mirror of
https://github.com/Atmosphere-NX/Atmosphere
synced 2025-01-07 04:47:58 +00:00
637 lines
32 KiB
C++
637 lines
32 KiB
C++
/*
|
|
* Copyright (c) Atmosphère-NX
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <stratosphere.hpp>
|
|
#include "amsmitm_fs_utils.hpp"
|
|
#include "amsmitm_prodinfo_utils.hpp"
|
|
|
|
namespace ams::mitm {
|
|
|
|
namespace {
|
|
|
|
constexpr inline u16 Crc16InitialValue = 0x55AA;
|
|
|
|
constexpr inline u16 Crc16Table[] = {
|
|
0x0000, 0xCC01, 0xD801, 0x1400,
|
|
0xF001, 0x3C00, 0x2800, 0xE401,
|
|
0xA001, 0x6C00, 0x7800, 0xB401,
|
|
0x5000, 0x9C01, 0x8801, 0x4400,
|
|
};
|
|
|
|
u16 GetCrc16(const void *data, size_t size) {
|
|
AMS_ASSERT(data != nullptr);
|
|
AMS_ASSERT(size > 0);
|
|
|
|
const u8 *src = static_cast<const u8 *>(data);
|
|
|
|
u16 crc = Crc16InitialValue;
|
|
|
|
u16 tmp = 0;
|
|
while ((size--) > 0) {
|
|
tmp = Crc16Table[crc & 0xF];
|
|
crc = ((crc >> 4) & 0x0FFF) ^ tmp ^ Crc16Table[*src & 0xF];
|
|
tmp = Crc16Table[crc & 0xF];
|
|
crc = ((crc >> 4) & 0x0FFF) ^ tmp ^ Crc16Table[(*(src++) >> 4) & 0xF];
|
|
}
|
|
return crc;
|
|
}
|
|
|
|
bool IsBlank(const void *data, size_t size) {
|
|
AMS_ASSERT(data != nullptr);
|
|
AMS_ASSERT(size > 0);
|
|
|
|
const u8 *src = static_cast<const u8 *>(data);
|
|
while ((size--) > 0) {
|
|
if (*(src++) != 0) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
constexpr inline u32 CalibrationMagic = util::FourCC<'C','A','L','0'>::Code;
|
|
|
|
struct Sha256Hash {
|
|
u8 data[crypto::Sha256Generator::HashSize];
|
|
};
|
|
|
|
struct CalibrationInfoHeader {
|
|
u32 magic;
|
|
u32 version;
|
|
u32 body_size;
|
|
u16 model;
|
|
u16 update_count;
|
|
u8 pad[0xE];
|
|
u16 crc;
|
|
Sha256Hash body_hash;
|
|
};
|
|
static_assert(sizeof(CalibrationInfoHeader) == 0x40);
|
|
|
|
constexpr inline size_t CalibrationInfoBodySizeMax = CalibrationBinarySize - sizeof(CalibrationInfoHeader);
|
|
|
|
struct CalibrationInfo {
|
|
CalibrationInfoHeader header;
|
|
u8 body[CalibrationInfoBodySizeMax]; /* TODO: CalibrationInfoBody body; */
|
|
|
|
template<typename Block>
|
|
Block &GetBlock() {
|
|
static_assert(Block::Offset >= sizeof(CalibrationInfoHeader));
|
|
static_assert(Block::Offset < sizeof(CalibrationInfo));
|
|
static_assert(Block::Offset + Block::Size <= sizeof(CalibrationInfo));
|
|
return *static_cast<Block *>(static_cast<void *>(std::addressof(this->body[Block::Offset - sizeof(this->header)])));
|
|
}
|
|
|
|
template<typename Block>
|
|
const Block &GetBlock() const {
|
|
static_assert(Block::Offset >= sizeof(CalibrationInfoHeader));
|
|
static_assert(Block::Offset < sizeof(CalibrationInfo));
|
|
static_assert(Block::Offset + Block::Size <= sizeof(CalibrationInfo));
|
|
return *static_cast<const Block *>(static_cast<const void *>(std::addressof(this->body[Block::Offset - sizeof(this->header)])));
|
|
}
|
|
};
|
|
static_assert(sizeof(CalibrationInfo) == CalibrationBinarySize);
|
|
|
|
struct SecureCalibrationInfoBackup {
|
|
CalibrationInfo info;
|
|
Sha256Hash hash;
|
|
u8 pad[SecureCalibrationBinaryBackupSize - sizeof(info) - sizeof(hash)];
|
|
};
|
|
static_assert(sizeof(SecureCalibrationInfoBackup) == SecureCalibrationBinaryBackupSize);
|
|
|
|
bool IsValidSha256Hash(const Sha256Hash &hash, const void *data, size_t data_size) {
|
|
Sha256Hash calc_hash;
|
|
ON_SCOPE_EXIT { ::ams::crypto::ClearMemory(std::addressof(calc_hash), sizeof(calc_hash)); };
