Atmosphere/libraries/libmesosphere/source/kern_k_memory_layout.board.nintendo_nx.cpp

273 lines
21 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mesosphere.hpp>
namespace ams::kern {
namespace {
constexpr size_t ReservedEarlyDramSize = 0x60000;
constexpr size_t CarveoutAlignment = 0x20000;
constexpr size_t CarveoutSizeMax = 512_MB - CarveoutAlignment;
template<typename... T> requires (std::same_as<T, KMemoryRegionAttr> && ...)
constexpr ALWAYS_INLINE KMemoryRegionType GetMemoryRegionType(KMemoryRegionType base, T... attr) {
return util::FromUnderlying<KMemoryRegionType>(util::ToUnderlying(base) | (util::ToUnderlying<T>(attr) | ...));
}
ALWAYS_INLINE bool SetupUartPhysicalMemoryRegion() {
#if defined(MESOSPHERE_DEBUG_LOG_USE_UART)
switch (KSystemControl::Init::GetDebugLogUartPort()) {
case 0: return KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x70006000, 0x40, GetMemoryRegionType(KMemoryRegionType_Uart, KMemoryRegionAttr_ShouldKernelMap));
case 1: return KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x70006040, 0x40, GetMemoryRegionType(KMemoryRegionType_Uart, KMemoryRegionAttr_ShouldKernelMap));
case 2: return KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x70006200, 0x100, GetMemoryRegionType(KMemoryRegionType_Uart, KMemoryRegionAttr_ShouldKernelMap));
case 3: return KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x70006300, 0x100, GetMemoryRegionType(KMemoryRegionType_Uart, KMemoryRegionAttr_ShouldKernelMap));
default: return false;
}
#elif defined(MESOSPHERE_DEBUG_LOG_USE_IRAM_RINGBUFFER)
return true;
#else
#error "Unknown Debug UART device!"
#endif
}
ALWAYS_INLINE bool SetupPowerManagementControllerMemoryRegion() {
/* For backwards compatibility, the PMC must remain mappable on < 2.0.0. */
const KMemoryRegionAttr rtc_restrict_attr = GetTargetFirmware() >= TargetFirmware_2_0_0 ? KMemoryRegionAttr_NoUserMap : static_cast<KMemoryRegionAttr>(0);
const KMemoryRegionAttr pmc_restrict_attr = GetTargetFirmware() >= TargetFirmware_2_0_0 ? KMemoryRegionAttr_NoUserMap : KMemoryRegionAttr_ShouldKernelMap;
return KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x7000E000, 0x400, GetMemoryRegionType(KMemoryRegionType_None, rtc_restrict_attr)) &&
KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x7000E400, 0xC00, GetMemoryRegionType(KMemoryRegionType_PowerManagementController, pmc_restrict_attr));
}
void InsertPoolPartitionRegionIntoBothTrees(size_t start, size_t size, KMemoryRegionType phys_type, KMemoryRegionType virt_type, u32 &cur_attr) {
const u32 attr = cur_attr++;
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(start, size, phys_type, attr));
const KMemoryRegion *phys = KMemoryLayout::GetPhysicalMemoryRegionTree().FindByTypeAndAttribute(phys_type, attr);
MESOSPHERE_INIT_ABORT_UNLESS(phys != nullptr);
MESOSPHERE_INIT_ABORT_UNLESS(phys->GetEndAddress() != 0);
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetVirtualMemoryRegionTree().Insert(phys->GetPairAddress(), size, virt_type, attr));
}
}
namespace init {
void SetupDevicePhysicalMemoryRegions() {
/* TODO: Give these constexpr defines somewhere? */
MESOSPHERE_INIT_ABORT_UNLESS(SetupUartPhysicalMemoryRegion());
MESOSPHERE_INIT_ABORT_UNLESS(SetupPowerManagementControllerMemoryRegion());
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x70019000, 0x1000, GetMemoryRegionType(KMemoryRegionType_MemoryController, KMemoryRegionAttr_NoUserMap)));
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x7001C000, 0x1000, GetMemoryRegionType(KMemoryRegionType_MemoryController0, KMemoryRegionAttr_NoUserMap)));
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x7001D000, 0x1000, GetMemoryRegionType(KMemoryRegionType_MemoryController1, KMemoryRegionAttr_NoUserMap)));
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x50040000, 0x1000, GetMemoryRegionType(KMemoryRegionType_None, KMemoryRegionAttr_NoUserMap)));
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x50041000, 0x1000, GetMemoryRegionType(KMemoryRegionType_InterruptDistributor, KMemoryRegionAttr_ShouldKernelMap)));
