Atmosphere/exosphere/program/source/boot/secmon_boot_setup.cpp

395 lines
22 KiB
C++

/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <exosphere.hpp>
#include "secmon_boot.hpp"
#include "secmon_boot_cache.hpp"
#include "../secmon_setup.hpp"
#include "../secmon_key_storage.hpp"
namespace ams::secmon::boot {
namespace {
void ValidateSystemCounters() {
const uintptr_t sysctr0 = MemoryRegionVirtualDeviceSysCtr0.GetAddress();
/* Validate the system counter frequency is as expected. */
AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_CNTFID0) == 19'200'000u);
/* Validate the system counters are as expected. */
AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 0)) == 0);
AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 1)) == 0);
AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 2)) == 0);
AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 3)) == 0);
AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 4)) == 0);
AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 5)) == 0);
AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 6)) == 0);
AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 7)) == 0);
AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 8)) == 0);
AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 9)) == 0);
AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID(10)) == 0);
AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID(11)) == 0);
}
void SetupPmcRegisters() {
const auto pmc = MemoryRegionVirtualDevicePmc.GetAddress();
/* Set the physical address of the warmboot binary to scratch 1. */
reg::Write(pmc + APBDEV_PMC_SCRATCH1, static_cast<u32>(MemoryRegionPhysicalDramSecureDataStoreWarmbootFirmware.GetAddress()));
/* Configure logging by setting bits 18-19 of scratch 20. */
reg::ReadWrite(pmc + APBDEV_PMC_SCRATCH20, REG_BITS_VALUE(18, 2, 0));
/* Clear the wdt reset flag. */
reg::ReadWrite(pmc + APBDEV_PMC_SCRATCH190, REG_BITS_VALUE(0, 1, 0));
/* Configure warmboot to set Set FUSE_PRIVATEKEYDISABLE to KEY_INVISIBLE. */
reg::ReadWrite(pmc + APBDEV_PMC_SECURE_SCRATCH21, REG_BITS_VALUE(4, 1, 1));
/* Write the warmboot key. */
/* TODO: This is necessary for mariko. We should decide how to handle this. */
/* In particular, mariko will need to support loading older-than-expected warmboot firmware. */
/* We could hash the warmboot firmware and use a lookup table, or require bootloader to provide */
/* The warmboot key as a parameter. The latter is a better solution, but it would be nice to take */
/* care of it here. Perhaps we should read the number of anti-downgrade fuses burnt, and translate that */
/* to the warmboot key? To be decided during the process of implementing ams-on-mariko support. */
}