|
|
|
|
::ams::crypto::GenerateSha256(std::addressof(calc_hash), sizeof(calc_hash), data, data_size);
|
|
return ::ams::crypto::IsSameBytes(std::addressof(calc_hash), std::addressof(hash), sizeof(Sha256Hash));
|
|
}
|
|
|
|
bool IsValid(const CalibrationInfoHeader &header) {
|
|
return header.magic == CalibrationMagic && GetCrc16(std::addressof(header), AMS_OFFSETOF(CalibrationInfoHeader, crc)) == header.crc;
|
|
}
|
|
|
|
bool IsValid(const CalibrationInfoHeader &header, const void *body) {
|
|
return IsValid(header) && IsValidSha256Hash(header.body_hash, body, header.body_size);
|
|
}
|
|
|
|
#define DEFINE_CALIBRATION_CRC_BLOCK(_TypeName, _Offset, _Size, _Decl, _MemberName) \
|
|
struct _TypeName { \
|
|
static constexpr size_t Offset = _Offset; \
|
|
static constexpr size_t Size = _Size; \
|
|
static constexpr bool IsCrcBlock = true; \
|
|
static constexpr bool IsShaBlock = false; \
|
|
_Decl; \
|
|
static_assert(Size >= sizeof(_MemberName) + sizeof(u16)); \
|
|
u8 pad[Size - sizeof(_MemberName) - sizeof(u16)]; \
|
|
u16 crc; \
|
|
}; \
|
|
static_assert(sizeof(_TypeName) == _TypeName::Size)
|
|
|
|
#define DEFINE_CALIBRATION_SHA_BLOCK(_TypeName, _Offset, _Size, _Decl, _MemberName) \
|
|
struct _TypeName { \
|
|
static constexpr size_t Offset = _Offset; \
|
|
static constexpr size_t Size = _Size; \
|
|
static constexpr bool IsCrcBlock = false; \
|
|
static constexpr bool IsShaBlock = true; \
|
|
_Decl; \
|
|
static_assert(Size == sizeof(_MemberName) + sizeof(Sha256Hash)); \
|
|
Sha256Hash sha256_hash; \
|
|
}; \
|
|
static_assert(sizeof(_TypeName) == _TypeName::Size)
|
|
|
|
DEFINE_CALIBRATION_CRC_BLOCK(SerialNumberBlock, 0x0250, 0x020, ::ams::settings::factory::SerialNumber serial_number, serial_number);
|
|
DEFINE_CALIBRATION_CRC_BLOCK(EccB233DeviceCertificateBlock, 0x0480, 0x190, ::ams::settings::factory::EccB233DeviceCertificate device_certificate, device_certificate);
|
|
DEFINE_CALIBRATION_CRC_BLOCK(SslKeyBlock, 0x09B0, 0x120, u8 ssl_key[0x110], ssl_key);
|
|
DEFINE_CALIBRATION_CRC_BLOCK(SslCertificateSizeBlock, 0x0AD0, 0x010, u64 ssl_certificate_size, ssl_certificate_size);
|
|
DEFINE_CALIBRATION_SHA_BLOCK(SslCertificateBlock, 0x0AE0, 0x820, u8 ssl_certificate[0x800], ssl_certificate);
|
|
DEFINE_CALIBRATION_CRC_BLOCK(EcqvEcdsaAmiiboRootCertificateBlock, 0x35A0, 0x080, u8 data[0x70], data);
|
|
DEFINE_CALIBRATION_CRC_BLOCK(EcqvBlsAmiiboRootCertificateBlock, 0x36A0, 0x0A0, u8 data[0x90], data);
|
|
DEFINE_CALIBRATION_CRC_BLOCK(ExtendedSslKeyBlock, 0x3AE0, 0x140, u8 ssl_key[0x134], ssl_key);
|
|
DEFINE_CALIBRATION_CRC_BLOCK(Rsa2048DeviceKeyBlock, 0x3D70, 0x250, u8 device_key[0x240], device_key);
|
|
DEFINE_CALIBRATION_CRC_BLOCK(Rsa2048DeviceCertificateBlock, 0x3FC0, 0x250, ::ams::settings::factory::Rsa2048DeviceCertificate device_certificate, device_certificate);
|
|
|
|
#undef DEFINE_CALIBRATION_CRC_BLOCK
|
|
#undef DEFINE_CALIBRATION_SHA_BLOCK
|
|
|
|
constexpr inline const char BlankSerialNumberString[] = "XAW00000000000";
|
|
|
|
template<typename Block>
|
|
void Blank(Block &block) {
|
|
if constexpr (std::is_same<Block, SerialNumberBlock>::value) {
|
|
static_assert(sizeof(BlankSerialNumberString) <= sizeof(SerialNumberBlock::serial_number));
|
|
std::memset(std::addressof(block), 0, Block::Size - sizeof(block.crc));
|
|
