Atmosphere/exosphere/program/source/boot/secmon_package2.cpp

171 lines
6.4 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <exosphere.hpp>
#include "../secmon_error.hpp"
#include "../secmon_key_storage.hpp"
#include "secmon_boot.hpp"
namespace ams::secmon::boot {
void CalculatePackage2Hash(se::Sha256Hash *dst, const pkg2::Package2Meta &meta, uintptr_t package2_start) {
/* Determine the region to hash. */
const void *data = reinterpret_cast<const void *>(package2_start);
const size_t size = meta.GetSize();
/* Flush to ensure the SE sees the correct data. */
hw::FlushDataCache(data, size);
hw::DataSynchronizationBarrierInnerShareable();
/* Calculate the hash. */
se::CalculateSha256(dst, data, size);
}
bool VerifyPackage2Signature(pkg2::Package2Header &header, const void *mod, size_t mod_size) {
return VerifySignature(header.signature, sizeof(header.signature), mod, mod_size, std::addressof(header.meta), sizeof(header.meta));
}
int PrepareMasterKey(int key_generation) {
if (key_generation == GetKeyGeneration()) {
return pkg1::AesKeySlot_Master;
}
constexpr int Slot = pkg1::AesKeySlot_Temporary;
LoadMasterKey(Slot, key_generation);
return Slot;
}
void PreparePackage2Key(int pkg2_slot, int key_generation, const void *key, size_t key_size) {
/* Get keyslot for the desired master key. */
const int master_slot = PrepareMasterKey(key_generation);
/* Load the package2 key into the desired keyslot. */
se::SetEncryptedAesKey128(pkg2_slot, master_slot, key, key_size);
}
void DecryptPackage2(void *dst, size_t dst_size, const void *src, size_t src_size, const void *key, size_t key_size, const void *iv, size_t iv_size, u8 key_generation) {
/* Ensure that the SE sees consistent data. */
hw::FlushDataCache(key, key_size);
hw::FlushDataCache(src, src_size);
hw::FlushDataCache(dst, dst_size);
hw::DataSynchronizationBarrierInnerShareable();
/* Load the package2 key into the temporary keyslot. */
PreparePackage2Key(pkg1::AesKeySlot_Temporary, key_generation, key, key_size);
/* Decrypt the data. */
se::ComputeAes128Ctr(dst, dst_size, pkg1::AesKeySlot_Temporary, src, src_size, iv, iv_size);
/* Clear the keyslot we just used. */
se::ClearAesKeySlot(pkg1::AesKeySlot_Temporary);
/* Ensure that the cpu sees consistent data. */
hw::DataSynchronizationBarrierInnerShareable();
hw::FlushDataCache(dst, dst_size);
hw::DataSynchronizationBarrierInnerShareable();
}
bool VerifyPackage2Meta(const pkg2::Package2Meta &meta) {
/* Get the obfuscated metadata. */
const size_t size = meta.GetSize();
const u8 key_generation = meta.GetKeyGeneration();
/* Check that size is big enough for the header. */
if (size <= sizeof(pkg2::Package2Header)) {
return false;
}
/* Check that the size isn't larger than what we allow. */
if (size > pkg2::Package2SizeMax) {
return false;
}
/* Check that the key generation is one that we can use. */
static_assert(pkg1::KeyGeneration_Count == 18);
if (key_generation >= pkg1::KeyGeneration_Count) {
return false;
}
/* Check the magic number. */
if (!crypto::IsSameBytes(meta.magic, pkg2::Package2Meta::Magic::String, sizeof(meta.magic))) {
return false;
}
/* Check the payload alignments. */
if ((meta.entrypoint % pkg2::PayloadAlignment) != 0) {
return false;
}
for (int i = 0; i < pkg2::PayloadCount; ++i) {
if ((meta.payload_sizes[i] % pkg2::PayloadAlignment) != 0) {
return false;
}
}
/* Check that the sizes sum to the total. */
if (size != sizeof(pkg2::Package2Header) + meta.payload_sizes[0] + meta.payload_sizes[1] + meta.payload_sizes[2]) {
return false;
}
/* Check that the payloads do not overflow. */
for (int i = 0; i < pkg2::PayloadCount; ++i) {
if (meta.payload_offsets[i] > meta.payload_offsets[i] + meta.payload_sizes[i]) {
return false;
}
}
/* Verify that no payloads overlap. */
for (int i = 0; i < pkg2::PayloadCount - 1; ++i) {
for (int j = i + 1; j < pkg2::PayloadCount; ++j) {
if (util::HasOverlap(meta.payload_offsets[i], meta.payload_sizes[i], meta.payload_offsets[j], meta.payload_sizes[j])) {
return false;
}
}
}
/* Check whether any payload contains the entrypoint. */
for (int i = 0; i < pkg2::PayloadCount; ++i) {
if (util::Contains(meta.payload_offsets[i], meta.payload_sizes[i], meta.entrypoint)) {
return true;
}
}
/* No payload contains the entrypoint, so we're not valid. */
return false;
}
bool VerifyPackage2Version(const pkg2::Package2Meta &meta) {
return meta.bootloader_version <= pkg2::CurrentBootloaderVersion && meta.package2_version >= pkg2::MinimumValidDataVersion;
}
bool VerifyPackage2Payloads(const pkg2::Package2Meta &meta, uintptr_t payload_address) {
/* Verify hashes match for all payloads. */
for (int i = 0; i < pkg2::PayloadCount; ++i) {
/* Allow all-zero bytes to match any payload. */
if (!(meta.payload_hashes[i][0] == 0 && std::memcmp(meta.payload_hashes[i] + 0, meta.payload_hashes[i] + 1, sizeof(meta.payload_hashes[i]) - 1) == 0)) {
if (!VerifyHash(meta.payload_hashes[i], payload_address, meta.payload_sizes[i])) {
return false;
}
}
payload_address += meta.payload_sizes[i];
}
return true;
}
}