/* This function derives the master kek and device keys using the tsec root key. */
/* NOTE: Exosphere does not use this in practice, and expects the bootloader to set up keys already. */
/* NOTE: This function is currently not implemented. If implemented, it will only be a reference implementation. */
[[maybe_unused]]
void DeriveMasterKekAndDeviceKey() {
/* TODO: Decide whether to implement this. */
}
void SetupRandomKey(int slot, se::KeySlotLockFlags flags) {
/* Create an aligned buffer to hold the key. */
constexpr size_t KeySize = se::AesBlockSize;
util::AlignedBuffer<hw::DataCacheLineSize, KeySize> key;
/* Ensure data is consistent before triggering the SE. */
hw::FlushDataCache(key, KeySize);
hw::DataSynchronizationBarrierInnerShareable();
/* Generate random bytes into the key. */
se::GenerateRandomBytes(key, KeySize);
/* Ensure that the CPU sees consistent data. */
hw::DataSynchronizationBarrierInnerShareable();
hw::FlushDataCache(key, KeySize);
hw::DataSynchronizationBarrierInnerShareable();
/* Use the random bytes as a key source. */
se::SetEncryptedAesKey128(slot, pkg1::AesKeySlot_DeviceMaster, key, KeySize);
/* Lock the keyslot. */
se::LockAesKeySlot(slot, flags);
}
constinit const u8 MasterKeyVectorsDev[pkg1::OldMasterKeyCount + 1][se::AesBlockSize] = {
{0x46, 0x22, 0xB4, 0x51, 0x9A, 0x7E, 0xA7, 0x7F, 0x62, 0xA1, 0x1F, 0x8F, 0xC5, 0x3A, 0xDB, 0xFE}, /* Zeroes encrypted with Master Key 00. */
{0x39, 0x33, 0xF9, 0x31, 0xBA, 0xE4, 0xA7, 0x21, 0x2C, 0xDD, 0xB7, 0xD8, 0xB4, 0x4E, 0x37, 0x23}, /* Master key 00 encrypted with Master key 01. */
{0x97, 0x29, 0xB0, 0x32, 0x43, 0x14, 0x8C, 0xA6, 0x85, 0xE9, 0x5A, 0x94, 0x99, 0x39, 0xAC, 0x5D}, /* Master key 01 encrypted with Master key 02. */
{0x2C, 0xCA, 0x9C, 0x31, 0x1E, 0x07, 0xB0, 0x02, 0x97, 0x0A, 0xD8, 0x03, 0xA2, 0x76, 0x3F, 0xA3}, /* Master key 02 encrypted with Master key 03. */
{0x9B, 0x84, 0x76, 0x14, 0x72, 0x94, 0x52, 0xCB, 0x54, 0x92, 0x9B, 0xC4, 0x8C, 0x5B, 0x0F, 0xBA}, /* Master key 03 encrypted with Master key 04. */
{0x78, 0xD5, 0xF1, 0x20, 0x3D, 0x16, 0xE9, 0x30, 0x32, 0x27, 0x34, 0x6F, 0xCF, 0xE0, 0x27, 0xDC}, /* Master key 04 encrypted with Master key 05. */
{0x6F, 0xD2, 0x84, 0x1D, 0x05, 0xEC, 0x40, 0x94, 0x5F, 0x18, 0xB3, 0x81, 0x09, 0x98, 0x8D, 0x4E}, /* Master key 05 encrypted with Master key 06. */
{0x37, 0xAF, 0xAB, 0x35, 0x79, 0x09, 0xD9, 0x48, 0x29, 0xD2, 0xDB, 0xA5, 0xA5, 0xF5, 0x30, 0x19}, /* Master key 06 encrypted with Master key 07. */
{0xEC, 0xE1, 0x46, 0x89, 0x37, 0xFD, 0xD2, 0x15, 0x8C, 0x3F, 0x24, 0x82, 0xEF, 0x49, 0x68, 0x04}, /* Master key 07 encrypted with Master key 08. */
{0x43, 0x3D, 0xC5, 0x3B, 0xEF, 0x91, 0x02, 0x21, 0x61, 0x54, 0x63, 0x8A, 0x35, 0xE7, 0xCA, 0xEE}, /* Master key 08 encrypted with Master key 09. */