std::memcpy(block.serial_number.str, BlankSerialNumberString, sizeof(BlankSerialNumberString));
|
|
block.crc = GetCrc16(std::addressof(block), Block::Size - sizeof(block.crc));
|
|
} else if constexpr (std::is_same<Block, SslCertificateBlock>::value) {
|
|
std::memset(std::addressof(block), 0, sizeof(block.ssl_certificate));
|
|
} else if constexpr (Block::IsCrcBlock) {
|
|
std::memset(std::addressof(block), 0, Block::Size - sizeof(block.crc));
|
|
block.crc = GetCrc16(std::addressof(block), Block::Size - sizeof(block.crc));
|
|
} else {
|
|
static_assert(Block::IsShaBlock);
|
|
std::memset(std::addressof(block), 0, Block::Size);
|
|
::ams::crypto::GenerateSha256(std::addressof(block.sha256_hash), sizeof(block.sha256_hash), std::addressof(block), Block::Size - sizeof(block.sha256_hash));
|
|
}
|
|
}
|
|
|
|
template<typename Block>
|
|
bool IsBlank(const Block &block) {
|
|
if constexpr (std::is_same<Block, SerialNumberBlock>::value) {
|
|
static_assert(sizeof(BlankSerialNumberString) <= sizeof(SerialNumberBlock::serial_number));
|
|
return std::memcmp(block.serial_number.str, BlankSerialNumberString, sizeof(BlankSerialNumberString) - 1) == 0 || IsBlank(std::addressof(block), Block::Size - sizeof(block.crc));
|
|
} else if constexpr (Block::IsCrcBlock) {
|
|
return IsBlank(std::addressof(block), Block::Size - sizeof(block.crc));
|
|
} else {
|
|
return IsBlank(std::addressof(block), Block::Size - sizeof(block.sha256_hash));
|
|
}
|
|
}
|
|
|
|
template<typename Block>
|
|
bool IsValid(const Block &block, size_t size = 0) {
|
|
if constexpr (Block::IsCrcBlock) {
|
|
return GetCrc16(std::addressof(block), Block::Size - sizeof(block.crc)) == block.crc;
|
|
} else {
|
|
static_assert(Block::IsShaBlock);
|
|
return IsValidSha256Hash(block.sha256_hash, std::addressof(block), size != 0 ? size : Block::Size - sizeof(block.sha256_hash));
|
|
}
|
|
}
|
|
|
|
|
|
void Blank(CalibrationInfo &info) {
|
|
/* Set header. */
|
|
info.header.magic = CalibrationMagic;
|
|
info.header.body_size = sizeof(info.body);
|
|
info.header.crc = GetCrc16(std::addressof(info.header), AMS_OFFSETOF(CalibrationInfoHeader, crc));
|
|
|
|
/* Set blocks. */
|
|
Blank(info.GetBlock<SerialNumberBlock>());
|
|
Blank(info.GetBlock<SslCertificateSizeBlock>());
|
|
Blank(info.GetBlock<SslCertificateBlock>());
|
|
Blank(info.GetBlock<EcqvEcdsaAmiiboRootCertificateBlock>());
|
|
Blank(info.GetBlock<EcqvBlsAmiiboRootCertificateBlock>());
|
|
Blank(info.GetBlock<ExtendedSslKeyBlock>());
|
|
|
|
/* Set header hash. */
|
|
crypto::GenerateSha256(std::addressof(info.header.body_hash), sizeof(info.header.body_hash), std::addressof(info.body), sizeof(info.body));
|
|
}
|
|
|
|
bool IsValidHeader(const CalibrationInfo &cal) {
|
|
return IsValid(cal.header) && cal.header.body_size <= CalibrationInfoBodySizeMax && IsValid(cal.header, cal.body);
|
|
}
|
|
|
|
bool IsValidSerialNumber(const char *sn) {
|
|
for (size_t i = 0; i < std::strlen(sn); i++) {
|
|
if (!std::isalnum(static_cast<unsigned char>(sn[i]))) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void GetSerialNumber(char *dst, const CalibrationInfo &info) {
|
|
std::memcpy(dst, std::addressof(info.GetBlock<SerialNumberBlock>()), sizeof(info.GetBlock<SerialNumberBlock>().serial_number));
|
|
dst[sizeof(info.GetBlock<SerialNumberBlock>().serial_number) + 1] = '\x00';
|
|
}
|
|
|
|
bool IsValidSerialNumber(const CalibrationInfo &cal) {
|
|
