Atmosphere/libraries/libvapours/source/crypto/impl/crypto_sha3_impl.cpp

241 lines
8.5 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <vapours.hpp>
namespace ams::crypto::impl {
namespace {
constexpr auto NumRounds = 24;
constexpr const u64 IotaRoundConstant[NumRounds] = {
UINT64_C(0x0000000000000001), UINT64_C(0x0000000000008082),
UINT64_C(0x800000000000808A), UINT64_C(0x8000000080008000),
UINT64_C(0x000000000000808B), UINT64_C(0x0000000080000001),
UINT64_C(0x8000000080008081), UINT64_C(0x8000000000008009),
UINT64_C(0x000000000000008A), UINT64_C(0x0000000000000088),
UINT64_C(0x0000000080008009), UINT64_C(0x000000008000000A),
UINT64_C(0x000000008000808B), UINT64_C(0x800000000000008B),
UINT64_C(0x8000000000008089), UINT64_C(0x8000000000008003),
UINT64_C(0x8000000000008002), UINT64_C(0x8000000000000080),
UINT64_C(0x000000000000800A), UINT64_C(0x800000008000000A),
UINT64_C(0x8000000080008081), UINT64_C(0x8000000000008080),
UINT64_C(0x0000000080000001), UINT64_C(0x8000000080008008)
};
constexpr const int RhoShiftBit[NumRounds] = {
1, 3, 6, 10, 15, 21, 28, 36,
45, 55, 2, 14, 27, 41, 56, 8,
25, 43, 62, 18, 39, 61, 20, 44
};
constexpr const int RhoNextIndex[NumRounds] = {
10, 7, 11, 17, 18, 3, 5, 16,
8, 21, 24, 4, 15, 23, 19, 13,
12, 2, 20, 14, 22, 9, 6, 1
};
}
template<size_t HashSize>
void Sha3Impl<HashSize>::Initialize() {
/* Clear internal state. */
std::memset(m_internal_state, 0, sizeof(m_internal_state));
/* Reset buffered bytes. */
m_buffered_bytes = 0;
/* Set state. */
m_state = State_Initialized;
}
template<size_t HashSize>
void Sha3Impl<HashSize>::Update(const void *data, size_t size) {
/* Verify we're in a state to update. */
AMS_ASSERT(m_state == State_Initialized);
/* Process we have anything buffered. */
const u8 *data8 = static_cast<const u8 *>(data);
size_t remaining = size;
if (m_buffered_bytes > 0) {
/* Determine how much we can copy. */
const size_t copy_size = std::min(BlockSize - m_buffered_bytes, remaining);
/* Mix the bytes into our state. */
u8 *dst8 = reinterpret_cast<u8 *>(m_internal_state) + m_buffered_bytes;
for (size_t i = 0; i < copy_size; ++i) {
dst8[i] ^= data8[i];
}
/* Advance. */
data8 += copy_size;
remaining -= copy_size;
m_buffered_bytes += copy_size;
/* Process a block, if we filled one. */
if (m_buffered_bytes == BlockSize) {
this->ProcessBlock();
m_buffered_bytes = 0;
}
}
/* Process blocks, if we have any. */
while (remaining >= BlockSize) {
/* Mix the bytes into our state. */
u8 *dst8 = reinterpret_cast<u8 *>(m_internal_state);
for (size_t i = 0; i < BlockSize; ++i) {
dst8[i] ^= data8[i];
}
this->ProcessBlock();
data8 += BlockSize;
remaining -= BlockSize;
}
/* Copy any leftover data to our buffer. */
if (remaining > 0) {
u8 *dst8 = reinterpret_cast<u8 *>(m_internal_state);
for (size_t i = 0; i < remaining; ++i) {
dst8[i] ^= data8[i];
}
m_buffered_bytes = remaining;
}
}
template<size_t HashSize>
void Sha3Impl<HashSize>::GetHash(void *dst, size_t size) {
/* Verify we're in a state to get hash. */
AMS_ASSERT(m_state == State_Initialized || m_state == State_Done);
AMS_ASSERT(size >= HashSize);
AMS_UNUSED(size);
/* If we need to, process the last block. */
