
if (GetTargetFirmware() >= TargetFirmware_2_0_0) {
|
|
/* Prevent mapping the bpmp exception vectors or the ipatch region. */
|
|
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x6000F000, 0x1000, KMemoryRegionType_None | KMemoryRegionAttr_NoUserMap));
|
|
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x6001DC00, 0x400, KMemoryRegionType_None | KMemoryRegionAttr_NoUserMap));
|
|
} else {
|
|
/* Map devices required for legacy lps driver. */
|
|
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x6000F000, 0x1000, KMemoryRegionType_LegacyLpsExceptionVectors | KMemoryRegionAttr_ShouldKernelMap));
|
|
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x60007000, 0x1000, KMemoryRegionType_LegacyLpsFlowController | KMemoryRegionAttr_ShouldKernelMap));
|
|
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x60004000, 0x1000, KMemoryRegionType_LegacyLpsPrimaryICtlr | KMemoryRegionAttr_ShouldKernelMap));
|
|
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x60001000, 0x1000, KMemoryRegionType_LegacyLpsSemaphore | KMemoryRegionAttr_ShouldKernelMap));
|
|
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x70016000, 0x1000, KMemoryRegionType_LegacyLpsAtomics | KMemoryRegionAttr_ShouldKernelMap));
|
|
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x60006000, 0x1000, KMemoryRegionType_LegacyLpsClkRst | KMemoryRegionAttr_ShouldKernelMap));
|
|
}
|
|
}
|
|
|
|
void SetupDramPhysicalMemoryRegions() {
|
|
const size_t intended_memory_size = KSystemControl::Init::GetIntendedMemorySize();
|
|
const KPhysicalAddress physical_memory_base_address = KSystemControl::Init::GetKernelPhysicalBaseAddress(DramPhysicalAddress);
|
|
|
|
/* Insert blocks into the tree. */
|
|
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(GetInteger(physical_memory_base_address), intended_memory_size, KMemoryRegionType_Dram));
|
|
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(GetInteger(physical_memory_base_address), ReservedEarlyDramSize, KMemoryRegionType_DramReservedEarly));
|
|
}
|
|
|
|
void SetupPoolPartitionMemoryRegions() {
|
|
/* Start by identifying the extents of the DRAM memory region. */
|
|
const auto dram_extents = KMemoryLayout::GetMainMemoryPhysicalExtents();
|
|
MESOSPHERE_INIT_ABORT_UNLESS(dram_extents.GetEndAddress() != 0);
|
|
|
|
/* Determine the end of the pool region. */
|
|
const uintptr_t pool_end = dram_extents.GetEndAddress() - KTraceBufferSize;
|
|
|
|
/* Find the start of the kernel DRAM region. */
|
|
const KMemoryRegion *kernel_dram_region = KMemoryLayout::GetPhysicalMemoryRegionTree().FindFirstDerived(KMemoryRegionType_DramKernelBase);
|
|
MESOSPHERE_INIT_ABORT_UNLESS(kernel_dram_region != nullptr);
|
|
|
|
const uintptr_t kernel_dram_start = kernel_dram_region->GetAddress();
|
|
MESOSPHERE_INIT_ABORT_UNLESS(util::IsAligned(kernel_dram_start, CarveoutAlignment));
|
|
|
|
/* Find the start of the pool partitions region. */
|
|
const KMemoryRegion *pool_partitions_region = KMemoryLayout::GetPhysicalMemoryRegionTree().FindByTypeAndAttribute(KMemoryRegionType_DramPoolPartition, 0);
|
|
MESOSPHERE_INIT_ABORT_UNLESS(pool_partitions_region != nullptr);
|
|
const uintptr_t pool_partitions_start = pool_partitions_region->GetAddress();
|
|
|
|
/* Setup the pool partition layouts. */
|
|
if (GetTargetFirmware() >= TargetFirmware_5_0_0) {
|
|
/* On 5.0.0+, setup modern 4-pool-partition layout. */
|
|
|
|
/* Get Application and Applet pool sizes. */
|
|
const size_t application_pool_size = KSystemControl::Init::GetApplicationPoolSize();
|
|
const size_t applet_pool_size = KSystemControl::Init::GetAppletPoolSize();
|
|
const size_t unsafe_system_pool_min_size = KSystemControl::Init::GetMinimumNonSecureSystemPoolSize();
|
|
|
|
/* Decide on starting addresses for our pools. */
|
|
const uintptr_t application_pool_start = pool_end - application_pool_size;
|
|
const uintptr_t applet_pool_start = application_pool_start - applet_pool_size;
|
|
