Atmosphere/exosphere/src/fuse.c

259 lines
7.6 KiB
C

/*
* Copyright (c) 2018 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include "car.h"
#include "fuse.h"
#include "utils.h"
#include "timers.h"
#include "exocfg.h"
#include "masterkey.h"
/* Prototypes for internal commands. */
void fuse_make_regs_visible(void);
void fuse_enable_power(void);
void fuse_disable_power(void);
void fuse_wait_idle(void);
/* Initialize the FUSE driver */
void fuse_init(void)
{
fuse_make_regs_visible();
fuse_secondary_private_key_disable();
fuse_disable_programming();
/* TODO: Overrides (iROM patches) and various reads happen here */
}
/* Make all fuse registers visible */
void fuse_make_regs_visible(void)
{
CLK_RST_CONTROLLER_MISC_CLK_ENB_0 |= BIT(28);
}
/* Enable power to the fuse hardware array */
void fuse_enable_power(void)
{
FUSE_REGS->FUSE_PWR_GOOD_SW = 1;
wait(1);
}
/* Disable power to the fuse hardware array */
void fuse_disable_power(void)
{
FUSE_REGS->FUSE_PWR_GOOD_SW = 0;
wait(1);
}
/* Wait for the fuse driver to go idle */
void fuse_wait_idle(void)
{
uint32_t ctrl_val = 0;
/* Wait for STATE_IDLE */
while ((ctrl_val & (0xF0000)) != 0x40000)
{
wait(1);
ctrl_val = FUSE_REGS->FUSE_CTRL;
}
}
/* Read a fuse from the hardware array */
uint32_t fuse_hw_read(uint32_t addr)
{
fuse_wait_idle();
/* Program the target address */
FUSE_REGS->FUSE_REG_ADDR = addr;
/* Enable read operation in control register */
uint32_t ctrl_val = FUSE_REGS->FUSE_CTRL;
ctrl_val &= ~0x3;
ctrl_val |= 0x1; /* Set FUSE_READ command */
FUSE_REGS->FUSE_CTRL = ctrl_val;
fuse_wait_idle();
return FUSE_REGS->FUSE_REG_READ;
}
/* Write a fuse in the hardware array */
void fuse_hw_write(uint32_t value, uint32_t addr)
{
fuse_wait_idle();
/* Program the target address and value */
FUSE_REGS->FUSE_REG_ADDR = addr;
FUSE_REGS->FUSE_REG_WRITE = value;
/* Enable write operation in control register */
uint32_t ctrl_val = FUSE_REGS->FUSE_CTRL;
ctrl_val &= ~0x3;
ctrl_val |= 0x2; /* Set FUSE_WRITE command */
FUSE_REGS->FUSE_CTRL = ctrl_val;
fuse_wait_idle();
}
/* Sense the fuse hardware array into the shadow cache */
void fuse_hw_sense(void)
{
fuse_wait_idle();
/* Enable sense operation in control register */
uint32_t ctrl_val = FUSE_REGS->FUSE_CTRL;
ctrl_val &= ~0x3;
ctrl_val |= 0x3; /* Set FUSE_SENSE command */
FUSE_REGS->FUSE_CTRL = ctrl_val;
fuse_wait_idle();
}
/* Disables all fuse programming. */
void fuse_disable_programming(void) {
FUSE_REGS->FUSE_DIS_PGM = 1;
}
/* Unknown exactly what this does, but it alters the contents read from the fuse cache. */
void fuse_secondary_private_key_disable(void) {
FUSE_REGS->FUSE_PRIVATEKEYDISABLE = 0x10;
}
/* Read the SKU info register from the shadow cache */
uint32_t fuse_get_sku_info(void)
{
return FUSE_CHIP_REGS->FUSE_SKU_INFO;
}
/* Read the bootrom patch version from a register in the shadow cache */
uint32_t fuse_get_bootrom_patch_version(void)
{
return FUSE_CHIP_REGS->FUSE_SOC_SPEEDO_1;
}
/* Read a spare bit register from the shadow cache */
uint32_t fuse_get_spare_bit(uint32_t idx)
{
if (idx >= 32) {
return 0;
}
return FUSE_CHIP_REGS->FUSE_SPARE_BIT[idx];
}
/* Read a reserved ODM register from the shadow cache */
uint32_t fuse_get_reserved_odm(uint32_t idx)
{
if (idx >= 8) {
return 0;
}
return FUSE_CHIP_REGS->FUSE_RESERVED_ODM[idx];
}
uint32_t fuse_get_5x_key_generation(void) {