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x50042000, 0x1000, GetMemoryRegionType(KMemoryRegionType_InterruptCpuInterface, KMemoryRegionAttr_ShouldKernelMap)));
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x50043000, 0x1D000, GetMemoryRegionType(KMemoryRegionType_None, KMemoryRegionAttr_NoUserMap)));
/* Map IRAM unconditionally, to support debug-logging-to-iram build config. */
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x40000000, 0x40000, GetMemoryRegionType(KMemoryRegionType_LegacyLpsIram, KMemoryRegionAttr_ShouldKernelMap)));
if (GetTargetFirmware() >= TargetFirmware_2_0_0) {
/* Prevent mapping the bpmp exception vectors or the ipatch region. */
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x6000F000, 0x1000, GetMemoryRegionType(KMemoryRegionType_None, KMemoryRegionAttr_NoUserMap)));
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x6001DC00, 0x400, GetMemoryRegionType(KMemoryRegionType_None, KMemoryRegionAttr_NoUserMap)));
} else {
/* Map devices required for legacy lps driver. */
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x6000F000, 0x1000, GetMemoryRegionType(KMemoryRegionType_LegacyLpsExceptionVectors, KMemoryRegionAttr_ShouldKernelMap)));
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x60007000, 0x1000, GetMemoryRegionType(KMemoryRegionType_LegacyLpsFlowController, KMemoryRegionAttr_ShouldKernelMap)));
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x60004000, 0x1000, GetMemoryRegionType(KMemoryRegionType_LegacyLpsPrimaryICtlr, KMemoryRegionAttr_ShouldKernelMap)));
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x60001000, 0x1000, GetMemoryRegionType(KMemoryRegionType_LegacyLpsSemaphore, KMemoryRegionAttr_ShouldKernelMap)));
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x70016000, 0x1000, GetMemoryRegionType(KMemoryRegionType_LegacyLpsAtomics, KMemoryRegionAttr_ShouldKernelMap)));
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(0x60006000, 0x1000, GetMemoryRegionType(KMemoryRegionType_LegacyLpsClkRst, KMemoryRegionAttr_ShouldKernelMap)));
}
}
void SetupDramPhysicalMemoryRegions() {
const size_t intended_memory_size = KSystemControl::Init::GetIntendedMemorySize();
const KPhysicalAddress physical_memory_base_address = KSystemControl::Init::GetKernelPhysicalBaseAddress(ams::kern::MainMemoryAddress);
/* Insert blocks into the tree. */
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(GetInteger(physical_memory_base_address), intended_memory_size, KMemoryRegionType_Dram));
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(GetInteger(physical_memory_base_address), ReservedEarlyDramSize, KMemoryRegionType_DramReservedEarly));
}
void SetupPoolPartitionMemoryRegions() {
/* Start by identifying the extents of the DRAM memory region. */
const auto dram_extents = KMemoryLayout::GetMainMemoryPhysicalExtents();
MESOSPHERE_INIT_ABORT_UNLESS(dram_extents.GetEndAddress() != 0);
/* Find the pool partitions region. */
const KMemoryRegion *pool_partitions_region = KMemoryLayout::GetPhysicalMemoryRegionTree().FindByTypeAndAttribute(KMemoryRegionType_DramPoolPartition, 0);
MESOSPHERE_INIT_ABORT_UNLESS(pool_partitions_region != nullptr);
const uintptr_t pool_partitions_start = pool_partitions_region->GetAddress();
/* Determine the end of the pool region. */
const uintptr_t pool_end = pool_partitions_region->GetEndAddress();
MESOSPHERE_INIT_ABORT_UNLESS(pool_end == dram_extents.GetEndAddress());
/* Find the start of the kernel DRAM region. */
const KMemoryRegion *kernel_dram_region = KMemoryLayout::GetPhysicalMemoryRegionTree().FindFirstDerived(KMemoryRegionType_DramKernelBase);
MESOSPHERE_INIT_ABORT_UNLESS(kernel_dram_region != nullptr);
const uintptr_t kernel_dram_start = kernel_dram_region->GetAddress();
MESOSPHERE_INIT_ABORT_UNLESS(util::IsAligned(kernel_dram_start, CarveoutAlignment));
/* Setup the pool partition layouts. */
if (GetTargetFirmware() >= TargetFirmware_5_0_0) {
/* On 5.0.0+, setup modern 4-pool-partition layout. */
/* Get Application and Applet pool sizes. */
const size_t application_pool_size = KSystemControl::Init::GetApplicationPoolSize();
const size_t applet_pool_size = KSystemControl::Init::GetAppletPoolSize();