const uintptr_t unsafe_system_pool_start = std::min(kernel_dram_start + CarveoutSizeMax, util::AlignDown(applet_pool_start - unsafe_system_pool_min_size, CarveoutAlignment));
|
|
const size_t unsafe_system_pool_size = applet_pool_start - unsafe_system_pool_start;
|
|
|
|
/* We want to arrange application pool depending on where the middle of dram is. */
|
|
const uintptr_t dram_midpoint = (dram_extents.GetAddress() + dram_extents.GetEndAddress()) / 2;
|
|
u32 cur_pool_attr = 0;
|
|
size_t total_overhead_size = 0;
|
|
if (dram_extents.GetEndAddress() <= dram_midpoint || dram_midpoint <= application_pool_start) {
|
|
InsertPoolPartitionRegionIntoBothTrees(application_pool_start, application_pool_size, KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool, cur_pool_attr);
|
|
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(application_pool_size);
|
|
} else {
|
|
const size_t first_application_pool_size = dram_midpoint - application_pool_start;
|
|
const size_t second_application_pool_size = application_pool_start + application_pool_size - dram_midpoint;
|
|
InsertPoolPartitionRegionIntoBothTrees(application_pool_start, first_application_pool_size, KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool, cur_pool_attr);
|
|
InsertPoolPartitionRegionIntoBothTrees(dram_midpoint, second_application_pool_size, KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool, cur_pool_attr);
|
|
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(first_application_pool_size);
|
|
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(second_application_pool_size);
|
|
}
|
|
|
|
/* Insert the applet pool. */
|
|
InsertPoolPartitionRegionIntoBothTrees(applet_pool_start, applet_pool_size, KMemoryRegionType_DramAppletPool, KMemoryRegionType_VirtualDramAppletPool, cur_pool_attr);
|
|
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(applet_pool_size);
|
|
|
|
/* Insert the nonsecure system pool. */
|
|
InsertPoolPartitionRegionIntoBothTrees(unsafe_system_pool_start, unsafe_system_pool_size, KMemoryRegionType_DramSystemNonSecurePool, KMemoryRegionType_VirtualDramSystemNonSecurePool, cur_pool_attr);
|
|
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(unsafe_system_pool_size);
|
|
|
|
/* Insert the pool management region. */
|
|
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize((unsafe_system_pool_start - pool_partitions_start) - total_overhead_size);
|
|
const uintptr_t pool_management_start = unsafe_system_pool_start - total_overhead_size;
|
|
const size_t pool_management_size = total_overhead_size;
|
|
u32 pool_management_attr = 0;
|
|
InsertPoolPartitionRegionIntoBothTrees(pool_management_start, pool_management_size, KMemoryRegionType_DramPoolManagement, KMemoryRegionType_VirtualDramPoolManagement, pool_management_attr);
|
|
|
|
/* Insert the system pool. */
|
|
const uintptr_t system_pool_size = pool_management_start - pool_partitions_start;
|
|
InsertPoolPartitionRegionIntoBothTrees(pool_partitions_start, system_pool_size, KMemoryRegionType_DramSystemPool, KMemoryRegionType_VirtualDramSystemPool, cur_pool_attr);
|
|
} else {
|
|
/* On < 5.0.0, setup a legacy 2-pool layout for backwards compatibility. */
|
|
|
|
static_assert(KMemoryManager::Pool_Count == 4);
|
|
static_assert(KMemoryManager::Pool_Unsafe == KMemoryManager::Pool_Application);
|
|
static_assert(KMemoryManager::Pool_Secure == KMemoryManager::Pool_System);
|
|
|
|
/* Get Secure pool size. */
|
|
const size_t secure_pool_size = [] ALWAYS_INLINE_LAMBDA (auto target_firmware) -> size_t {
|
|
constexpr size_t LegacySecureKernelSize = 8_MB; /* KPageBuffer pages, other small kernel allocations. */
|
|
constexpr size_t LegacySecureMiscSize = 1_MB; /* Miscellaneous pages for secure process mapping. */
|
|
constexpr size_t LegacySecureHeapSize = 24_MB; /* Heap pages for secure process mapping (fs). */
|
|
constexpr size_t LegacySecureEsSize = 1_MB + 232_KB; /* Size for additional secure process (es, 4.0.0+). */
|
|
|
|