char sn[0x20] = {};
|
|
ON_SCOPE_EXIT { std::memset(sn, 0, sizeof(sn)); };
|
|
|
|
GetSerialNumber(sn, cal);
|
|
return IsValidSerialNumber(sn);
|
|
}
|
|
|
|
bool IsValid(const CalibrationInfo &cal) {
|
|
return IsValidHeader(cal) &&
|
|
IsValid(cal.GetBlock<SerialNumberBlock>()) &&
|
|
IsValid(cal.GetBlock<EccB233DeviceCertificateBlock>()) &&
|
|
IsValid(cal.GetBlock<SslKeyBlock>()) &&
|
|
IsValid(cal.GetBlock<SslCertificateSizeBlock>()) &&
|
|
cal.GetBlock<SslCertificateSizeBlock>().ssl_certificate_size <= sizeof(cal.GetBlock<SslCertificateBlock>().ssl_certificate) &&
|
|
IsValid(cal.GetBlock<SslCertificateBlock>(), cal.GetBlock<SslCertificateSizeBlock>().ssl_certificate_size) &&
|
|
IsValid(cal.GetBlock<EcqvEcdsaAmiiboRootCertificateBlock>()) &&
|
|
IsValid(cal.GetBlock<EcqvBlsAmiiboRootCertificateBlock>()) &&
|
|
IsValid(cal.GetBlock<ExtendedSslKeyBlock>()) &&
|
|
IsValidSerialNumber(cal);
|
|
}
|
|
|
|
bool ContainsCorrectDeviceId(const EccB233DeviceCertificateBlock &block, u64 device_id) {
|
|
static constexpr size_t DeviceIdOffset = 0xC6;
|
|
char found_device_id_str[sizeof("0011223344556677")] = {};
|
|
ON_SCOPE_EXIT { std::memset(found_device_id_str, 0, sizeof(found_device_id_str)); };
|
|
std::memcpy(found_device_id_str, std::addressof(block.device_certificate.data[DeviceIdOffset]), sizeof(found_device_id_str) - 1);
|
|
|
|
static constexpr u64 DeviceIdLowMask = 0x00FFFFFFFFFFFFFFul;
|
|
|
|
return (std::strtoul(found_device_id_str, nullptr, 16) & DeviceIdLowMask) == (device_id & DeviceIdLowMask);
|
|
}
|
|
|
|
bool ContainsCorrectDeviceId(const CalibrationInfo &cal) {
|
|
return ContainsCorrectDeviceId(cal.GetBlock<EccB233DeviceCertificateBlock>(), exosphere::GetDeviceId());
|
|
}
|
|
|
|
bool IsValidForSecureBackup(const CalibrationInfo &cal) {
|
|
return IsValid(cal) && ContainsCorrectDeviceId(cal);
|
|
}
|
|
|
|
bool IsBlank(const CalibrationInfo &cal) {
|
|
return IsBlank(cal.GetBlock<SerialNumberBlock>()) ||
|
|
IsBlank(cal.GetBlock<SslCertificateSizeBlock>()) ||
|
|
IsBlank(cal.GetBlock<SslCertificateBlock>()) ||
|
|
IsBlank(cal.GetBlock<EcqvEcdsaAmiiboRootCertificateBlock>()) ||
|
|
IsBlank(cal.GetBlock<EcqvBlsAmiiboRootCertificateBlock>()) ||
|
|
IsBlank(cal.GetBlock<ExtendedSslKeyBlock>());
|
|
}
|
|
|
|
void ReadStorageCalibrationBinary(CalibrationInfo *out) {
|
|
FsStorage calibration_binary_storage;
|
|
R_ABORT_UNLESS(fsOpenBisStorage(std::addressof(calibration_binary_storage), FsBisPartitionId_CalibrationBinary));
|
|
ON_SCOPE_EXIT { fsStorageClose(std::addressof(calibration_binary_storage)); };
|
|
|
|
R_ABORT_UNLESS(fsStorageRead(std::addressof(calibration_binary_storage), 0, out, sizeof(*out)));
|
|
}
|
|
|
|
constexpr inline const u8 SecureCalibrationBinaryBackupIv[crypto::Aes128CtrDecryptor::IvSize] = {};
|
|
|
|
void ReadStorageEncryptedSecureCalibrationBinaryBackupUnsafe(SecureCalibrationInfoBackup *out) {
|
|
FsStorage calibration_binary_storage;
|
|
R_ABORT_UNLESS(fsOpenBisStorage(std::addressof(calibration_binary_storage), FsBisPartitionId_CalibrationBinary));
|
|
ON_SCOPE_EXIT { fsStorageClose(std::addressof(calibration_binary_storage)); };
|
|
|
|
R_ABORT_UNLESS(fsStorageRead(std::addressof(calibration_binary_storage), SecureCalibrationInfoBackupOffset, out, sizeof(*out)));
|
|
}
|
|
|
|
void WriteStorageEncryptedSecureCalibrationBinaryBackupUnsafe(const SecureCalibrationInfoBackup *src) {