const size_t unsafe_system_pool_min_size = KSystemControl::Init::GetMinimumNonSecureSystemPoolSize();
/* Decide on starting addresses for our pools. */
const uintptr_t application_pool_start = pool_end - application_pool_size;
const uintptr_t applet_pool_start = application_pool_start - applet_pool_size;
const uintptr_t unsafe_system_pool_start = std::min(kernel_dram_start + CarveoutSizeMax, util::AlignDown(applet_pool_start - unsafe_system_pool_min_size, CarveoutAlignment));
const size_t unsafe_system_pool_size = applet_pool_start - unsafe_system_pool_start;
/* We want to arrange application pool depending on where the middle of dram is. */
const uintptr_t dram_midpoint = (dram_extents.GetAddress() + dram_extents.GetEndAddress()) / 2;
u32 cur_pool_attr = 0;
size_t total_overhead_size = 0;
if (dram_extents.GetEndAddress() <= dram_midpoint || dram_midpoint <= application_pool_start) {
InsertPoolPartitionRegionIntoBothTrees(application_pool_start, application_pool_size, KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool, cur_pool_attr);
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(application_pool_size);
} else {
const size_t first_application_pool_size = dram_midpoint - application_pool_start;
const size_t second_application_pool_size = application_pool_start + application_pool_size - dram_midpoint;
InsertPoolPartitionRegionIntoBothTrees(application_pool_start, first_application_pool_size, KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool, cur_pool_attr);
InsertPoolPartitionRegionIntoBothTrees(dram_midpoint, second_application_pool_size, KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool, cur_pool_attr);
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(first_application_pool_size);
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(second_application_pool_size);
}
/* Insert the applet pool. */
InsertPoolPartitionRegionIntoBothTrees(applet_pool_start, applet_pool_size, KMemoryRegionType_DramAppletPool, KMemoryRegionType_VirtualDramAppletPool, cur_pool_attr);
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(applet_pool_size);
/* Insert the nonsecure system pool. */
InsertPoolPartitionRegionIntoBothTrees(unsafe_system_pool_start, unsafe_system_pool_size, KMemoryRegionType_DramSystemNonSecurePool, KMemoryRegionType_VirtualDramSystemNonSecurePool, cur_pool_attr);
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(unsafe_system_pool_size);
/* Determine final total overhead size. */
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize((unsafe_system_pool_start - pool_partitions_start) - total_overhead_size);
/* NOTE: Nintendo's kernel has layout [System, Management] but we have [Management, System]. This ensures the four UserPool regions are contiguous. */
/* Insert the system pool. */
const uintptr_t system_pool_start = pool_partitions_start + total_overhead_size;
const size_t system_pool_size = unsafe_system_pool_start - system_pool_start;
InsertPoolPartitionRegionIntoBothTrees(system_pool_start, system_pool_size, KMemoryRegionType_DramSystemPool, KMemoryRegionType_VirtualDramSystemPool, cur_pool_attr);
/* Insert the pool management region. */
const uintptr_t pool_management_start = pool_partitions_start;
const size_t pool_management_size = total_overhead_size;
u32 pool_management_attr = 0;
InsertPoolPartitionRegionIntoBothTrees(pool_management_start, pool_management_size, KMemoryRegionType_DramPoolManagement, KMemoryRegionType_VirtualDramPoolManagement, pool_management_attr);
} else {
/* On < 5.0.0, setup a legacy 2-pool layout for backwards compatibility. */
static_assert(KMemoryManager::Pool_Count == 4);
static_assert(KMemoryManager::Pool_Unsafe == KMemoryManager::Pool_Application);
static_assert(KMemoryManager::Pool_Secure == KMemoryManager::Pool_System);
/* Get Secure pool size. */
const size_t secure_pool_size = [](auto target_firmware) ALWAYS_INLINE_LAMBDA -> size_t {
constexpr size_t LegacySecureKernelSize = 8_MB; /* KPageBuffer pages, other small kernel allocations. */
constexpr size_t LegacySecureMiscSize = 1_MB; /* Miscellaneous pages for secure process mapping. */
constexpr size_t LegacySecureHeapSize = 24_MB; /* Heap pages for secure process mapping (fs). */
