Atmosphere/libraries/libmesosphere/include/mesosphere/kern_k_scheduler.hpp

233 lines
9.8 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <mesosphere/kern_select_cpu.hpp>
#include <mesosphere/kern_k_thread.hpp>
#include <mesosphere/kern_k_priority_queue.hpp>
#include <mesosphere/kern_k_interrupt_task_manager.hpp>
#include <mesosphere/kern_k_scheduler_lock.hpp>
namespace ams::kern {
using KSchedulerPriorityQueue = KPriorityQueue<KThread, cpu::NumCores, ams::svc::LowestThreadPriority, ams::svc::HighestThreadPriority>;
static_assert(std::is_same<KSchedulerPriorityQueue::AffinityMaskType, KAffinityMask>::value);
static_assert(KSchedulerPriorityQueue::NumCores == cpu::NumCores);
static_assert(KSchedulerPriorityQueue::NumPriority == BITSIZEOF(u64));
class KScopedSchedulerLock;
class KScopedSchedulerLockAndSleep;
class KScheduler {
NON_COPYABLE(KScheduler);
NON_MOVEABLE(KScheduler);
public:
static constexpr s32 HighestCoreMigrationAllowedPriority = 2;
static_assert(ams::svc::LowestThreadPriority >= HighestCoreMigrationAllowedPriority);
static_assert(ams::svc::HighestThreadPriority <= HighestCoreMigrationAllowedPriority);
struct SchedulingState {
util::Atomic<bool> needs_scheduling{false};
bool interrupt_task_runnable{false};
bool should_count_idle{false};
u64 idle_count{0};
KThread *highest_priority_thread{nullptr};
void *idle_thread_stack{nullptr};
KThread *prev_thread{nullptr};
KInterruptTaskManager *interrupt_task_manager{nullptr};
constexpr SchedulingState() = default;
};
private:
friend class KScopedSchedulerLock;
friend class KScopedSchedulerLockAndSleep;
friend class KScopedDisableDispatch;
private:
SchedulingState m_state;
bool m_is_active;
s32 m_core_id;
s64 m_last_context_switch_time;
KThread *m_idle_thread;
util::Atomic<KThread *> m_current_thread;
public:
constexpr KScheduler() : m_state(), m_is_active(false), m_core_id(0), m_last_context_switch_time(0), m_idle_thread(nullptr), m_current_thread(nullptr)
{
m_state.needs_scheduling = true;
m_state.interrupt_task_runnable = false;
m_state.should_count_idle = false;
m_state.idle_count = 0;
m_state.idle_thread_stack = nullptr;
m_state.highest_priority_thread = nullptr;
m_state.prev_thread = nullptr;
m_state.interrupt_task_manager = nullptr;
}
NOINLINE void Initialize(KThread *idle_thread);
NOINLINE void Activate();
ALWAYS_INLINE void SetInterruptTaskRunnable() {
m_state.interrupt_task_runnable = true;
m_state.needs_scheduling = true;
}
ALWAYS_INLINE void RequestScheduleOnInterrupt() {
m_state.needs_scheduling = true;
if (CanSchedule()) {
this->ScheduleOnInterrupt();
}
}
ALWAYS_INLINE u64 GetIdleCount() const {
return m_state.idle_count;
}
ALWAYS_INLINE KThread *GetIdleThread() const {
return m_idle_thread;
}
ALWAYS_INLINE KThread *GetPreviousThread() const {
return m_state.prev_thread;
}
ALWAYS_INLINE KThread *GetSchedulerCurrentThread() const {
return m_current_thread.Load();
}
ALWAYS_INLINE s64 GetLastContextSwitchTime() const {
return m_last_context_switch_time;
}
private:
/* Static private API. */
static ALWAYS_INLINE KSchedulerPriorityQueue &GetPriorityQueue() { return s_priority_queue; }
static NOINLINE u64 UpdateHighestPriorityThreadsImpl();
public:
/* Static public API. */
static ALWAYS_INLINE bool CanSchedule() { return GetCurrentThread().GetDisableDispatchCount() == 0; }
static ALWAYS_INLINE bool IsSchedulerLockedByCurrentThread() { return s_scheduler_lock.IsLockedByCurrentThread(); }
static ALWAYS_INLINE bool IsSchedulerUpdateNeeded() { return s_scheduler_update_needed; }
static ALWAYS_INLINE void SetSchedulerUpdateNeeded() { s_scheduler_update_needed = true; }
static ALWAYS_INLINE void ClearSchedulerUpdateNeeded() { s_scheduler_update_needed = false; }
