Atmosphere/libraries/libvapours/source/sdmmc/impl/sdmmc_sdmmc_controller.board.nintendo_nx.cpp
SciresM 166318ba77
sdmmc: implement driver suitable for fs + bootloader
* sdmmc: begin skeletoning sdmmc driver

* sdmmc: add most of SdHostStandardController

* sdmmc: implement most of SdmmcController

* sdmmc: Sdmmc2Controller

* sdmmc: skeleton implementation of Sdmmc1Controller

* sdmmc: complete abstract logic for Sdmmc1 power controller

* sdmmc: implement gpio handling for sdmmc1-register-control

* sdmmc: implement pinmux handling for sdmmc1-register-control

* sdmmc: fix building for arm32 and in stratosphere context

* sdmmc: implement voltage enable/set for sdmmc1-register-control

* util: move T(V)SNPrintf from kernel to util

* sdmmc: implement BaseDeviceAccessor

* sdmmc: implement MmcDeviceAccessor

* sdmmc: implement clock reset controller for register api

* sdmmc: fix bug in WaitWhileCommandInhibit, add mmc accessors

* exo: add sdmmc test program

* sdmmc: fix speed mode extension, add CheckMmcConnection for debug

* sdmmc: add DeviceDetector, gpio: implement client api

* gpio: modernize client api instead of doing it the lazy way

* sdmmc: SdCardDeviceAccessor impl

* sdmmc: update test program to read first two sectors of sd card

* sdmmc: fix vref sel

* sdmmc: finish outward-facing api (untested)