/* The baseline size for the secure region is enough to cover any allocations the kernel might make. */
|
|
size_t size = LegacySecureKernelSize;
|
|
|
|
/* If on 2.0.0+, initial processes will fall within the secure region. */
|
|
if (target_firmware >= TargetFirmware_2_0_0) {
|
|
/* Account for memory used directly for the processes. */
|
|
size += GetInitialProcessesSecureMemorySize();
|
|
|
|
/* Account for heap and transient memory used by the processes. */
|
|
size += LegacySecureHeapSize + LegacySecureMiscSize;
|
|
}
|
|
|
|
/* If on 4.0.0+, any process may use secure memory via a create process flag. */
|
|
/* In process this is used for es alone, and the secure pool's size should be */
|
|
/* increased to accommodate es's binary. */
|
|
if (target_firmware >= TargetFirmware_4_0_0) {
|
|
size += LegacySecureEsSize;
|
|
}
|
|
|
|
return size;
|
|
}(GetTargetFirmware());
|
|
|
|
/* Calculate the overhead for the secure and (defunct) applet/non-secure-system pools. */
|
|
size_t total_overhead_size = KMemoryManager::CalculateManagementOverheadSize(secure_pool_size);
|
|
|
|
/* Calculate the overhead for (an amount larger than) the unsafe pool. */
|
|
const size_t approximate_total_overhead_size = total_overhead_size + KMemoryManager::CalculateManagementOverheadSize((pool_end - pool_partitions_start) - secure_pool_size - total_overhead_size) + 2 * PageSize;
|
|
|
|
/* Determine the start of the unsafe region. */
|
|
const uintptr_t unsafe_memory_start = util::AlignUp(pool_partitions_start + secure_pool_size + approximate_total_overhead_size, CarveoutAlignment);
|
|
|
|
/* Determine the start of the pool regions. */
|
|
const uintptr_t application_pool_start = unsafe_memory_start;
|
|
|
|
/* Determine the pool sizes. */
|
|
const size_t application_pool_size = pool_end - application_pool_start;
|
|
|
|
/* We want to arrange application pool depending on where the middle of dram is. */
|
|
const uintptr_t dram_midpoint = (dram_extents.GetAddress() + dram_extents.GetEndAddress()) / 2;
|
|
u32 cur_pool_attr = 0;
|
|
if (dram_extents.GetEndAddress() <= dram_midpoint || dram_midpoint <= application_pool_start) {
|
|
InsertPoolPartitionRegionIntoBothTrees(application_pool_start, application_pool_size, KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool, cur_pool_attr);
|
|
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(application_pool_size);
|
|
} else {
|
|
const size_t first_application_pool_size = dram_midpoint - application_pool_start;
|
|
const size_t second_application_pool_size = application_pool_start + application_pool_size - dram_midpoint;
|
|
InsertPoolPartitionRegionIntoBothTrees(application_pool_start, first_application_pool_size, KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool, cur_pool_attr);
|
|
InsertPoolPartitionRegionIntoBothTrees(dram_midpoint, second_application_pool_size, KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool, cur_pool_attr);
|
|
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(first_application_pool_size);
|
|
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(second_application_pool_size);
|
|
}
|
|
|
|
/* Insert the secure pool. */
|
|
InsertPoolPartitionRegionIntoBothTrees(pool_partitions_start, secure_pool_size, KMemoryRegionType_DramSystemPool, KMemoryRegionType_VirtualDramSystemPool, cur_pool_attr);
|
|
|
|
/* Insert the pool management region. */
|
|
MESOSPHERE_INIT_ABORT_UNLESS(total_overhead_size <= approximate_total_overhead_size);
|
|
|
|
const uintptr_t pool_management_start = pool_partitions_start + secure_pool_size;
|
|
const size_t pool_management_size = unsafe_memory_start - pool_management_start;
|
|
MESOSPHERE_INIT_ABORT_UNLESS(total_overhead_size <= pool_management_size);
|
|
|
|
u32 pool_management_attr = 0;
|
|
InsertPoolPartitionRegionIntoBothTrees(pool_management_start, pool_management_size, KMemoryRegionType_DramPoolManagement, KMemoryRegionType_VirtualDramPoolManagement, pool_management_attr);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
} |