|
|
FsStorage calibration_binary_storage;
|
|
R_ABORT_UNLESS(fsOpenBisStorage(std::addressof(calibration_binary_storage), FsBisPartitionId_CalibrationBinary));
|
|
ON_SCOPE_EXIT { fsStorageClose(std::addressof(calibration_binary_storage)); };
|
|
|
|
R_ABORT_UNLESS(fsStorageWrite(std::addressof(calibration_binary_storage), SecureCalibrationInfoBackupOffset, src, sizeof(*src)));
|
|
}
|
|
|
|
void GenerateSecureCalibrationBinaryBackupKey(void *dst, size_t dst_size) {
|
|
static constexpr const u8 SecureCalibrationBinaryBackupKeySource[crypto::Aes128CtrDecryptor::KeySize] = { '|', '-', 'A', 'M', 'S', '-', 'C', 'A', 'L', '0', '-', 'K', 'E', 'Y', '-', '|' };
|
|
spl::AccessKey access_key;
|
|
ON_SCOPE_EXIT { crypto::ClearMemory(std::addressof(access_key), sizeof(access_key)); };
|
|
|
|
/* Generate a personalized kek. */
|
|
R_ABORT_UNLESS(spl::GenerateAesKek(std::addressof(access_key), SecureCalibrationBinaryBackupKeySource, sizeof(SecureCalibrationBinaryBackupKeySource), 0, 1));
|
|
|
|
/* Generate a personalized key. */
|
|
R_ABORT_UNLESS(spl::GenerateAesKey(dst, dst_size, access_key, SecureCalibrationBinaryBackupKeySource, sizeof(SecureCalibrationBinaryBackupKeySource)));
|
|
}
|
|
|
|
bool ReadStorageSecureCalibrationBinaryBackup(SecureCalibrationInfoBackup *out) {
|
|
/* Read the data. */
|
|
ReadStorageEncryptedSecureCalibrationBinaryBackupUnsafe(out);
|
|
|
|
/* Don't leak any data unless we validate. */
|
|
auto clear_guard = SCOPE_GUARD { std::memset(out, 0, sizeof(*out)); };
|
|
|
|
{
|
|
/* Create a buffer to hold our key. */
|
|
u8 key[crypto::Aes128CtrDecryptor::KeySize];
|
|
ON_SCOPE_EXIT { crypto::ClearMemory(key, sizeof(key)); };
|
|
|
|
/* Generate the key. */
|
|
GenerateSecureCalibrationBinaryBackupKey(key, sizeof(key));
|
|
|
|
/* Decrypt the data in place. */
|
|
crypto::DecryptAes128Ctr(out, sizeof(*out), key, sizeof(key), SecureCalibrationBinaryBackupIv, sizeof(SecureCalibrationBinaryBackupIv), out, sizeof(*out));
|
|
}
|
|
|
|
/* Generate a hash for the data. */
|
|
if (!IsValidSha256Hash(out->hash, std::addressof(out->info), sizeof(out->info))) {
|
|
return false;
|
|
}
|
|
|
|
/* Validate the backup. */
|
|
if (!IsValidForSecureBackup(out->info)) {
|
|
return false;
|
|
}
|
|
|
|
/* Our backup is valid. */
|
|
clear_guard.Cancel();
|
|
return true;
|
|
}
|
|
|
|
void WriteStorageSecureCalibrationBinaryBackup(SecureCalibrationInfoBackup *src) {
|
|
/* Clear the input once we've written it. */
|
|
ON_SCOPE_EXIT { std::memset(src, 0, sizeof(*src)); };
|
|
|
|
/* Ensure that the input is valid. */
|
|
AMS_ABORT_UNLESS(IsValidForSecureBackup(src->info));
|
|
|
|
/* Set the Sha256 hash. */
|
|
crypto::GenerateSha256(std::addressof(src->hash), sizeof(src->hash), std::addressof(src->info), sizeof(src->info));
|
|
|
|
/* Validate the hash. */
|
|
AMS_ABORT_UNLESS(IsValidSha256Hash(src->hash, std::addressof(src->info), sizeof(src->info)));
|
|
|
|
/* Encrypt the data. */
|
|
{
|
|
/* Create a buffer to hold our key. */
|
|
u8 key[crypto::Aes128CtrDecryptor::KeySize];
|
|
ON_SCOPE_EXIT { crypto::ClearMemory(key, sizeof(key)); };
|
|
|
|
/* Generate the key. */
|
|
GenerateSecureCalibrationBinaryBackupKey(key, sizeof(key));
|
|
|
|
/* Encrypt the data in place. */
|
|
crypto::EncryptAes128Ctr(src, sizeof(*src), key, sizeof(key), SecureCalibrationBinaryBackupIv, sizeof(SecureCalibrationBinaryBackupIv), src, sizeof(*src));