* ams: changes for libvapours including tegra register defs

* sdmmc: remove hwinit
2020-10-30 11:54:30 -07:00

1304 lines
55 KiB
C++

/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(ATMOSPHERE_IS_STRATOSPHERE)
#include <stratosphere.hpp>
#elif defined(ATMOSPHERE_IS_MESOSPHERE)
#include <mesosphere.hpp>
#elif defined(ATMOSPHERE_IS_EXOSPHERE)
#include <exosphere.hpp>
#else
#include <vapours.hpp>
#endif
#include "sdmmc_sdmmc_controller.board.nintendo_nx.hpp"
#include "sdmmc_io_impl.board.nintendo_nx.hpp"
#include "sdmmc_timer.hpp"
namespace ams::sdmmc::impl {
/* FOR REFERENCE: board-specific sdmmc registers. */
//struct SdmmcRegisters {
// /* Standard registers. */
// volatile SdHostStandardRegisters sd_host_standard_registers;
//
// /* Vendor specific registers */
// volatile uint32_t vendor_clock_cntrl;
// volatile uint32_t vendor_sys_sw_cntrl;
// volatile uint32_t vendor_err_intr_status;
// volatile uint32_t vendor_cap_overrides;
// volatile uint32_t vendor_boot_cntrl;
// volatile uint32_t vendor_boot_ack_timeout;
// volatile uint32_t vendor_boot_dat_timeout;
// volatile uint32_t vendor_debounce_count;
// volatile uint32_t vendor_misc_cntrl;
// volatile uint32_t max_current_override;
// volatile uint32_t max_current_override_hi;
// volatile uint32_t _0x12c[0x20];
// volatile uint32_t vendor_io_trim_cntrl;
//
// /* Start of sdmmc2/sdmmc4 only */
// volatile uint32_t vendor_dllcal_cfg;
// volatile uint32_t vendor_dll_ctrl0;
// volatile uint32_t vendor_dll_ctrl1;
// volatile uint32_t vendor_dllcal_cfg_sta;
// /* End of sdmmc2/sdmmc4 only */
//
// volatile uint32_t vendor_tuning_cntrl0;
// volatile uint32_t vendor_tuning_cntrl1;
// volatile uint32_t vendor_tuning_status0;
// volatile uint32_t vendor_tuning_status1;
// volatile uint32_t vendor_clk_gate_hysteresis_count;
// volatile uint32_t vendor_preset_val0;
// volatile uint32_t vendor_preset_val1;
// volatile uint32_t vendor_preset_val2;
// volatile uint32_t sdmemcomppadctrl;
// volatile uint32_t auto_cal_config;
// volatile uint32_t auto_cal_interval;
// volatile uint32_t auto_cal_status;
// volatile uint32_t io_spare;
// volatile uint32_t sdmmca_mccif_fifoctrl;
// volatile uint32_t timeout_wcoal_sdmmca;
// volatile uint32_t _0x1fc;
//};
DEFINE_SD_REG_BIT_ENUM(VENDOR_CLOCK_CNTRL_SPI_MODE_CLKEN_OVERRIDE, 2, NORMAL, OVERRIDE);
DEFINE_SD_REG(VENDOR_CLOCK_CNTRL_TAP_VAL, 16, 8);
DEFINE_SD_REG(VENDOR_CLOCK_CNTRL_TRIM_VAL, 24, 5);
DEFINE_SD_REG(VENDOR_CAP_OVERRIDES_DQS_TRIM_VAL, 8, 6);
DEFINE_SD_REG(VENDOR_IO_TRIM_CNTRL_SEL_VREG, 2, 1);
DEFINE_SD_REG_BIT_ENUM(VENDOR_DLLCAL_CFG_CALIBRATE, 31, DISABLE, ENABLE);
DEFINE_SD_REG_BIT_ENUM(VENDOR_DLLCAL_CFG_STA_DLL_CAL_ACTIVE, 31, DONE, RUNNING);
DEFINE_SD_REG(VENDOR_TUNING_CNTRL0_MUL_M, 6, 7);
DEFINE_SD_REG_THREE_BIT_ENUM(VENDOR_TUNING_CNTRL0_NUM_TUNING_ITERATIONS, 13, TRIES_40, TRIES_64, TRIES_128, TRIES_192, TRIES_256, RESERVED5, RESERVED6, RESERVED7);
DEFINE_SD_REG_BIT_ENUM(VENDOR_TUNING_CNTRL0_TAP_VALUE_UPDATED_BY_HW, 17, NOT_UPDATED_BY_HW, UPDATED_BY_HW);
DEFINE_SD_REG(SDMEMCOMPPADCTRL_SDMMC2TMC_CFG_SDMEMCOMP_VREF_SEL, 0, 4);
DEFINE_SD_REG(SDMEMCOMPPADCTRL_PAD_E_INPUT_OR_E_PWRD, 31, 1);
DEFINE_SD_REG(AUTO_CAL_CONFIG_AUTO_CAL_PU_OFFSET, 0, 7);
DEFINE_SD_REG(AUTO_CAL_CONFIG_AUTO_CAL_PD_OFFSET, 8, 7);
DEFINE_SD_REG_BIT_ENUM(AUTO_CAL_CONFIG_AUTO_CAL_ENABLE, 29, DISABLED, ENABLED);
DEFINE_SD_REG_BIT_ENUM(AUTO_CAL_CONFIG_AUTO_CAL_START, 31, DISABLED, ENABLED);
DEFINE_SD_REG(AUTO_CAL_STATUS_AUTO_CAL_PULLUP, 0, 7);
DEFINE_SD_REG_BIT_ENUM(AUTO_CAL_STATUS_AUTO_CAL_ACTIVE, 31, INACTIVE, ACTIVE);
DEFINE_SD_REG_BIT_ENUM(IO_SPARE_SPARE_OUT_3, 19, TWO_CYCLE_DELAY, ONE_CYCLE_DELAY);
namespace {
constexpr inline u32 TuningCommandTimeoutMilliSeconds = 5;
constexpr void GetDividerSetting(u32 *out_target_clock_frequency_khz, u16 *out_x, SpeedMode speed_mode) {
switch (speed_mode) {
case SpeedMode_MmcIdentification:
*out_target_clock_frequency_khz = 26000;
*out_x = 66;
break;
case SpeedMode_MmcLegacySpeed:
*out_target_clock_frequency_khz = 26000;
*out_x = 1;
break;
case SpeedMode_MmcHighSpeed:
*out_target_clock_frequency_khz = 52000;
*out_x = 1;
break;
case SpeedMode_MmcHs200:
*out_target_clock_frequency_khz = 200000;
*out_x = 1;
break;
case SpeedMode_MmcHs400:
*out_target_clock_frequency_khz = 200000;
*out_x = 1;
break;
case SpeedMode_SdCardIdentification:
*out_target_clock_frequency_khz = 25000;
*out_x = 64;
break;
case SpeedMode_SdCardDefaultSpeed:
*out_target_clock_frequency_khz = 25000;
*out_x = 1;
break;
case SpeedMode_SdCardHighSpeed:
*out_target_clock_frequency_khz = 50000;
*out_x = 1;
break;
case SpeedMode_SdCardSdr12:
*out_target_clock_frequency_khz = 25000;
*out_x = 1;
break;
case SpeedMode_SdCardSdr50:
*out_target_clock_frequency_khz = 100000;
*out_x = 1;
break;
case SpeedMode_SdCardSdr104:
*out_target_clock_frequency_khz = 200000;
*out_x = 1;
break;
case SpeedMode_GcAsicFpgaSpeed:
*out_target_clock_frequency_khz = 40800;
*out_x = 1;
break;
case SpeedMode_GcAsicSpeed:
*out_target_clock_frequency_khz = 200000;
*out_x = 2;
break;
case SpeedMode_SdCardSdr25:
case SpeedMode_SdCardDdr50:
AMS_UNREACHABLE_DEFAULT_CASE();
}
}
}
namespace {
#if defined(AMS_SDMMC_THREAD_SAFE)
constinit os::SdkMutex g_soc_mutex;
#define AMS_SDMMC_LOCK_SOC_MUTEX() std::scoped_lock lk(g_soc_mutex)
#else
#define AMS_SDMMC_LOCK_SOC_MUTEX()
#endif
constinit bool g_determined_soc = false;
constinit bool g_is_soc_mariko = false;
}
bool IsSocMariko() {
if (!g_determined_soc) {
/* Ensure we have exclusive access to the soc variables. */
AMS_SDMMC_LOCK_SOC_MUTEX();
/* Check the SocType. */
#if defined(ATMOSPHERE_IS_EXOSPHERE)
{
g_is_soc_mariko = fuse::GetSocType() == fuse::SocType_Mariko;
}
#elif defined(ATMOSPHERE_IS_MESOSPHERE)
{
MESOSPHERE_TODO("Detect mariko via KSystemControl call?");
}
#elif defined(ATMOSPHERE_IS_STRATOSPHERE)
{
/* Connect to spl for the duration of our check. */
spl::Initialize();
ON_SCOPE_EXIT { spl::Finalize(); };
g_is_soc_mariko = spl::GetSocType() == spl::SocType_Mariko;
}
#else
#error "Unknown execution context for ams::sdmmc::impl::IsSocMariko"
#endif
/* Note that we determined the soc. */
g_determined_soc = true;
}
return g_is_soc_mariko;
}
void SdmmcController::ReleaseReset(SpeedMode speed_mode) {
/* Get the clock reset module. */
const auto module = this->GetClockResetModule();
/* If the module is available, disable clock. */