{0x6C, 0x2E, 0xCD, 0xB3, 0x34, 0x61, 0x77, 0xF5, 0xF9, 0xB1, 0xDD, 0x61, 0x98, 0x19, 0x3E, 0xD4}, /* Master key 09 encrypted with Master key 0A. */
};
constinit const u8 MasterKeyVectorsProd[pkg1::OldMasterKeyCount + 1][se::AesBlockSize] = {
{0x0C, 0xF0, 0x59, 0xAC, 0x85, 0xF6, 0x26, 0x65, 0xE1, 0xE9, 0x19, 0x55, 0xE6, 0xF2, 0x67, 0x3D}, /* Zeroes encrypted with Master Key 00. */
{0x29, 0x4C, 0x04, 0xC8, 0xEB, 0x10, 0xED, 0x9D, 0x51, 0x64, 0x97, 0xFB, 0xF3, 0x4D, 0x50, 0xDD}, /* Master key 00 encrypted with Master key 01. */
{0xDE, 0xCF, 0xEB, 0xEB, 0x10, 0xAE, 0x74, 0xD8, 0xAD, 0x7C, 0xF4, 0x9E, 0x62, 0xE0, 0xE8, 0x72}, /* Master key 01 encrypted with Master key 02. */
{0x0A, 0x0D, 0xDF, 0x34, 0x22, 0x06, 0x6C, 0xA4, 0xE6, 0xB1, 0xEC, 0x71, 0x85, 0xCA, 0x4E, 0x07}, /* Master key 02 encrypted with Master key 03. */
{0x6E, 0x7D, 0x2D, 0xC3, 0x0F, 0x59, 0xC8, 0xFA, 0x87, 0xA8, 0x2E, 0xD5, 0x89, 0x5E, 0xF3, 0xE9}, /* Master key 03 encrypted with Master key 04. */
{0xEB, 0xF5, 0x6F, 0x83, 0x61, 0x9E, 0xF8, 0xFA, 0xE0, 0x87, 0xD7, 0xA1, 0x4E, 0x25, 0x36, 0xEE}, /* Master key 04 encrypted with Master key 05. */
{0x1E, 0x1E, 0x22, 0xC0, 0x5A, 0x33, 0x3C, 0xB9, 0x0B, 0xA9, 0x03, 0x04, 0xBA, 0xDB, 0x07, 0x57}, /* Master key 05 encrypted with Master key 06. */
{0xA4, 0xD4, 0x52, 0x6F, 0xD1, 0xE4, 0x36, 0xAA, 0x9F, 0xCB, 0x61, 0x27, 0x1C, 0x67, 0x65, 0x1F}, /* Master key 06 encrypted with Master key 07. */
{0xEA, 0x60, 0xB3, 0xEA, 0xCE, 0x8F, 0x24, 0x46, 0x7D, 0x33, 0x9C, 0xD1, 0xBC, 0x24, 0x98, 0x29}, /* Master key 07 encrypted with Master key 08. */
{0x4D, 0xD9, 0x98, 0x42, 0x45, 0x0D, 0xB1, 0x3C, 0x52, 0x0C, 0x9A, 0x44, 0xBB, 0xAD, 0xAF, 0x80}, /* Master key 08 encrypted with Master key 09. */
{0xB8, 0x96, 0x9E, 0x4A, 0x00, 0x0D, 0xD6, 0x28, 0xB3, 0xD1, 0xDB, 0x68, 0x5F, 0xFB, 0xE1, 0x2A}, /* Master key 09 encrypted with Master key 0A. */
};
bool TestKeyGeneration(int generation, bool is_prod) {
/* Decrypt the vector chain from generation to start. */
int slot = pkg1::AesKeySlot_Master;
for (int i = generation; i > 0; --i) {
se::SetEncryptedAesKey128(pkg1::AesKeySlot_Temporary, slot, is_prod ? MasterKeyVectorsProd[i] : MasterKeyVectorsDev[i], se::AesBlockSize);
slot = pkg1::AesKeySlot_Temporary;
}
/* Decrypt the final vector. */
u8 test_vector[se::AesBlockSize];
se::DecryptAes128(test_vector, se::AesBlockSize, slot, is_prod ? MasterKeyVectorsProd[0] : MasterKeyVectorsDev[0], se::AesBlockSize);
constexpr u8 ZeroBlock[se::AesBlockSize] = {};
return crypto::IsSameBytes(ZeroBlock, test_vector, se::AesBlockSize);
}
int DetermineKeyGeneration(bool is_prod) {
/* Test each generation in order. */
for (int generation = 0; generation < pkg1::KeyGeneration_Count; ++generation) {