static ALWAYS_INLINE void DisableScheduling() {
MESOSPHERE_ASSERT(GetCurrentThread().GetDisableDispatchCount() >= 0);
GetCurrentThread().DisableDispatch();
}
static ALWAYS_INLINE void EnableScheduling(u64 cores_needing_scheduling) {
MESOSPHERE_ASSERT(GetCurrentThread().GetDisableDispatchCount() >= 1);
GetCurrentScheduler().RescheduleOtherCores(cores_needing_scheduling);
if (GetCurrentThread().GetDisableDispatchCount() > 1) {
GetCurrentThread().EnableDispatch();
} else {
GetCurrentScheduler().RescheduleCurrentCore();
}
}
static ALWAYS_INLINE u64 UpdateHighestPriorityThreads() {
if (IsSchedulerUpdateNeeded()) {
return UpdateHighestPriorityThreadsImpl();
} else {
return 0;
}
}
static NOINLINE void ClearPreviousThread(KThread *thread);
static NOINLINE void OnThreadStateChanged(KThread *thread, KThread::ThreadState old_state);
static NOINLINE void OnThreadPriorityChanged(KThread *thread, s32 old_priority);
static NOINLINE void OnThreadAffinityMaskChanged(KThread *thread, const KAffinityMask &old_affinity, s32 old_core);
static NOINLINE void RotateScheduledQueue(s32 priority, s32 core_id);
static NOINLINE void YieldWithoutCoreMigration();
static NOINLINE void YieldWithCoreMigration();
static NOINLINE void YieldToAnyThread();
private:
/* Instanced private API. */
void ScheduleImpl();
void SwitchThread(KThread *next_thread);
ALWAYS_INLINE void Schedule() {
MESOSPHERE_ASSERT(GetCurrentThread().GetDisableDispatchCount() == 1);
MESOSPHERE_ASSERT(m_core_id == GetCurrentCoreId());
this->ScheduleImpl();
}
ALWAYS_INLINE void ScheduleOnInterrupt() {
GetCurrentThread().DisableDispatch();
this->Schedule();
GetCurrentThread().EnableDispatch();
}
void RescheduleOtherCores(u64 cores_needing_scheduling);
ALWAYS_INLINE void RescheduleCurrentCore() {
MESOSPHERE_ASSERT(GetCurrentThread().GetDisableDispatchCount() == 1);
GetCurrentThread().EnableDispatch();
if (m_state.needs_scheduling.Load()) {
/* Disable interrupts, and then check again if rescheduling is needed. */
KScopedInterruptDisable intr_disable;
GetCurrentScheduler().RescheduleCurrentCoreImpl();
}
}
ALWAYS_INLINE void RescheduleCurrentCoreImpl() {
/* Check that scheduling is needed. */
if (AMS_LIKELY(m_state.needs_scheduling.Load())) {
GetCurrentThread().DisableDispatch();
this->Schedule();
GetCurrentThread().EnableDispatch();
}
}
NOINLINE u64 UpdateHighestPriorityThread(KThread *thread);
public:
using LockType = KAbstractSchedulerLock<KScheduler>;
private:
static bool s_scheduler_update_needed;
static KSchedulerPriorityQueue s_priority_queue;
static LockType s_scheduler_lock;
public:
static consteval bool ValidateAssemblyOffsets();
};
consteval bool KScheduler::ValidateAssemblyOffsets() {
static_assert(AMS_OFFSETOF(KScheduler, m_state.needs_scheduling) == KSCHEDULER_NEEDS_SCHEDULING);
static_assert(AMS_OFFSETOF(KScheduler, m_state.interrupt_task_runnable) == KSCHEDULER_INTERRUPT_TASK_RUNNABLE);
static_assert(AMS_OFFSETOF(KScheduler, m_state.highest_priority_thread) == KSCHEDULER_HIGHEST_PRIORITY_THREAD);
static_assert(AMS_OFFSETOF(KScheduler, m_state.idle_thread_stack) == KSCHEDULER_IDLE_THREAD_STACK);
static_assert(AMS_OFFSETOF(KScheduler, m_state.prev_thread) == KSCHEDULER_PREVIOUS_THREAD);
static_assert(AMS_OFFSETOF(KScheduler, m_state.interrupt_task_manager) == KSCHEDULER_INTERRUPT_TASK_MANAGER);
return true;
}
static_assert(KScheduler::ValidateAssemblyOffsets());
class KScopedSchedulerLock : KScopedLock<KScheduler::LockType> {
public:
explicit ALWAYS_INLINE KScopedSchedulerLock() : KScopedLock(KScheduler::s_scheduler_lock) { /* ... */ }
ALWAYS_INLINE ~KScopedSchedulerLock() { /* ... */ }
};
}