if (ClockResetController::IsAvailable(module)) {
SdHostStandardController::DisableDeviceClock();
SdHostStandardController::EnsureControl();
}
/* Get the correct divider setting for the speed mode. */
u32 target_clock_frequency_khz;
u16 x;
GetDividerSetting(std::addressof(target_clock_frequency_khz), std::addressof(x), speed_mode);
/* Release reset. */
ClockResetController::ReleaseReset(module, target_clock_frequency_khz);
}
void SdmmcController::AssertReset() {
return ClockResetController::AssertReset(this->GetClockResetModule());
}
Result SdmmcController::StartupCore(BusPower bus_power) {
/* Set schmitt trigger. */
this->SetSchmittTrigger(bus_power);
/* Select one-cycle delay version of cmd_oen. */
reg::ReadWrite(this->sdmmc_registers->io_spare, SD_REG_BITS_ENUM(IO_SPARE_SPARE_OUT_3, ONE_CYCLE_DELAY));
/* Select regulated reference voltage for trimmer and DLL supply. */
reg::ReadWrite(this->sdmmc_registers->vendor_io_trim_cntrl, SD_REG_BITS_VALUE(VENDOR_IO_TRIM_CNTRL_SEL_VREG, 0));
/* Configure outbound tap value. */
reg::ReadWrite(this->sdmmc_registers->vendor_clock_cntrl, SD_REG_BITS_VALUE(VENDOR_CLOCK_CNTRL_TRIM_VAL, this->GetOutboundTapValue()));
/* Configure SPI_MODE_CLKEN_OVERRIDE. */
reg::ReadWrite(this->sdmmc_registers->vendor_clock_cntrl, SD_REG_BITS_ENUM(VENDOR_CLOCK_CNTRL_SPI_MODE_CLKEN_OVERRIDE, NORMAL));
/* Set slew codes. */
this->SetSlewCodes();
/* Set vref sel. */
reg::ReadWrite(this->sdmmc_registers->sdmemcomppadctrl, SD_REG_BITS_VALUE(SDMEMCOMPPADCTRL_SDMMC2TMC_CFG_SDMEMCOMP_VREF_SEL, this->GetVrefSelValue()));
/* Perform drive strength calibration at the new power. */
this->SetDriveCodeOffsets(bus_power);
this->CalibrateDriveStrength(bus_power);
/* Enable internal clock. */
R_TRY(SdHostStandardController::EnableInternalClock());
return ResultSuccess();
}
Result SdmmcController::SetClockTrimmer(SpeedMode speed_mode, u8 tap_value) {
/* If speed mode is Hs400, set the dqs trim value. */
if (speed_mode == SpeedMode_MmcHs400) {
reg::ReadWrite(this->sdmmc_registers->vendor_cap_overrides, SD_REG_BITS_VALUE(VENDOR_CAP_OVERRIDES_DQS_TRIM_VAL, 40));
}
/* Configure tap value as updated by software. */
reg::ReadWrite(this->sdmmc_registers->vendor_tuning_cntrl0, SD_REG_BITS_ENUM(VENDOR_TUNING_CNTRL0_TAP_VALUE_UPDATED_BY_HW, NOT_UPDATED_BY_HW));
/* Set the inbound tap value. */
reg::ReadWrite(this->sdmmc_registers->vendor_clock_cntrl, SD_REG_BITS_VALUE(VENDOR_CLOCK_CNTRL_TAP_VAL, tap_value));
/* Reset the cmd/dat line. */
R_TRY(SdHostStandardController::ResetCmdDatLine());
return ResultSuccess();
}
u8 SdmmcController::GetCurrentTapValue() {
return static_cast<u8>(reg::GetValue(this->sdmmc_registers->vendor_clock_cntrl, SD_REG_BITS_MASK(VENDOR_CLOCK_CNTRL_TAP_VAL)));
}
Result SdmmcController::CalibrateDll() {
/* Check if we need to temporarily re-enable the device clock. */
const bool clock_disabled = reg::HasValue(this->sdmmc_registers->sd_host_standard_registers.clock_control, SD_REG_BITS_ENUM(CLOCK_CONTROL_SD_CLOCK_ENABLE, DISABLE));
/* Ensure that the clock is enabled for the period we're using it. */
if (clock_disabled) {
/* Turn on the clock. */
reg::ReadWrite(this->sdmmc_registers->sd_host_standard_registers.clock_control, SD_REG_BITS_ENUM(CLOCK_CONTROL_SD_CLOCK_ENABLE, ENABLE));
}
ON_SCOPE_EXIT { if (clock_disabled) { reg::ReadWrite(this->sdmmc_registers->sd_host_standard_registers.clock_control, SD_REG_BITS_ENUM(CLOCK_CONTROL_SD_CLOCK_ENABLE, DISABLE)); } };
/* Begin calibration. */
reg::ReadWrite(this->sdmmc_registers->vendor_dllcal_cfg, SD_REG_BITS_ENUM(VENDOR_DLLCAL_CFG_CALIBRATE, ENABLE));
/* Wait up to 5ms for calibration to begin. */
{
ManualTimer timer(5);
while (true) {
/* If calibration is done, we're done. */
if (!reg::HasValue(this->sdmmc_registers->vendor_dllcal_cfg, SD_REG_BITS_ENUM(VENDOR_DLLCAL_CFG_CALIBRATE, ENABLE))) {
break;
}
/* Otherwise, check if we've timed out. */
R_UNLESS((timer.Update()), sdmmc::ResultSdmmcDllCalibrationSoftwareTimeout());
}
}
/* Wait up to 10ms for calibration to complete. */
{
ManualTimer timer(10);
while (true) {
/* If calibration is done, we're done. */
if (reg::HasValue(this->sdmmc_registers->vendor_dllcal_cfg_sta, SD_REG_BITS_ENUM(VENDOR_DLLCAL_CFG_STA_DLL_CAL_ACTIVE, DONE))) {
break;
}
/* Otherwise, check if we've timed out. */
R_UNLESS((timer.Update()), sdmmc::ResultSdmmcDllApplicationSoftwareTimeout());
}
}
return ResultSuccess();
}
Result SdmmcController::SetSpeedModeWithTapValue(SpeedMode speed_mode, u8 tap_value) {
/* Check if we need to temporarily disable the device clock. */
const bool clock_enabled = reg::HasValue(this->sdmmc_registers->sd_host_standard_registers.clock_control, SD_REG_BITS_ENUM(CLOCK_CONTROL_SD_CLOCK_ENABLE, ENABLE));
/* Ensure that the clock is disabled for the period we're using it. */
if (clock_enabled) {
/* Turn off the clock. */
reg::ReadWrite(this->sdmmc_registers->sd_host_standard_registers.clock_control, SD_REG_BITS_ENUM(CLOCK_CONTROL_SD_CLOCK_ENABLE, DISABLE));
}
/* Set clock trimmer. */
/* NOTE: Nintendo does not re-enable the clock if this fails... */
R_TRY(this->SetClockTrimmer(speed_mode, tap_value));
/* Configure for the desired speed mode. */
switch (speed_mode) {
case SpeedMode_MmcIdentification:
case SpeedMode_SdCardIdentification:
case SpeedMode_MmcLegacySpeed:
case SpeedMode_SdCardDefaultSpeed:
/* Set as normal speed, 3.3V. */
reg::ReadWrite(this->sdmmc_registers->sd_host_standard_registers.host_control, SD_REG_BITS_ENUM(HOST_CONTROL_HIGH_SPEED_ENABLE, NORMAL_SPEED));
reg::ReadWrite(this->sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_1_8V_SIGNALING_ENABLE, 3_3V_SIGNALING));
break;
case SpeedMode_MmcHighSpeed:
case SpeedMode_SdCardHighSpeed:
/* Set as high speed, 3.3V. */
reg::ReadWrite(this->sdmmc_registers->sd_host_standard_registers.host_control, SD_REG_BITS_ENUM(HOST_CONTROL_HIGH_SPEED_ENABLE, HIGH_SPEED));
reg::ReadWrite(this->sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_1_8V_SIGNALING_ENABLE, 3_3V_SIGNALING));
break;
case SpeedMode_MmcHs200:
/* Set as HS200, 1.8V. */
reg::ReadWrite(this->sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_UHS_MODE_SELECT, HS200));
reg::ReadWrite(this->sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_1_8V_SIGNALING_ENABLE, 1_8V_SIGNALING));
break;
case SpeedMode_MmcHs400:
/* Set as HS400, 1.8V. */
reg::ReadWrite(this->sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_UHS_MODE_SELECT, HS400));