if (TestKeyGeneration(generation, is_prod)) {
return generation;
}
}
/* We must have found a correct key generation. */
AMS_ABORT();
}
void DeriveAllMasterKeys(bool is_prod, u8 * const work_block) {
/* Determine the generation. */
const int generation = DetermineKeyGeneration(is_prod);
/* Set the global generation. */
::ams::secmon::impl::SetKeyGeneration(generation);
/* Derive all old keys. */
int slot = pkg1::AesKeySlot_Master;
for (int i = generation; i > 0; --i) {
/* Decrypt the old master key. */
se::DecryptAes128(work_block, se::AesBlockSize, slot, is_prod ? MasterKeyVectorsProd[i] : MasterKeyVectorsDev[i], se::AesBlockSize);
/* Set the old master key. */
SetMasterKey(i - 1, work_block, se::AesBlockSize);
/* Set the old master key into a temporary keyslot. */
se::SetAesKey(pkg1::AesKeySlot_Temporary, work_block, se::AesBlockSize);
/* Perform the next decryption with the older master key. */
slot = pkg1::AesKeySlot_Temporary;
}
}
constinit const u8 DeviceMasterKeySourceSources[pkg1::OldDeviceMasterKeyCount][se::AesBlockSize] = {
{0x8B, 0x4E, 0x1C, 0x22, 0x42, 0x07, 0xC8, 0x73, 0x56, 0x94, 0x08, 0x8B, 0xCC, 0x47, 0x0F, 0x5D}, /* 4.0.0 Device Master Key Source Source. */
{0x6C, 0xEF, 0xC6, 0x27, 0x8B, 0xEC, 0x8A, 0x91, 0x99, 0xAB, 0x24, 0xAC, 0x4F, 0x1C, 0x8F, 0x1C}, /* 5.0.0 Device Master Key Source Source. */
{0x70, 0x08, 0x1B, 0x97, 0x44, 0x64, 0xF8, 0x91, 0x54, 0x9D, 0xC6, 0x84, 0x8F, 0x1A, 0xB2, 0xE4}, /* 6.0.0 Device Master Key Source Source. */
{0x8E, 0x09, 0x1F, 0x7A, 0xBB, 0xCA, 0x6A, 0xFB, 0xB8, 0x9B, 0xD5, 0xC1, 0x25, 0x9C, 0xA9, 0x17}, /* 6.2.0 Device Master Key Source Source. */
{0x8F, 0x77, 0x5A, 0x96, 0xB0, 0x94, 0xFD, 0x8D, 0x28, 0xE4, 0x19, 0xC8, 0x16, 0x1C, 0xDB, 0x3D}, /* 7.0.0 Device Master Key Source Source. */
{0x67, 0x62, 0xD4, 0x8E, 0x55, 0xCF, 0xFF, 0x41, 0x31, 0x15, 0x3B, 0x24, 0x0C, 0x7C, 0x07, 0xAE}, /* 8.1.0 Device Master Key Source Source. */
{0x4A, 0xC3, 0x4E, 0x14, 0x8B, 0x96, 0x4A, 0xD5, 0xD4, 0x99, 0x73, 0xC4, 0x45, 0xAB, 0x8B, 0x49}, /* 9.0.0 Device Master Key Source Source. */
{0x14, 0xB8, 0x74, 0x12, 0xCB, 0xBD, 0x0B, 0x8F, 0x20, 0xFB, 0x30, 0xDA, 0x27, 0xE4, 0x58, 0x94}, /* 9.1.0 Device Master Key Source Source. */
};
constinit const u8 DeviceMasterKekSourcesDev[pkg1::OldDeviceMasterKeyCount][se::AesBlockSize] = {
{0xD6, 0xBD, 0x9F, 0xC6, 0x18, 0x09, 0xE1, 0x96, 0x20, 0x39, 0x60, 0xD2, 0x89, 0x83, 0x31, 0x34}, /* 4.0.0 Device Master Kek Source. */
{0x59, 0x2D, 0x20, 0x69, 0x33, 0xB5, 0x17, 0xBA, 0xCF, 0xB1, 0x4E, 0xFD, 0xE4, 0xC2, 0x7B, 0xA8}, /* 5.0.0 Device Master Kek Source. */
{0xF6, 0xD8, 0x59, 0x63, 0x8F, 0x47, 0xCB, 0x4A, 0xD8, 0x74, 0x05, 0x7F, 0x88, 0x92, 0x33, 0xA5}, /* 6.0.0 Device Master Kek Source. */