|
|
}
|
|
|
|
/* Write the encrypted data. */
|
|
WriteStorageEncryptedSecureCalibrationBinaryBackupUnsafe(src);
|
|
}
|
|
|
|
void GetBackupFileName(char *dst, size_t dst_size, const CalibrationInfo &info) {
|
|
char sn[0x20] = {};
|
|
ON_SCOPE_EXIT { std::memset(sn, 0, sizeof(sn)); };
|
|
|
|
|
|
if (IsValidForSecureBackup(info)) {
|
|
GetSerialNumber(sn, info);
|
|
util::SNPrintf(dst, dst_size, "automatic_backups/%s_PRODINFO.bin", sn);
|
|
} else {
|
|
Sha256Hash hash;
|
|
crypto::GenerateSha256(std::addressof(hash), sizeof(hash), std::addressof(info), sizeof(info));
|
|
ON_SCOPE_EXIT { crypto::ClearMemory(std::addressof(hash), sizeof(hash)); };
|
|
|
|
if (IsValid(info)) {
|
|
if (IsBlank(info)) {
|
|
util::SNPrintf(dst, dst_size, "automatic_backups/BLANK_PRODINFO_%02X%02X%02X%02X.bin", hash.data[0], hash.data[1], hash.data[2], hash.data[3]);
|
|
} else {
|
|
GetSerialNumber(sn, info);
|
|
util::SNPrintf(dst, dst_size, "automatic_backups/%s_PRODINFO_%02X%02X%02X%02X.bin", sn, hash.data[0], hash.data[1], hash.data[2], hash.data[3]);
|
|
}
|
|
} else {
|
|
util::SNPrintf(dst, dst_size, "automatic_backups/INVALID_PRODINFO_%02X%02X%02X%02X.bin", hash.data[0], hash.data[1], hash.data[2], hash.data[3]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SafeRead(ams::fs::fsa::IFile *file, s64 offset, void *dst, size_t size) {
|
|
size_t read_size = 0;
|
|
R_ABORT_UNLESS(file->Read(std::addressof(read_size), offset, dst, size));
|
|
AMS_ABORT_UNLESS(read_size == size);
|
|
}
|
|
|
|
alignas(os::MemoryPageSize) CalibrationInfo g_temp_calibration_info = {};
|
|
|
|
void SaveProdInfoBackup(util::optional<ams::fs::FileStorage> *dst, const CalibrationInfo &info) {
|
|
char backup_fn[0x100];
|
|
GetBackupFileName(backup_fn, sizeof(backup_fn), info);
|
|
|
|
/* Create the file, in case it does not exist. */
|
|
mitm::fs::CreateAtmosphereSdFile(backup_fn, sizeof(CalibrationInfo), ams::fs::CreateOption_None);
|
|
|
|
/* Open the file. */
|
|
FsFile libnx_file;
|
|
R_ABORT_UNLESS(mitm::fs::OpenAtmosphereSdFile(std::addressof(libnx_file), backup_fn, ams::fs::OpenMode_ReadWrite));
|
|
|
|
/* Create our accessor. */
|
|
std::unique_ptr<ams::fs::fsa::IFile> file = std::make_unique<ams::fs::RemoteFile>(libnx_file);
|
|
AMS_ABORT_UNLESS(file != nullptr);
|
|
|
|
/* Check if we're valid already. */
|
|
bool valid = false;
|
|
s64 size;
|
|
R_ABORT_UNLESS(file->GetSize(std::addressof(size)));
|
|
if (size == sizeof(CalibrationInfo)) {
|
|
SafeRead(file.get(), 0, std::addressof(g_temp_calibration_info), sizeof(g_temp_calibration_info));
|
|
ON_SCOPE_EXIT { std::memset(std::addressof(g_temp_calibration_info), 0, sizeof(g_temp_calibration_info)); };
|
|
|
|
if (std::memcmp(std::addressof(info), std::addressof(g_temp_calibration_info), sizeof(CalibrationInfo)) == 0) {
|
|
valid = true;
|
|
}
|
|
}
|
|
|
|
/* If we're not valid, we need to save. */
|
|
if (!valid) {
|
|
R_ABORT_UNLESS(file->Write(0, std::addressof(info), sizeof(info), ams::fs::WriteOption::Flush));
|
|
}
|
|
|
|
/* Save our storage to output. */
|
|
if (dst != nullptr) {
|
|
dst->emplace(std::move(file));
|
|
}
|
|
}
|
|
|
|
void GetRandomEntropy(Sha256Hash *dst) {
|
|
AMS_ASSERT(dst != nullptr);
|
|
|
|
u64 data_buffer[3] = {};
|
|
ON_SCOPE_EXIT { crypto::ClearMemory(data_buffer, sizeof(data_buffer)); };
|
|
|
|