reg::ReadWrite(this->sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_1_8V_SIGNALING_ENABLE, 1_8V_SIGNALING));
break;
case SpeedMode_SdCardSdr12:
/* Set as SDR12, 1.8V. */
reg::ReadWrite(this->sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_UHS_MODE_SELECT, SDR12));
reg::ReadWrite(this->sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_1_8V_SIGNALING_ENABLE, 1_8V_SIGNALING));
break;
case SpeedMode_SdCardSdr50:
case SpeedMode_SdCardSdr104:
case SpeedMode_GcAsicFpgaSpeed:
case SpeedMode_GcAsicSpeed:
/* Set as SDR104, 1.8V. */
reg::ReadWrite(this->sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_UHS_MODE_SELECT, SDR104));
reg::ReadWrite(this->sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_1_8V_SIGNALING_ENABLE, 1_8V_SIGNALING));
break;
AMS_UNREACHABLE_DEFAULT_CASE();
}
SdHostStandardController::EnsureControl();
/* Get the divider setting. */
u32 target_source_clock_frequency_khz;
u16 x;
GetDividerSetting(std::addressof(target_source_clock_frequency_khz), std::addressof(x), speed_mode);
/* Set the clock frequency. */
u32 actual_source_clock_frequency_khz;
ClockResetController::SetClockFrequencyKHz(std::addressof(actual_source_clock_frequency_khz), this->GetClockResetModule(), target_source_clock_frequency_khz);
/* Set the device clock frequency. */
const u32 actual_device_clock_frequency_khz = util::DivideUp(actual_source_clock_frequency_khz, x);
SdHostStandardController::SetDeviceClockFrequencyKHz(actual_device_clock_frequency_khz);
/* Check that the divider is correct. */
AMS_ABORT_UNLESS((x == 1) || util::IsAligned(x, 2));
/* Write the divider val to clock control. */
const u16 n = x / 2;
const u16 upper_n = n >> 8;
reg::ReadWrite(this->sdmmc_registers->sd_host_standard_registers.clock_control, SD_REG_BITS_VALUE(CLOCK_CONTROL_SDCLK_FREQUENCY_SELECT, n),
SD_REG_BITS_VALUE(CLOCK_CONTROL_UPPER_BITS_OF_SDCLK_FREQUENCY_SELECT, upper_n));
/* Re-enable the clock, if we should. */
if (clock_enabled) {
/* Turn on the clock. */
reg::ReadWrite(this->sdmmc_registers->sd_host_standard_registers.clock_control, SD_REG_BITS_ENUM(CLOCK_CONTROL_SD_CLOCK_ENABLE, ENABLE));
}
/* If speed mode is Hs400, calibrate dll. */
if (speed_mode == SpeedMode_MmcHs400) {
R_TRY(this->CalibrateDll());
}
/* Set the current speed mode. */
this->current_speed_mode = speed_mode;
return ResultSuccess();
}
Result SdmmcController::IssueTuningCommand(u32 command_index) {
/* Check that we're not power saving enable. */
AMS_ABORT_UNLESS(!SdHostStandardController::IsPowerSavingEnable());
/* Wait until command inhibit is done. */
R_TRY(SdHostStandardController::WaitWhileCommandInhibit(true));
/* Set transfer for tuning. */
SdHostStandardController::SetTransferForTuning();
/* If necessary, clear interrupt and enable buffer read ready signal. */
#if defined(AMS_SDMMC_USE_OS_EVENTS)
{
this->ClearInterrupt();
reg::ReadWrite(this->sdmmc_registers->sd_host_standard_registers.normal_signal_enable, SD_REG_BITS_ENUM(NORMAL_INTERRUPT_BUFFER_READ_READY, ENABLED));
}
#endif
/* Set the buffer read ready enable, and read status to ensure it takes. */
reg::ReadWrite(this->sdmmc_registers->sd_host_standard_registers.normal_int_enable, SD_REG_BITS_ENUM(NORMAL_INTERRUPT_BUFFER_READ_READY, ENABLED));
reg::Read(this->sdmmc_registers->sd_host_standard_registers.normal_int_status);
/* Issue command with clock disabled. */
reg::ReadWrite(this->sdmmc_registers->sd_host_standard_registers.clock_control, SD_REG_BITS_ENUM(CLOCK_CONTROL_SD_CLOCK_ENABLE, DISABLE));
{
SdHostStandardController::SetCommandForTuning(command_index);
SdHostStandardController::EnsureControl();
WaitMicroSeconds(1);
SdHostStandardController::AbortTransaction();
}
reg::ReadWrite(this->sdmmc_registers->sd_host_standard_registers.clock_control, SD_REG_BITS_ENUM(CLOCK_CONTROL_SD_CLOCK_ENABLE, ENABLE));
/* When we're done waiting, ensure that we clean up appropriately. */
ON_SCOPE_EXIT {
/* Clear the buffer read ready signal, if we should. */
#if defined(AMS_SDMMC_USE_OS_EVENTS)
reg::ReadWrite(this->sdmmc_registers->sd_host_standard_registers.normal_signal_enable, SD_REG_BITS_ENUM(NORMAL_INTERRUPT_BUFFER_READ_READY, MASKED));
#endif
/* Clear the buffer read ready enable. */
reg::ReadWrite(this->sdmmc_registers->sd_host_standard_registers.normal_int_enable, SD_REG_BITS_ENUM(NORMAL_INTERRUPT_BUFFER_READ_READY, MASKED));
/* Wait 8 clocks to ensure configuration takes. */
SdHostStandardController::EnsureControl();
WaitClocks(8, SdHostStandardController::GetDeviceClockFrequencyKHz());
};
/* Wait for the command to finish. */
#if defined(AMS_SDMMC_USE_OS_EVENTS)
{
const auto result = SdHostStandardController::WaitInterrupt(TuningCommandTimeoutMilliSeconds);
if (R_SUCCEEDED(result)) {
/* If we succeeded, clear the interrupt. */
reg::Write(this->sdmmc_registers->sd_host_standard_registers.normal_int_status, SD_REG_BITS_ENUM(NORMAL_INTERRUPT_BUFFER_READ_READY, ENABLED));
this->ClearInterrupt();
return ResultSuccess();
} else if (sdmmc::ResultWaitInterruptSoftwareTimeout::Includes(result)) {
SdHostStandardController::AbortTransaction();
return sdmmc::ResultIssueTuningCommandSoftwareTimeout();
} else {
return result;
}
}
#else
{
SdHostStandardController::EnsureControl();
ManualTimer timer(TuningCommandTimeoutMilliSeconds);
while (true) {
/* Check if we received the interrupt. */
if (reg::HasValue(this->sdmmc_registers->sd_host_standard_registers.normal_int_status, SD_REG_BITS_ENUM(NORMAL_INTERRUPT_BUFFER_READ_READY, ENABLED))) {
/* If we did, acknowledge it. */
reg::Write(this->sdmmc_registers->sd_host_standard_registers.normal_int_status, SD_REG_BITS_ENUM(NORMAL_INTERRUPT_BUFFER_READ_READY, ENABLED));
return ResultSuccess();
}
/* Otherwise, check if we timed out. */
if (!timer.Update()) {
SdHostStandardController::AbortTransaction();
return sdmmc::ResultIssueTuningCommandSoftwareTimeout();
}
}
}
#endif
}
void SdmmcController::SetDriveCodeOffsets(BusPower bus_power) {
/* Get the offsets. */
u8 pd, pu;
this->GetAutoCalOffsets(std::addressof(pd), std::addressof(pu), bus_power);
/* Set the offsets. */
reg::ReadWrite(this->sdmmc_registers->auto_cal_config, SD_REG_BITS_VALUE(AUTO_CAL_CONFIG_AUTO_CAL_PD_OFFSET, pd),
SD_REG_BITS_VALUE(AUTO_CAL_CONFIG_AUTO_CAL_PU_OFFSET, pu));
}
void SdmmcController::CalibrateDriveStrength(BusPower bus_power) {
/* Reset drive strength calibration status. */