{0x20, 0xAB, 0xF2, 0x0F, 0x05, 0xE3, 0xDE, 0x2E, 0xA1, 0xFB, 0x37, 0x5E, 0x8B, 0x22, 0x1A, 0x38}, /* 6.2.0 Device Master Kek Source. */
{0x60, 0xAE, 0x56, 0x68, 0x11, 0xE2, 0x0C, 0x99, 0xDE, 0x05, 0xAE, 0x68, 0x78, 0x85, 0x04, 0xAE}, /* 7.0.0 Device Master Kek Source. */
{0x94, 0xD6, 0xA8, 0xC0, 0x95, 0xAF, 0xD0, 0xA6, 0x27, 0x53, 0x5E, 0xE5, 0x8E, 0x70, 0x1F, 0x87}, /* 8.1.0 Device Master Kek Source. */
{0x61, 0x6A, 0x88, 0x21, 0xA3, 0x52, 0xB0, 0x19, 0x16, 0x25, 0xA4, 0xE3, 0x4C, 0x54, 0x02, 0x0F}, /* 9.0.0 Device Master Kek Source. */
{0x9D, 0xB1, 0xAE, 0xCB, 0xF6, 0xF6, 0xE3, 0xFE, 0xAB, 0x6F, 0xCB, 0xAF, 0x38, 0x03, 0xFC, 0x7B}, /* 9.1.0 Device Master Kek Source. */
};
constinit const u8 DeviceMasterKekSourcesProd[pkg1::OldDeviceMasterKeyCount][se::AesBlockSize] = {
{0x88, 0x62, 0x34, 0x6E, 0xFA, 0xF7, 0xD8, 0x3F, 0xE1, 0x30, 0x39, 0x50, 0xF0, 0xB7, 0x5D, 0x5D}, /* 4.0.0 Device Master Kek Source. */
{0x06, 0x1E, 0x7B, 0xE9, 0x6D, 0x47, 0x8C, 0x77, 0xC5, 0xC8, 0xE7, 0x94, 0x9A, 0xA8, 0x5F, 0x2E}, /* 5.0.0 Device Master Kek Source. */
{0x99, 0xFA, 0x98, 0xBD, 0x15, 0x1C, 0x72, 0xFD, 0x7D, 0x9A, 0xD5, 0x41, 0x00, 0xFD, 0xB2, 0xEF}, /* 6.0.0 Device Master Kek Source. */
{0x81, 0x3C, 0x6C, 0xBF, 0x5D, 0x21, 0xDE, 0x77, 0x20, 0xD9, 0x6C, 0xE3, 0x22, 0x06, 0xAE, 0xBB}, /* 6.2.0 Device Master Kek Source. */
{0x86, 0x61, 0xB0, 0x16, 0xFA, 0x7A, 0x9A, 0xEA, 0xF6, 0xF5, 0xBE, 0x1A, 0x13, 0x5B, 0x6D, 0x9E}, /* 7.0.0 Device Master Kek Source. */
{0xA6, 0x81, 0x71, 0xE7, 0xB5, 0x23, 0x74, 0xB0, 0x39, 0x8C, 0xB7, 0xFF, 0xA0, 0x62, 0x9F, 0x8D}, /* 8.1.0 Device Master Kek Source. */
{0x03, 0xE7, 0xEB, 0x43, 0x1B, 0xCF, 0x5F, 0xB5, 0xED, 0xDC, 0x97, 0xAE, 0x21, 0x8D, 0x19, 0xED}, /* 9.0.0 Device Master Kek Source. */
{0xCE, 0xFE, 0x41, 0x0F, 0x46, 0x9A, 0x30, 0xD6, 0xF2, 0xE9, 0x0C, 0x6B, 0xB7, 0x15, 0x91, 0x36}, /* 9.1.0 Device Master Kek Source. */
};
void DeriveAllDeviceMasterKeys(bool is_prod, u8 * const work_block) {
/* Get the current key generation. */
const int current_generation = secmon::GetKeyGeneration();
/* Get the kek slot. */
const int kek_slot = fuse::GetSocType() == fuse::SocType_Mariko ? pkg1::AesKeySlot_DeviceMasterKeySourceKekMariko : pkg1::AesKeySlot_DeviceMasterKeySourceKekErista;
/* Iterate for all generations. */
for (int i = 0; i < pkg1::OldDeviceMasterKeyCount; ++i) {
const int generation = pkg1::KeyGeneration_4_0_0 + i;
/* Load the first master key into the temporary keyslot keyslot. */
LoadMasterKey(pkg1::AesKeySlot_Temporary, pkg1::KeyGeneration_1_0_0);
/* Decrypt the device master kek for the generation. */
se::SetEncryptedAesKey128(pkg1::AesKeySlot_Temporary, pkg1::AesKeySlot_Temporary, is_prod ? DeviceMasterKekSourcesProd[i] : DeviceMasterKekSourcesDev[i], se::AesBlockSize);