data_buffer[0] = os::GetSystemTick().GetInt64Value();
|
|
R_ABORT_UNLESS(svc::GetInfo(data_buffer + 1, svc::InfoType_AliasRegionAddress, svc::PseudoHandle::CurrentProcess, 0));
|
|
if (hos::GetVersion() >= hos::Version_2_0_0) {
|
|
R_ABORT_UNLESS(svc::GetInfo(data_buffer + 2, svc::InfoType_RandomEntropy, svc::InvalidHandle, (data_buffer[0] ^ (data_buffer[1] >> 24)) & 3));
|
|
} else {
|
|
data_buffer[2] = os::GetSystemTick().GetInt64Value();
|
|
}
|
|
|
|
return crypto::GenerateSha256(dst, sizeof(*dst), data_buffer, sizeof(data_buffer));
|
|
}
|
|
|
|
void FillWithGarbage(void *dst, size_t dst_size) {
|
|
/* Get random entropy. */
|
|
Sha256Hash entropy;
|
|
ON_SCOPE_EXIT { crypto::ClearMemory(std::addressof(entropy), sizeof(entropy)); };
|
|
GetRandomEntropy(std::addressof(entropy));
|
|
|
|
/* Clear dst. */
|
|
std::memset(dst, 0xCC, dst_size);
|
|
|
|
/* Encrypt dst. */
|
|
static_assert(sizeof(entropy) == crypto::Aes128CtrEncryptor::KeySize + crypto::Aes128CtrEncryptor::IvSize);
|
|
crypto::EncryptAes128Ctr(dst, dst_size, entropy.data, crypto::Aes128CtrEncryptor::KeySize, entropy.data + crypto::Aes128CtrEncryptor::KeySize, crypto::Aes128CtrEncryptor::IvSize, dst, dst_size);
|
|
}
|
|
|
|
alignas(os::MemoryPageSize) constinit CalibrationInfo g_calibration_info = {};
|
|
alignas(os::MemoryPageSize) constinit CalibrationInfo g_blank_calibration_info = {};
|
|
alignas(os::MemoryPageSize) constinit SecureCalibrationInfoBackup g_secure_calibration_info_backup = {};
|
|
|
|
constinit util::optional<ams::fs::FileStorage> g_prodinfo_backup_file;
|
|
constinit util::optional<ams::fs::MemoryStorage> g_blank_prodinfo_storage;
|
|
constinit util::optional<ams::fs::MemoryStorage> g_fake_secure_backup_storage;
|
|
|
|
constinit bool g_allow_writes = false;
|
|
constinit bool g_has_secure_backup = false;
|
|
|
|
constinit os::SdkMutex g_prodinfo_management_lock;
|
|
|
|
}
|
|
|
|
void InitializeProdInfoManagement() {
|
|
std::scoped_lock lk(g_prodinfo_management_lock);
|
|
|
|
/* First, get our options. */
|
|
const bool should_blank = exosphere::ShouldBlankProdInfo();
|
|
bool allow_writes = exosphere::ShouldAllowWritesToProdInfo();
|
|
|
|
/* Next, read our prodinfo. */
|
|
ReadStorageCalibrationBinary(std::addressof(g_calibration_info));
|
|
|
|
/* Next, check if we have a secure backup. */
|
|
bool has_secure_backup = ReadStorageSecureCalibrationBinaryBackup(std::addressof(g_secure_calibration_info_backup));
|
|
|
|
/* Only allow writes if we have a secure backup. */
|
|
if (allow_writes && !has_secure_backup) {
|
|
/* If we can make a secure backup, great. */
|
|
if (IsValidForSecureBackup(g_calibration_info)) {
|
|
g_secure_calibration_info_backup.info = g_calibration_info;
|
|
WriteStorageSecureCalibrationBinaryBackup(std::addressof(g_secure_calibration_info_backup));
|
|
g_secure_calibration_info_backup.info = g_calibration_info;
|
|
has_secure_backup = true;
|
|
} else {
|
|
/* Don't allow writes if we can't make a secure backup. */
|
|
allow_writes = false;
|
|
}
|
|
}
|
|
|
|
/* Ensure our preconditions are met. */
|
|
AMS_ABORT_UNLESS(!allow_writes || has_secure_backup);
|
|
|
|
/* Set globals. */
|
|
g_allow_writes = allow_writes;
|
|
g_has_secure_backup = has_secure_backup;
|
|
|
|
/* If we should blank, do so. */
|
|
if (should_blank) {
|
|
g_blank_calibration_info = g_calibration_info;
|
|
Blank(g_blank_calibration_info);