this->drive_strength_calibration_status = sdmmc::ResultDriveStrengthCalibrationNotCompleted();
/* Check if we need to temporarily disable the device clock. */
const bool clock_enabled = reg::HasValue(this->sdmmc_registers->sd_host_standard_registers.clock_control, SD_REG_BITS_ENUM(CLOCK_CONTROL_SD_CLOCK_ENABLE, ENABLE));
/* Ensure that the clock is disabled for the period we're using it. */
if (clock_enabled) {
/* Turn off the clock. */
reg::ReadWrite(this->sdmmc_registers->sd_host_standard_registers.clock_control, SD_REG_BITS_ENUM(CLOCK_CONTROL_SD_CLOCK_ENABLE, DISABLE));
}
/* Calibrate with the clock disabled. */
{
/* Set SDMEMCOMPPADCTRL_PAD_E_INPUT_OR_E_PWRD. */
if (reg::HasValue(this->sdmmc_registers->sdmemcomppadctrl, SD_REG_BITS_VALUE(SDMEMCOMPPADCTRL_PAD_E_INPUT_OR_E_PWRD, 0))) {
reg::ReadWrite(this->sdmmc_registers->sdmemcomppadctrl, SD_REG_BITS_VALUE(SDMEMCOMPPADCTRL_PAD_E_INPUT_OR_E_PWRD, 1));
SdHostStandardController::EnsureControl();
WaitMicroSeconds(1);
}
/* Calibrate with SDMEMCOMPPADCTRL_PAD_E_INPUT_OR_E_PWRD set. */
{
/* Begin autocal. */
reg::ReadWrite(this->sdmmc_registers->auto_cal_config, SD_REG_BITS_ENUM(AUTO_CAL_CONFIG_AUTO_CAL_START, ENABLED),
SD_REG_BITS_ENUM(AUTO_CAL_CONFIG_AUTO_CAL_ENABLE, ENABLED));
SdHostStandardController::EnsureControl();
WaitMicroSeconds(2);
/* Wait up to 10ms for auto cal to complete. */
ManualTimer timer(10);
while (true) {
/* Check if auto cal is inactive. */
if (reg::HasValue(this->sdmmc_registers->auto_cal_status, SD_REG_BITS_ENUM(AUTO_CAL_STATUS_AUTO_CAL_ACTIVE, INACTIVE))) {
/* Check the pullup status. */
const u32 pullup = (reg::GetValue(this->sdmmc_registers->auto_cal_status, SD_REG_BITS_MASK(AUTO_CAL_STATUS_AUTO_CAL_PULLUP))) & 0x1F;
if (pullup == 0x1F) {
this->drive_strength_calibration_status = sdmmc::ResultSdmmcCompShortToGnd();
}
if (pullup == 0) {
this->drive_strength_calibration_status = sdmmc::ResultSdmmcCompOpen();
}
break;
}
/* Otherwise, check if we've timed out. */
if (!timer.Update()) {
this->drive_strength_calibration_status = sdmmc::ResultDriveStrengthCalibrationSoftwareTimeout();
this->SetDriveStrengthToDefaultValues(bus_power);
reg::ReadWrite(this->sdmmc_registers->auto_cal_config, SD_REG_BITS_ENUM(AUTO_CAL_CONFIG_AUTO_CAL_ENABLE, DISABLED));
break;
}
}
}
/* Clear SDMEMCOMPPADCTRL_PAD_E_INPUT_OR_E_PWRD. */
reg::ReadWrite(this->sdmmc_registers->sdmemcomppadctrl, SD_REG_BITS_VALUE(SDMEMCOMPPADCTRL_PAD_E_INPUT_OR_E_PWRD, 0));
}
/* Re-enable the clock, if we should. */
if (clock_enabled) {
/* Turn on the clock. */
reg::ReadWrite(this->sdmmc_registers->sd_host_standard_registers.clock_control, SD_REG_BITS_ENUM(CLOCK_CONTROL_SD_CLOCK_ENABLE, ENABLE));
}
/* If calibration didn't receive a replacement error, set internal state to success. */
if (sdmmc::ResultDriveStrengthCalibrationNotCompleted::Includes(this->drive_strength_calibration_status)) {
this->drive_strength_calibration_status = ResultSuccess();
}
}
Result SdmmcController::Startup(BusPower bus_power, BusWidth bus_width, SpeedMode speed_mode, bool power_saving_enable) {
/* Verify that we're awake. */
AMS_ABORT_UNLESS(this->is_awake);
/* Release the controller from reset. */
this->ReleaseReset(speed_mode);
/* Mark that we're not shutdown. */
this->is_shutdown = false;
/* Power on the controller. */
R_TRY(this->PowerOn(bus_power));
/* Start up for the specific power. */
R_TRY(this->StartupCore(bus_power));
/* Set our current power/width/speed. */
SdHostStandardController::SetBusWidth(bus_width);
SdHostStandardController::SetBusPower(bus_power);
R_TRY(this->SetSpeedMode(speed_mode));
this->SetPowerSaving(power_saving_enable);
/* Enable clock to the device. */
SdHostStandardController::EnableDeviceClock();
/* Ensure that we can control the device. */
SdHostStandardController::EnsureControl();
return ResultSuccess();
}
void SdmmcController::Shutdown() {
/* If we're already shut down, there's nothing to do. */
if (this->is_shutdown) {
return;
}
/* If we're currently awake, we need to disable clock/power. */
if (this->is_awake) {
SdHostStandardController::DisableDeviceClock();
SdHostStandardController::SetBusPower(BusPower_Off);
SdHostStandardController::EnsureControl();
}
/* Power off. */
this->PowerOff();
/* If awake, assert reset. */
if (this->is_awake) {
this->AssertReset();
}
/* Mark that we're shutdown. */
this->is_shutdown = true;
}
void SdmmcController::PutToSleep() {
/* If we're already shut down or asleep, there's nothing to do. */
if (this->is_shutdown || !this->is_awake) {
return;
}
/* Save values before sleep. */
this->bus_power_before_sleep = SdHostStandardController::GetBusPower();
this->bus_width_before_sleep = SdHostStandardController::GetBusWidth();
this->speed_mode_before_sleep = this->current_speed_mode;
this->tap_value_before_sleep = this->GetCurrentTapValue();
this->is_powersaving_enable_before_sleep = SdHostStandardController::IsPowerSavingEnable();
/* Disable clock/power to the device. */
SdHostStandardController::DisableDeviceClock();
SdHostStandardController::SetBusPower(BusPower_Off);
SdHostStandardController::EnsureControl();
/* Assert reset. */
this->AssertReset();
/* Mark that we're asleep. */
this->is_awake = false;
}
Result SdmmcController::Awaken() {
/* If we're shut down, or if we're awake already, there's nothing to do. */
R_SUCCEED_IF(this->is_shutdown);
R_SUCCEED_IF(this->is_awake);
/* Mark that we're awake. */
this->is_awake = true;
/* Clear pad parked status. */
this->ClearPadParked();
/* Release reset. */
this->ReleaseReset(this->speed_mode_before_sleep);
/* Start up for the correct power. */
R_TRY(this->StartupCore(this->bus_power_before_sleep));
/* Configure values to what they were before sleep. */
SdHostStandardController::SetBusWidth(this->bus_width_before_sleep);
SdHostStandardController::SetBusPower(this->bus_power_before_sleep);
R_TRY(this->SetSpeedModeWithTapValue(this->speed_mode_before_sleep, this->tap_value_before_sleep));
this->SetPowerSaving(this->is_powersaving_enable_before_sleep);
/* Enable clock to the device. */
SdHostStandardController::EnableDeviceClock();
SdHostStandardController::EnsureControl();
return ResultSuccess();
}
Result SdmmcController::SwitchToSdr12() {
/* Disable clock. */
reg::ReadWrite(this->sdmmc_registers->sd_host_standard_registers.clock_control, SD_REG_BITS_ENUM(CLOCK_CONTROL_SD_CLOCK_ENABLE, DISABLE));