/* Decrypt the device master key source into the work block. */
se::DecryptAes128(work_block, se::AesBlockSize, kek_slot, DeviceMasterKeySourceSources[i], se::AesBlockSize);
/* If we're decrypting the current device master key, decrypt into the keyslot. */
if (generation == current_generation) {
se::SetEncryptedAesKey128(pkg1::AesKeySlot_DeviceMaster, pkg1::AesKeySlot_Temporary, work_block, se::AesBlockSize);
} else {
/* Otherwise, decrypt the work block into itself and set the old device master key. */
se::DecryptAes128(work_block, se::AesBlockSize, pkg1::AesKeySlot_Temporary, work_block, se::AesBlockSize);
/* Set the device master key. */
SetDeviceMasterKey(generation, work_block, se::AesBlockSize);
}
}
/* Clear and lock the Device Master Key Source Kek. */
se::ClearAesKeySlot(pkg1::AesKeySlot_DeviceMasterKeySourceKekMariko);
se::LockAesKeySlot(pkg1::AesKeySlot_DeviceMasterKeySourceKekMariko, se::KeySlotLockFlags_AllLockKek);
}
void DeriveAllKeys() {
/* Determine whether we're prod. */
const bool is_prod = IsProduction();
/* Get the ephemeral work block. */
u8 * const work_block = se::GetEphemeralWorkBlock();
ON_SCOPE_EXIT { util::ClearMemory(work_block, se::AesBlockSize); };
/* Lock the master key as a key. */
se::LockAesKeySlot(pkg1::AesKeySlot_Master, se::KeySlotLockFlags_AllLockKey);
/* Setup a random key to protect the old master and device master keys. */
SetupRandomKey(pkg1::AesKeySlot_RandomForKeyStorageWrap, se::KeySlotLockFlags_AllLockKey);
/* Derive the master keys. */
DeriveAllMasterKeys(is_prod, work_block);
/* Derive the device master keys. */
DeriveAllDeviceMasterKeys(is_prod, work_block);
/* Lock the device master key as a kek. */
se::LockAesKeySlot(pkg1::AesKeySlot_DeviceMaster, se::KeySlotLockFlags_AllLockKek);
/* Setup a random key to protect user keys. */
SetupRandomKey(pkg1::AesKeySlot_RandomForUserWrap, se::KeySlotLockFlags_AllLockKek);
}
void InitializeKeys() {
/* Read lock all aes keys. */
for (int i = 0; i < se::AesKeySlotCount; ++i) {
se::LockAesKeySlot(i, se::KeySlotLockFlags_AllReadLock);
}
/* Lock the secure monitor aes keys to be secmon only and non-readable. */
for (int i = pkg1::AesKeySlot_SecmonStart; i < pkg1::AesKeySlot_SecmonEnd; ++i) {
se::LockAesKeySlot(i, se::KeySlotLockFlags_KeyUse | se::KeySlotLockFlags_PerKey);
}
/* Lock the unused keyslots entirely. */
static_assert(pkg1::AesKeySlot_UserEnd <= pkg1::AesKeySlot_SecmonStart);
for (int i = pkg1::AesKeySlot_UserEnd; i < pkg1::AesKeySlot_SecmonStart; ++i) {
se::LockAesKeySlot(i, se::KeySlotLockFlags_AllLockKek);
}
/* Read lock all rsa keys. */
for (int i = 0; i < se::RsaKeySlotCount; ++i) {