constexpr size_t LegacySecureEsSize = 1_MB + 232_KB; /* Size for additional secure process (es, 4.0.0+). */
/* The baseline size for the secure region is enough to cover any allocations the kernel might make. */
size_t size = LegacySecureKernelSize;
/* If on 2.0.0+, initial processes will fall within the secure region. */
if (target_firmware >= TargetFirmware_2_0_0) {
/* Account for memory used directly for the processes. */
size += GetInitialProcessesSecureMemorySize();
/* Account for heap and transient memory used by the processes. */
size += LegacySecureHeapSize + LegacySecureMiscSize;
}
/* If on 4.0.0+, any process may use secure memory via a create process flag. */
/* In process this is used for es alone, and the secure pool's size should be */
/* increased to accommodate es's binary. */
if (target_firmware >= TargetFirmware_4_0_0) {
size += LegacySecureEsSize;
}
return size;
}(GetTargetFirmware());
/* Calculate the overhead for the secure and (defunct) applet/non-secure-system pools. */
size_t total_overhead_size = KMemoryManager::CalculateManagementOverheadSize(secure_pool_size);
/* Calculate the overhead for (an amount larger than) the unsafe pool. */
const size_t approximate_total_overhead_size = total_overhead_size + KMemoryManager::CalculateManagementOverheadSize((pool_end - pool_partitions_start) - secure_pool_size - total_overhead_size) + 2 * PageSize;
/* Determine the start of the unsafe region. */
const uintptr_t unsafe_memory_start = util::AlignUp(pool_partitions_start + secure_pool_size + approximate_total_overhead_size, CarveoutAlignment);
/* Determine the start of the pool regions. */
const uintptr_t application_pool_start = unsafe_memory_start;
/* Determine the pool sizes. */
const size_t application_pool_size = pool_end - application_pool_start;
/* We want to arrange application pool depending on where the middle of dram is. */
const uintptr_t dram_midpoint = (dram_extents.GetAddress() + dram_extents.GetEndAddress()) / 2;
u32 cur_pool_attr = 0;
if (dram_extents.GetEndAddress() <= dram_midpoint || dram_midpoint <= application_pool_start) {
InsertPoolPartitionRegionIntoBothTrees(application_pool_start, application_pool_size, KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool, cur_pool_attr);
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(application_pool_size);
} else {
const size_t first_application_pool_size = dram_midpoint - application_pool_start;
const size_t second_application_pool_size = application_pool_start + application_pool_size - dram_midpoint;
InsertPoolPartitionRegionIntoBothTrees(application_pool_start, first_application_pool_size, KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool, cur_pool_attr);
InsertPoolPartitionRegionIntoBothTrees(dram_midpoint, second_application_pool_size, KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool, cur_pool_attr);
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(first_application_pool_size);
total_overhead_size += KMemoryManager::CalculateManagementOverheadSize(second_application_pool_size);
}
/* Validate the true overhead size. */
MESOSPHERE_INIT_ABORT_UNLESS(total_overhead_size <= approximate_total_overhead_size);
/* NOTE: Nintendo's kernel has layout [System, Management] but we have [Management, System]. This ensures the UserPool regions are contiguous. */
/* Insert the secure pool. */
const uintptr_t secure_pool_start = unsafe_memory_start - secure_pool_size;
InsertPoolPartitionRegionIntoBothTrees(secure_pool_start, secure_pool_size, KMemoryRegionType_DramSystemPool, KMemoryRegionType_VirtualDramSystemPool, cur_pool_attr);
/* Insert the pool management region. */
const uintptr_t pool_management_start = pool_partitions_start;
const size_t pool_management_size = secure_pool_start - pool_management_start;
MESOSPHERE_INIT_ABORT_UNLESS(total_overhead_size <= pool_management_size);
u32 pool_management_attr = 0;
InsertPoolPartitionRegionIntoBothTrees(pool_management_start, pool_management_size, KMemoryRegionType_DramPoolManagement, KMemoryRegionType_VirtualDramPoolManagement, pool_management_attr);
}
}
}
}