/* Check that the dat lines are all low. */
R_UNLESS(reg::HasValue(this->sdmmc_registers->sd_host_standard_registers.present_state, SD_REG_BITS_VALUE(PRESENT_STATE_DAT0_3_LINE_SIGNAL_LEVEL, 0b0000)), sdmmc::ResultSdCardNotReadyToVoltageSwitch());
/* Set voltage to 1.8V. */
SdHostStandardController::EnsureControl();
R_TRY(this->LowerBusPower());
this->SetSchmittTrigger(BusPower_1_8V);
/* Perform drive strength calibration at the new power. */
this->SetDriveCodeOffsets(BusPower_1_8V);
this->CalibrateDriveStrength(BusPower_1_8V);
/* Set the bus power in standard controller. */
SdHostStandardController::SetBusPower(BusPower_1_8V);
/* Wait up to 5ms for the switch to take. */
SdHostStandardController::EnsureControl();
WaitMicroSeconds(5000);
/* Check that we switched to 1.8V. */
R_UNLESS(reg::HasValue(this->sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_1_8V_SIGNALING_ENABLE, 1_8V_SIGNALING)), sdmmc::ResultSdHostStandardFailSwitchTo1_8V());
/* Enable clock, and wait 1ms. */
reg::ReadWrite(this->sdmmc_registers->sd_host_standard_registers.clock_control, SD_REG_BITS_ENUM(CLOCK_CONTROL_SD_CLOCK_ENABLE, DISABLE));
SdHostStandardController::EnsureControl();
WaitMicroSeconds(1000);
/* Check that the dat lines are all high. */
R_UNLESS(reg::HasValue(this->sdmmc_registers->sd_host_standard_registers.present_state, SD_REG_BITS_VALUE(PRESENT_STATE_DAT0_3_LINE_SIGNAL_LEVEL, 0b1111)), sdmmc::ResultSdCardNotCompleteVoltageSwitch());
return ResultSuccess();
}
Result SdmmcController::SetSpeedMode(SpeedMode speed_mode) {
/* Get the tap value. */
u8 tap_value;
if (speed_mode == SpeedMode_MmcHs400) {
AMS_ABORT_UNLESS(this->is_valid_tap_value_for_hs_400);
tap_value = this->tap_value_for_hs_400;
} else {
tap_value = this->GetDefaultInboundTapValue();
}
/* Set the speed mode. */
R_TRY(this->SetSpeedModeWithTapValue(speed_mode, tap_value));
return ResultSuccess();
}
void SdmmcController::SetPowerSaving(bool en) {
/* If necessary, calibrate the drive strength. */
if (this->IsNeedPeriodicDriveStrengthCalibration() && !en && SdHostStandardController::IsDeviceClockEnable()) {
this->CalibrateDriveStrength(SdHostStandardController::GetBusPower());
}
return SdHostStandardController::SetPowerSaving(en);
}
void SdmmcController::EnableDeviceClock() {
/* If necessary, calibrate the drive strength. */
if (this->IsNeedPeriodicDriveStrengthCalibration() && !SdHostStandardController::IsPowerSavingEnable()) {
this->CalibrateDriveStrength(SdHostStandardController::GetBusPower());
}
return SdHostStandardController::EnableDeviceClock();
}
Result SdmmcController::IssueCommand(const Command *command, TransferData *xfer_data, u32 *out_num_transferred_blocks) {
/* If necessary, calibrate the drive strength. */
if (this->IsNeedPeriodicDriveStrengthCalibration() && SdHostStandardController::IsPowerSavingEnable()) {
this->CalibrateDriveStrength(SdHostStandardController::GetBusPower());
}
return SdHostStandardController::IssueCommand(command, xfer_data, out_num_transferred_blocks);
}
Result SdmmcController::IssueStopTransmissionCommand(u32 *out_response) {
/* If necessary, calibrate the drive strength. */
if (this->IsNeedPeriodicDriveStrengthCalibration() && SdHostStandardController::IsPowerSavingEnable()) {
this->CalibrateDriveStrength(SdHostStandardController::GetBusPower());
}
return SdHostStandardController::IssueStopTransmissionCommand(out_response);
}
Result SdmmcController::Tuning(SpeedMode speed_mode, u32 command_index) {
/* Clear vendor tuning control 1. */
reg::Write(this->sdmmc_registers->vendor_tuning_cntrl1, 0);
/* Determine/configure the number of tries. */
int num_tries;
switch (speed_mode) {
case SpeedMode_MmcHs200:
case SpeedMode_MmcHs400:
case SpeedMode_SdCardSdr104:
num_tries = 128;
reg::ReadWrite(this->sdmmc_registers->vendor_tuning_cntrl0, SD_REG_BITS_ENUM(VENDOR_TUNING_CNTRL0_NUM_TUNING_ITERATIONS, TRIES_128));
break;
case SpeedMode_SdCardSdr50:
case SpeedMode_GcAsicFpgaSpeed:
case SpeedMode_GcAsicSpeed:
num_tries = 256;
reg::ReadWrite(this->sdmmc_registers->vendor_tuning_cntrl0, SD_REG_BITS_ENUM(VENDOR_TUNING_CNTRL0_NUM_TUNING_ITERATIONS, TRIES_256));
break;
AMS_UNREACHABLE_DEFAULT_CASE();
}
/* Configure the multiplier. */
reg::ReadWrite(this->sdmmc_registers->vendor_tuning_cntrl0, SD_REG_BITS_VALUE(VENDOR_TUNING_CNTRL0_MUL_M, 1));
/* Configure tap value to be updated by hardware. */
reg::ReadWrite(this->sdmmc_registers->vendor_tuning_cntrl0, SD_REG_BITS_ENUM(VENDOR_TUNING_CNTRL0_TAP_VALUE_UPDATED_BY_HW, UPDATED_BY_HW));
/* Configure to execute tuning. */
reg::ReadWrite(this->sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_EXECUTE_TUNING, EXECUTE_TUNING));
/* Perform tuning num_tries times. */
for (int i = 0; /* ... */; ++i) {
/* Check if we've been removed. */
R_TRY(this->CheckRemoved());
/* Issue the command. */
this->IssueTuningCommand(command_index);
/* Check if tuning is done. */
if (i >= num_tries) {
break;
}
++i;
if (reg::HasValue(this->sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_EXECUTE_TUNING, TUNING_COMPLETED))) {
break;
}
}
/* Check if we're using the tuned clock. */
R_UNLESS(reg::HasValue(this->sdmmc_registers->sd_host_standard_registers.host_control2, SD_REG_BITS_ENUM(HOST_CONTROL2_SAMPLING_CLOCK, USING_TUNED_CLOCK)), sdmmc::ResultTuningFailed());
return ResultSuccess();
}
void SdmmcController::SaveTuningStatusForHs400() {
/* Save the current tap value. */
this->tap_value_for_hs_400 = GetCurrentTapValue();
this->is_valid_tap_value_for_hs_400 = true;
}
Result Sdmmc1Controller::PowerOnForRegisterControl(BusPower bus_power) {
AMS_ABORT_UNLESS(bus_power == BusPower_3_3V);
/* Nintendo sets the current bus power regardless of whether the call succeeds. */
ON_SCOPE_EXIT { this->current_bus_power = BusPower_3_3V; };
/* pcv::PowerOn(pcv::PowerControlTarget_SdCard, 3300000); */
R_TRY(this->power_controller->PowerOn(BusPower_3_3V));
return ResultSuccess();
}
void Sdmmc1Controller::PowerOffForRegisterControl() {
/* If we're already off, there's nothing to do. */
if (this->current_bus_power == BusPower_Off) {
return;
}
/* If we're at 3.3V, lower to 1.8V. */
{
/* pcv::ChangeVoltage(pcv::PowerControlTarget_SdCard, 1800000); */
this->power_controller->LowerBusPower();
/* Set our bus power. */
this->current_bus_power = BusPower_1_8V;
}
/* pinmux::SetPinAssignment(std::addressof(this->pinmux_session), pinmux::PinAssignment_Sdmmc1OutputHigh); */