se::LockRsaKeySlot(i, se::KeySlotLockFlags_KeyUse | se::KeySlotLockFlags_PerKey | se::KeySlotLockFlags_KeyRead);
}
/* Initialize the rng. */
se::InitializeRandom();
/* Derive the master kek and device key. */
if constexpr (false) {
DeriveMasterKekAndDeviceKey();
}
/* Lock the device key as only usable as a kek. */
se::LockAesKeySlot(pkg1::AesKeySlot_Device, se::KeySlotLockFlags_AllLockKek);
/* Derive all keys. */
DeriveAllKeys();
}
}
namespace {
using namespace ams::mmu;
constexpr void UnmapPhysicalIdentityMappingImpl(u64 *l1, u64 *l2, u64 *l3) {
/* Invalidate the L3 entries for the tzram and iram boot code regions. */
InvalidateL3Entries(l3, MemoryRegionPhysicalTzram.GetAddress(), MemoryRegionPhysicalTzram.GetSize());
InvalidateL3Entries(l3, MemoryRegionPhysicalIramBootCode.GetAddress(), MemoryRegionPhysicalIramBootCode.GetSize());
/* Unmap the L2 entries corresponding to those L3 entries. */
InvalidateL2Entries(l2, MemoryRegionPhysicalIramL2.GetAddress(), MemoryRegionPhysicalIramL2.GetSize());
InvalidateL2Entries(l2, MemoryRegionPhysicalTzramL2.GetAddress(), MemoryRegionPhysicalTzramL2.GetSize());
/* Unmap the L1 entry corresponding to to those L2 entries. */
InvalidateL1Entries(l1, MemoryRegionPhysical.GetAddress(), MemoryRegionPhysical.GetSize());
}
constexpr void UnmapDramImpl(u64 *l1, u64 *l2, u64 *l3) {
/* Unmap the L1 entry corresponding to to the Dram entries. */
InvalidateL1Entries(l1, MemoryRegionDram.GetAddress(), MemoryRegionDram.GetSize());
}
}
void InitializeColdBoot() {
/* Ensure that the system counters are valid. */
ValidateSystemCounters();
/* Set the security engine to Tzram Secure. */
se::SetTzramSecure();
/* Set the security engine to Per Key Secure. */
se::SetPerKeySecure();
/* Setup the PMC registers. */
SetupPmcRegisters();
/* Lockout the scratch that we've just written. */
/* pmc::LockSecureRegisters(1); */
/* Generate a random srk. */
se::GenerateSrk();
/* Initialize the SE keyslots. */
InitializeKeys();
/* Save a test vector for the SE keyslots. */
SaveSecurityEngineAesKeySlotTestVector();
}
void UnmapPhysicalIdentityMapping() {
/* Get the tables. */
u64 * const l1 = MemoryRegionVirtualTzramL1PageTable.GetPointer<u64>();
u64 * const l2_l3 = MemoryRegionVirtualTzramL2L3PageTable.GetPointer<u64>();
/* Unmap. */
UnmapPhysicalIdentityMappingImpl(l1, l2_l3, l2_l3);
/* Ensure the mappings are consistent. */
secmon::boot::EnsureMappingConsistency();
}
void UnmapDram() {
/* Get the tables. */
u64 * const l1 = MemoryRegionVirtualTzramL1PageTable.GetPointer<u64>();
u64 * const l2_l3 = MemoryRegionVirtualTzramL2L3PageTable.GetPointer<u64>();
/* Unmap. */
UnmapDramImpl(l1, l2_l3, l2_l3);
/* Ensure the mappings are consistent. */
secmon::boot::EnsureMappingConsistency();
}
}