if (m_state == State_Initialized) {
this->ProcessLastBlock();
m_state = State_Done;
}
/* Copy the output hash. */
std::memcpy(dst, m_internal_state, HashSize);
}
template<size_t HashSize>
void Sha3Impl<HashSize>::InitializeWithContext(const Sha3Context *context) {
/* Check the context is for the right hash size. */
AMS_ASSERT(context->hash_size == HashSize);
/* Set buffered bytes. */
m_buffered_bytes = context->buffered_bytes;
/* Copy state in from the context. */
std::memcpy(m_internal_state, context->internal_state, sizeof(m_internal_state));
/* Reset other fields. */
m_state = State_Initialized;
}
template<size_t HashSize>
void Sha3Impl<HashSize>::GetContext(Sha3Context *context) const {
/* Check our state. */
AMS_ASSERT(m_state == State_Initialized);
/* Set the output hash size. */
context->hash_size = HashSize;
/* Set buffered bytes. */
context->buffered_bytes = m_buffered_bytes;
/* Copy out the context. */
std::memcpy(context->internal_state, m_internal_state, sizeof(context->internal_state));
}
template<size_t HashSize>
void Sha3Impl<HashSize>::ProcessBlock() {
/* Ensure correct endianness. */
if constexpr (util::IsBigEndian()) {
for (size_t i = 0; i < util::size(m_internal_state); ++i) {
m_internal_state[i] = util::LoadLittleEndian<u64>(m_internal_state + i);
}
}
/* Perform all rounds. */
uint64_t tmp, C[5];
for (auto round = 0; round < NumRounds; ++round) {
/* Handle theta. */
for (size_t i = 0; i < 5; ++i) {
C[i] = m_internal_state[i] ^ m_internal_state[i + 5] ^ m_internal_state[i + 10] ^ m_internal_state[i + 15] ^ m_internal_state[i + 20];
}
for (size_t i = 0; i < 5; ++i) {
tmp = C[(i + 4) % 5] ^ util::RotateLeft<u64>(C[(i + 1) % 5], 1);
for (size_t j = 0; j < 5; ++j) {
m_internal_state[5 * j + i] ^= tmp;
}
}
/* Handle rho/pi. */
tmp = m_internal_state[1];
for (size_t i = 0; i < NumRounds; ++i) {
const auto rho_next_idx = RhoNextIndex[i];
C[0] = m_internal_state[rho_next_idx];
m_internal_state[rho_next_idx] = util::RotateLeft<u64>(tmp, RhoShiftBit[i]);
tmp = C[0];
}
/* Handle chi. */
for (size_t i = 0; i < 5; ++i) {
for (size_t j = 0; j < 5; ++j) {
C[j] = m_internal_state[5 * i + j];
}
for (size_t j = 0; j < 5; ++j) {
m_internal_state[5 * i + j] ^= (~C[(j + 1) % 5]) & C[(j + 2) % 5];
}
}
/* Handle iota. */
m_internal_state[0] ^= IotaRoundConstant[round];
}
/* Ensure correct endianness. */
if constexpr (util::IsBigEndian()) {
for (size_t i = 0; i < util::size(m_internal_state); ++i) {
util::StoreLittleEndian<u64>(m_internal_state + i, m_internal_state[i]);
}
}
}
template<size_t HashSize>
void Sha3Impl<HashSize>::ProcessLastBlock() {
/* Mix final bits (011) into our state. */
reinterpret_cast<u8 *>(m_internal_state)[m_buffered_bytes] ^= 0b110;
/* Mix in the high bit of the last word in our block. */
constexpr u64 FinalMask = UINT64_C(0x8000000000000000);
m_internal_state[(BlockSize / sizeof(u64)) - 1] ^= FinalMask;
/* Process the last block. */
this->ProcessBlock();
}
/* Explicitly instantiate the supported hash sizes. */
template class Sha3Impl<224 / BITSIZEOF(u8)>;
template class Sha3Impl<256 / BITSIZEOF(u8)>;
template class Sha3Impl<384 / BITSIZEOF(u8)>;
template class Sha3Impl<512 / BITSIZEOF(u8)>;
}