pinmux_impl::SetPinAssignment(pinmux_impl::PinAssignment_Sdmmc1OutputHigh);
/* pcv::PowerOff(pcv::PowerControlTarget_SdCard); */
this->power_controller->PowerOff();
/* Set our bus power. */
this->current_bus_power = BusPower_Off;
/* pinmux::SetPinAssignment(std::addressof(this->pinmux_session), pinmux::PinAssignment_Sdmmc1ResetState); */
pinmux_impl::SetPinAssignment(pinmux_impl::PinAssignment_Sdmmc1ResetState);
}
Result Sdmmc1Controller::LowerBusPowerForRegisterControl() {
/* Nintendo sets the current bus power regardless of whether the call succeeds. */
ON_SCOPE_EXIT { this->current_bus_power = BusPower_1_8V; };
/* pcv::ChangeVoltage(pcv::PowerControlTarget_SdCard, 1800000); */
R_TRY(this->power_controller->LowerBusPower());
return ResultSuccess();
}
void Sdmmc1Controller::SetSchmittTriggerForRegisterControl(BusPower bus_power) {
SdHostStandardController::EnsureControl();
if (IsSocMariko()) {
/* pinmux::SetPinAssignment(std::addressof(this->pinmux_session), pinmux::PinAssignment_Sdmmc1SchmtEnable); */
pinmux_impl::SetPinAssignment(pinmux_impl::PinAssignment_Sdmmc1SchmtEnable);
} else {
switch (bus_power) {
case BusPower_1_8V:
/* pinmux::SetPinAssignment(std::addressof(this->pinmux_session), pinmux::PinAssignment_Sdmmc1SchmtEnable); */
pinmux_impl::SetPinAssignment(pinmux_impl::PinAssignment_Sdmmc1SchmtEnable);
break;
case BusPower_3_3V:
/* pinmux::SetPinAssignment(std::addressof(this->pinmux_session), pinmux::PinAssignment_Sdmmc1SchmtDisable); */
pinmux_impl::SetPinAssignment(pinmux_impl::PinAssignment_Sdmmc1SchmtDisable);
break;
case BusPower_Off:
AMS_UNREACHABLE_DEFAULT_CASE();
}
}
}
#if defined(AMS_SDMMC_USE_PCV_CLOCK_RESET_CONTROL)
Result Sdmmc1Controller::PowerOnForPcvControl(BusPower bus_power) {
AMS_ABORT_UNLESS(bus_power == BusPower_3_3V);
/* Nintendo sets the current bus power regardless of whether the call succeeds. */
ON_SCOPE_EXIT { this->current_bus_power = BusPower_3_3V; };
/* TODO: return pcv::PowerOn(pcv::PowerControlTarget_SdCard, 3300000); */
return ResultSuccess();
}
void Sdmmc1Controller::PowerOffForPcvControl() {
/* If we're already off, there's nothing to do. */
if (this->current_bus_power == BusPower_Off) {
return;
}
/* If we're at 3.3V, lower to 1.8V. */
{
/* TODO: pcv::ChangeVoltage(pcv::PowerControlTarget_SdCard, 1800000); */
this->current_bus_power = BusPower_1_8V;
}
/* TODO: pinmux::SetPinAssignment(std::addressof(this->pinmux_session), pinmux::PinAssignment_Sdmmc1OutputHigh); */
/* TODO: pcv::PowerOff(pcv::PowerControlTarget_SdCard); */
this->current_bus_power = BusPower_Off;
/* TODO: pinmux::SetPinAssignment(std::addressof(this->pinmux_session), pinmux::PinAssignment_Sdmmc1ResetState); */
}
Result Sdmmc1Controller::LowerBusPowerForPcvControl() {
/* Nintendo sets the current bus power regardless of whether the call succeeds. */
ON_SCOPE_EXIT { this->current_bus_power = BusPower_1_8V; };
/* TODO: return pcv::ChangeVoltage(pcv::PowerControlTarget_SdCard, 1800000); */
return ResultSuccess();
}
void Sdmmc1Controller::SetSchmittTriggerForPcvControl(BusPower bus_power) {
SdHostStandardController::EnsureControl();
if (IsSocMariko()) {
/* TODO: pinmux::SetPinAssignment(std::addressof(this->pinmux_session), pinmux::PinAssignment_Sdmmc1SchmtEnable); */
} else {
switch (bus_power) {
case BusPower_1_8V:
/* TODO: pinmux::SetPinAssignment(std::addressof(this->pinmux_session), pinmux::PinAssignment_Sdmmc1SchmtEnable); */
break;
case BusPower_3_3V:
/* TODO: pinmux::SetPinAssignment(std::addressof(this->pinmux_session), pinmux::PinAssignment_Sdmmc1SchmtDisable); */
break;
case BusPower_Off:
AMS_UNREACHABLE_DEFAULT_CASE();
}
}
}
#endif
Result Sdmmc1Controller::PowerOn(BusPower bus_power) {
#if defined(AMS_SDMMC_USE_PCV_CLOCK_RESET_CONTROL)
if (this->is_pcv_control) {
return this->PowerOnForPcvControl(bus_power);
} else
#endif
{
return this->PowerOnForRegisterControl(bus_power);
}
}
void Sdmmc1Controller::PowerOff() {
#if defined(AMS_SDMMC_USE_PCV_CLOCK_RESET_CONTROL)
if (this->is_pcv_control) {
return this->PowerOffForPcvControl();
} else
#endif
{
return this->PowerOffForRegisterControl();
}
}
Result Sdmmc1Controller::LowerBusPower() {
#if defined(AMS_SDMMC_USE_PCV_CLOCK_RESET_CONTROL)
if (this->is_pcv_control) {
return this->LowerBusPowerForPcvControl();
} else
#endif
{
return this->LowerBusPowerForRegisterControl();
}
}
void Sdmmc1Controller::SetSchmittTrigger(BusPower bus_power) {
#if defined(AMS_SDMMC_USE_PCV_CLOCK_RESET_CONTROL)
if (this->is_pcv_control) {
return this->SetSchmittTriggerForPcvControl(bus_power);
} else
#endif
{
return this->SetSchmittTriggerForRegisterControl(bus_power);
}
}
void Sdmmc1Controller::Initialize() {
return this->InitializeForRegisterControl();
}
void Sdmmc1Controller::Finalize() {
#if defined(AMS_SDMMC_USE_PCV_CLOCK_RESET_CONTROL)
if (this->is_pcv_control) {
return this->FinalizeForPcvControl();
} else
#endif
{
return this->FinalizeForRegisterControl();
}
}
void Sdmmc1Controller::InitializeForRegisterControl() {
#if defined(AMS_SDMMC_USE_PCV_CLOCK_RESET_CONTROL)
/* Mark ourselves as initialized by register control. */
this->is_pcv_control = false;
#endif
/* pinmux::Initialize(); */
/* This just opens a session handle to pinmux service, no work to do. */
/* pinmux::OpenSession(std::addressof(this->pinmux_session), pinmux::AssignablePinGroupName_Sdmmc1); */
/* This just sets the session's internal value to the pin group name, so nothing to do here either. */
/* pcv::Initialize(); */
/* This initializes a lot of globals in pcv, most of which we don't care about. */
/* However, we do care about the Sdmmc1PowerController. */
AMS_ABORT_UNLESS(this->power_controller == nullptr);
this->power_controller = new (GetPointer(this->power_controller_storage)) PowerController;
/* Perform base initialization. */
SdmmcController::Initialize();
}
void Sdmmc1Controller::FinalizeForRegisterControl() {
/* Perform base finalization. */
SdmmcController::Finalize();
/* pcv::Finalize(); */
/* As with initialize, we mostly don't care about the globals this touches. */
/* However, we do want to finalize the Sdmmc1PowerController. */
AMS_ABORT_UNLESS(this->power_controller != nullptr);
this->power_controller->~PowerController();
this->power_controller = nullptr;
/* pinmux::CloseSession(std::addressof(this->pinmux_session)); */
/* This does nothing. */
/* pinmux::Finalize(); */
/* This does nothing. */