|
|
g_blank_prodinfo_storage.emplace(std::addressof(g_blank_calibration_info), sizeof(g_blank_calibration_info));
|
|
}
|
|
|
|
/* Ensure that we have a blank file only if we need one. */
|
|
AMS_ABORT_UNLESS(should_blank == static_cast<bool>(g_blank_prodinfo_storage));
|
|
}
|
|
|
|
void SaveProdInfoBackupsAndWipeMemory(char *out_name, size_t out_name_size) {
|
|
std::scoped_lock lk(g_prodinfo_management_lock);
|
|
|
|
ON_SCOPE_EXIT {
|
|
FillWithGarbage(std::addressof(g_calibration_info), sizeof(g_calibration_info));
|
|
FillWithGarbage(std::addressof(g_secure_calibration_info_backup), sizeof(g_secure_calibration_info_backup));
|
|
};
|
|
|
|
/* Save our backup. We always prefer to save a secure copy of data over a non-secure one. */
|
|
if (g_has_secure_backup) {
|
|
GetSerialNumber(out_name, g_secure_calibration_info_backup.info);
|
|
SaveProdInfoBackup(std::addressof(g_prodinfo_backup_file), g_secure_calibration_info_backup.info);
|
|
} else {
|
|
if (IsValid(g_calibration_info) && !IsBlank(g_calibration_info)) {
|
|
GetSerialNumber(out_name, g_calibration_info);
|
|
} else {
|
|
Sha256Hash hash;
|
|
ON_SCOPE_EXIT { crypto::ClearMemory(std::addressof(hash), sizeof(hash)); };
|
|
crypto::GenerateSha256(std::addressof(hash), sizeof(hash), std::addressof(g_calibration_info), sizeof(g_calibration_info));
|
|
|
|
util::SNPrintf(out_name, out_name_size, "%02X%02X%02X%02X", hash.data[0], hash.data[1], hash.data[2], hash.data[3]);
|
|
}
|
|
SaveProdInfoBackup(std::addressof(g_prodinfo_backup_file), g_calibration_info);
|
|
}
|
|
|
|
/* Ensure we made our backup. */
|
|
AMS_ABORT_UNLESS(g_prodinfo_backup_file);
|
|
|
|
/* Setup our memory storage. */
|
|
g_fake_secure_backup_storage.emplace(std::addressof(g_secure_calibration_info_backup), sizeof(g_secure_calibration_info_backup));
|
|
|
|
/* Ensure that we have a fake storage. */
|
|
AMS_ABORT_UNLESS(static_cast<bool>(g_fake_secure_backup_storage));
|
|
}
|
|
|
|
bool ShouldReadBlankCalibrationBinary() {
|
|
std::scoped_lock lk(g_prodinfo_management_lock);
|
|
return static_cast<bool>(g_blank_prodinfo_storage);
|
|
}
|
|
|
|
bool IsWriteToCalibrationBinaryAllowed() {
|
|
std::scoped_lock lk(g_prodinfo_management_lock);
|
|
return g_allow_writes;
|
|
}
|
|
|
|
void ReadFromBlankCalibrationBinary(s64 offset, void *dst, size_t size) {
|
|
AMS_ABORT_UNLESS(ShouldReadBlankCalibrationBinary());
|
|
|
|
std::scoped_lock lk(g_prodinfo_management_lock);
|
|
R_ABORT_UNLESS(g_blank_prodinfo_storage->Read(offset, dst, size));
|
|
}
|
|
|
|
void WriteToBlankCalibrationBinary(s64 offset, const void *src, size_t size) {
|
|
AMS_ABORT_UNLESS(ShouldReadBlankCalibrationBinary());
|
|
|
|
std::scoped_lock lk(g_prodinfo_management_lock);
|
|
R_ABORT_UNLESS(g_blank_prodinfo_storage->Write(offset, src, size));
|
|
}
|
|
|
|
void ReadFromFakeSecureBackupStorage(s64 offset, void *dst, size_t size) {
|
|
AMS_ABORT_UNLESS(IsWriteToCalibrationBinaryAllowed());
|
|
|
|
std::scoped_lock lk(g_prodinfo_management_lock);
|
|
R_ABORT_UNLESS(g_fake_secure_backup_storage->Read(offset, dst, size));
|
|
}
|
|
|
|
void WriteToFakeSecureBackupStorage(s64 offset, const void *src, size_t size) {
|
|
AMS_ABORT_UNLESS(IsWriteToCalibrationBinaryAllowed());
|
|
|
|
std::scoped_lock lk(g_prodinfo_management_lock);
|
|
R_ABORT_UNLESS(g_fake_secure_backup_storage->Write(offset, src, size));
|
|
}
|
|
|
|
}
|