if ((fuse_get_reserved_odm(4) & 0x800) && fuse_get_reserved_odm(0) == 0x8E61ECAE && fuse_get_reserved_odm(1) == 0xF2BA3BB2) {
return fuse_get_reserved_odm(2) & 0x1F;
} else {
return 0;
}
}
/* Derive the Device ID using values in the shadow cache */
uint64_t fuse_get_device_id(void) {
uint64_t device_id = 0;
uint64_t y_coord = FUSE_CHIP_REGS->FUSE_Y_COORDINATE & 0x1FF;
uint64_t x_coord = FUSE_CHIP_REGS->FUSE_X_COORDINATE & 0x1FF;
uint64_t wafer_id = FUSE_CHIP_REGS->FUSE_WAFER_ID & 0x3F;
uint32_t lot_code = FUSE_CHIP_REGS->FUSE_LOT_CODE_0;
uint64_t fab_code = FUSE_CHIP_REGS->FUSE_FAB_CODE & 0x3F;
uint64_t derived_lot_code = 0;
for (unsigned int i = 0; i < 5; i++) {
derived_lot_code = (derived_lot_code * 0x24) + ((lot_code >> (24 - 6*i)) & 0x3F);
}
derived_lot_code &= 0x03FFFFFF;
device_id |= y_coord << 0;
device_id |= x_coord << 9;
device_id |= wafer_id << 18;
device_id |= derived_lot_code << 24;
device_id |= fab_code << 50;
return device_id;
}
/* Get the DRAM ID using values in the shadow cache */
uint32_t fuse_get_dram_id(void) {
return (FUSE_CHIP_REGS->FUSE_RESERVED_ODM[4] >> 3) & 0x7;
}
/* Derive the Hardware Type using values in the shadow cache */
uint32_t fuse_get_hardware_type(void) {
/* This function is very different between 4.x and < 4.x */
uint32_t hardware_type = ((FUSE_CHIP_REGS->FUSE_RESERVED_ODM[4] >> 7) & 2) | ((FUSE_CHIP_REGS->FUSE_RESERVED_ODM[4] >> 2) & 1);
if (exosphere_get_target_firmware() >= EXOSPHERE_TARGET_FIRMWARE_400) {
static const uint32_t types[] = {0,1,4,3};
hardware_type |= (FUSE_CHIP_REGS->FUSE_RESERVED_ODM[4] >> 14) & 0x3C;
hardware_type--;
return hardware_type > 3 ? 4 : types[hardware_type];
} else {
if (hardware_type >= 1) {
return hardware_type > 2 ? 3 : hardware_type - 1;
} else if ((FUSE_CHIP_REGS->FUSE_SPARE_BIT[9] & 1) == 0) {
return 0;
} else {
return 3;
}
}
}
/* Derive the Retail Type using values in the shadow cache */
uint32_t fuse_get_retail_type(void) {
/* Retail type = IS_RETAIL | UNIT_TYPE */
uint32_t retail_type = ((FUSE_CHIP_REGS->FUSE_RESERVED_ODM[4] >> 7) & 4) | (FUSE_CHIP_REGS->FUSE_RESERVED_ODM[4] & 3);
if (retail_type == 4) { /* Standard retail unit, IS_RETAIL | 0. */
return 1;
} else if (retail_type == 3) { /* Standard dev unit, 0 | DEV_UNIT. */
return 0;
}
return 2; /* IS_RETAIL | DEV_UNIT */
}
/* Derive the 16-byte Hardware Info using values in the shadow cache, and copy to output buffer. */
void fuse_get_hardware_info(void *dst) {
uint32_t hw_info[0x4];
uint32_t unk_hw_fuse = FUSE_CHIP_REGS->_0x120 & 0x3F;
uint32_t y_coord = FUSE_CHIP_REGS->FUSE_Y_COORDINATE & 0x1FF;
uint32_t x_coord = FUSE_CHIP_REGS->FUSE_X_COORDINATE & 0x1FF;
uint32_t wafer_id = FUSE_CHIP_REGS->FUSE_WAFER_ID & 0x3F;
uint32_t lot_code_0 = FUSE_CHIP_REGS->FUSE_LOT_CODE_0;
uint32_t lot_code_1 = FUSE_CHIP_REGS->FUSE_LOT_CODE_1 & 0x0FFFFFFF;
uint32_t fab_code = FUSE_CHIP_REGS->FUSE_FAB_CODE & 0x3F;
uint32_t vendor_code = FUSE_CHIP_REGS->FUSE_VENDOR_CODE & 0xF;
/* Hardware Info = unk_hw_fuse || Y_COORD || X_COORD || WAFER_ID || LOT_CODE || FAB_CODE || VENDOR_ID */
hw_info[0] = (uint32_t)((lot_code_1 << 30) | (wafer_id << 24) | (x_coord << 15) | (y_coord << 6) | (unk_hw_fuse));
hw_info[1] = (uint32_t)((lot_code_0 << 26) | (lot_code_1 >> 2));
hw_info[2] = (uint32_t)((fab_code << 26) | (lot_code_0 >> 6));
hw_info[3] = (uint32_t)(vendor_code);
memcpy(dst, hw_info, 0x10);
}