#if defined(AMS_SDMMC_USE_PCV_CLOCK_RESET_CONTROL)
/* Mark ourselves as initialized by register control. */
this->is_pcv_control = false;
#endif
}
#if defined(AMS_SDMMC_USE_PCV_CLOCK_RESET_CONTROL)
void Sdmmc1Controller::InitializeForPcvControl() {
/* Mark ourselves as initialized by pcv control. */
this->is_pcv_control = true;
/* TODO: pinmux::Initialize(); */
/* TODO: pinmux::OpenSession(std::addressof(this->pinmux_session), pinmux::AssignablePinGroupName_Sdmmc1); */
/* TODO: pcv::Initialize(); */
/* Perform base initialization. */
SdmmcController::Initialize();
}
void Sdmmc1Controller::FinalizeForPcvControl() {
/* Perform base finalization. */
SdmmcController::Finalize();
/* TODO: pcv::Finalize(); */
/* TODO: pinmux::CloseSession(std::addressof(this->pinmux_session)); */
/* TODO: pinmux::Finalize(); */
/* Mark ourselves as initialized by register control. */
this->is_pcv_control = false;
}
#endif
namespace {
constexpr inline dd::PhysicalAddress PmcRegistersPhysicalAddress = 0x7000E400;
}
Result Sdmmc1Controller::PowerController::ControlVddioSdmmc1(BusPower bus_power) {
/* Configure appropriate voltage. */
switch (bus_power) {
case BusPower_Off:
R_TRY(SetSdCardVoltageEnabled(false));
break;
case BusPower_1_8V:
R_TRY(SetSdCardVoltageValue(1'800'000));
R_TRY(SetSdCardVoltageEnabled(true));
break;
case BusPower_3_3V:
R_TRY(SetSdCardVoltageValue(3'300'000));
R_TRY(SetSdCardVoltageEnabled(true));
break;
AMS_UNREACHABLE_DEFAULT_CASE();
}
return ResultSuccess();
}
void Sdmmc1Controller::PowerController::SetSdmmcIoMode(bool is_3_3V) {
/* Determine the address we're updating. */
constexpr dd::PhysicalAddress ApbdevPmcPwrDetValAddress = PmcRegistersPhysicalAddress + APBDEV_PMC_PWR_DET_VAL;
/* Read the current value. */
u32 value = dd::ReadIoRegister(ApbdevPmcPwrDetValAddress);
/* Mask out the existing bits. */
value &= ~(reg::EncodeMask(PMC_REG_BITS_MASK(PWR_DET_VAL_SDMMC1)));
/* ORR in the new bits. */
value |= reg::Encode(PMC_REG_BITS_ENUM_SEL(PWR_DET_VAL_SDMMC1, is_3_3V, ENABLE, DISABLE));
/* Write the new value. */
dd::WriteIoRegister(ApbdevPmcPwrDetValAddress, value);
/* Read the value back to be sure our write takes. */
dd::ReadIoRegister(ApbdevPmcPwrDetValAddress);
}
void Sdmmc1Controller::PowerController::ControlRailSdmmc1Io(bool is_power_on) {
/* Determine the address we're updating. */
constexpr dd::PhysicalAddress ApbdevPmcNoIoPowerAddress = PmcRegistersPhysicalAddress + APBDEV_PMC_NO_IOPOWER;
/* Read the current value. */
u32 value = dd::ReadIoRegister(ApbdevPmcNoIoPowerAddress);
/* Mask out the existing bits. */
value &= ~(reg::EncodeMask(PMC_REG_BITS_MASK(NO_IOPOWER_SDMMC1)));
/* ORR in the new bits. */
value |= reg::Encode(PMC_REG_BITS_ENUM_SEL(NO_IOPOWER_SDMMC1, is_power_on, DISABLE, ENABLE));
/* Write the new value. */
dd::WriteIoRegister(ApbdevPmcNoIoPowerAddress, value);
/* Read the value back to be sure our write takes. */
dd::ReadIoRegister(ApbdevPmcNoIoPowerAddress);
}
Sdmmc1Controller::PowerController::PowerController() : current_bus_power(BusPower_Off) {
/* gpio::Initialize(); */
/* ... */
/* Open gpio session. */
/* gpio::OpenSession(std::addressof(this->gpio_pad_session), gpio::GpioPadName_PowSdEn); */
gpio_impl::OpenSession(gpio_impl::GpioPadName_PowSdEn);
/* Configure the gpio as low/output. */
/* gpio::SetValue(std::addressof(this->gpio_pad_session), gpio::GpioValue_Low); */
gpio_impl::SetValue(gpio_impl::GpioPadName_PowSdEn, gpio_impl::GpioValue_Low);
/* gpio::SetDirection(std::addressof(this->gpio_pad_session), gpio::Direction_Output); */
gpio_impl::SetDirection(gpio_impl::GpioPadName_PowSdEn, gpio_impl::Direction_Output);
}
Sdmmc1Controller::PowerController::~PowerController() {
/* gpio::CloseSession(std::addressof(this->gpio_pad_session)); */
gpio_impl::CloseSession(gpio_impl::GpioPadName_PowSdEn);
/* gpio::Finalize(); */
/* ... */
}
Result Sdmmc1Controller::PowerController::PowerOn(BusPower bus_power) {
/* Bus power should be off, and if it's not we don't need to do anything. */
AMS_ASSERT(this->current_bus_power == BusPower_Off);
R_SUCCEED_IF(this->current_bus_power != BusPower_Off);
/* Power on requires the target bus power be 3.3V. */
AMS_ABORT_UNLESS(bus_power == BusPower_3_3V);
/* Enable the rail. */
this->ControlRailSdmmc1Io(true);
/* Set the SD power GPIO to high. */
/* gpio::SetValue(std::addressof(this->gpio_pad_session), gpio::GpioValue_High); */
gpio_impl::SetValue(gpio_impl::GpioPadName_PowSdEn, gpio_impl::GpioValue_High);
/* Wait 10ms for power change to take. */
WaitMicroSeconds(10000);
/* Configure Sdmmc1 IO as 3.3V. */
this->SetSdmmcIoMode(true);
R_TRY(this->ControlVddioSdmmc1(BusPower_3_3V));
/* Wait 130 us for changes to take. */
WaitMicroSeconds(130);
/* Update our current bus power. */
this->current_bus_power = bus_power;
return ResultSuccess();
}
Result Sdmmc1Controller::PowerController::PowerOff() {
/* Bus power should be on, and if it's not we don't need to do anything. */
AMS_ASSERT(this->current_bus_power != BusPower_Off);
R_SUCCEED_IF(this->current_bus_power == BusPower_Off);
/* Bus power should be 1.8V. */
/* NOTE: the result returned here is 0x8C0 (regulator::ResultIllegalRequest()) on newer firmwares. */
AMS_ASSERT(this->current_bus_power == BusPower_1_8V);
R_UNLESS(this->current_bus_power == BusPower_1_8V, pcv::ResultIllegalRequest());
/* Disable vddio, and wait 4 ms. */
this->ControlVddioSdmmc1(BusPower_Off);
WaitMicroSeconds(4000);
/* Set the SD power GPIO to low. */
/* gpio::SetValue(std::addressof(this->gpio_pad_session), gpio::GpioValue_Low); */
gpio_impl::SetValue(gpio_impl::GpioPadName_PowSdEn, gpio_impl::GpioValue_Low);
/* Wait 239ms for the gpio config to take. */
WaitMicroSeconds(239000);
/* Disable the rail. */
this->ControlRailSdmmc1Io(false);
this->SetSdmmcIoMode(true);
/* Update our current bus power. */
this->current_bus_power = BusPower_Off;
return ResultSuccess();
}
Result Sdmmc1Controller::PowerController::LowerBusPower() {
/* Bus power should be 3.3V, and if it's not we don't need to do anything. */
AMS_ASSERT(this->current_bus_power == BusPower_3_3V);
R_SUCCEED_IF(this->current_bus_power != BusPower_3_3V);
/* Configure as 1.8V, then wait 150us for it to take. */
R_TRY(this->ControlVddioSdmmc1(BusPower_1_8V));
WaitMicroSeconds(150);
this->SetSdmmcIoMode(false);
/* Update our current bus power. */
this->current_bus_power = BusPower_1_8V;
return ResultSuccess();
}
}