Atmosphere/fusee/program/source/mtc/fusee_mtc_mariko.cpp
2022-03-22 23:28:32 +00:00

2839 lines
152 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <exosphere.hpp>
#include "../fusee_fatal.hpp"
#include "../fusee_uncompress.hpp"
#include "fusee_mtc.hpp"
#include "fusee_mtc_timing_table_mariko.hpp"
namespace ams::nxboot {
namespace {
constexpr inline const uintptr_t CLKRST = secmon::MemoryRegionPhysicalDeviceClkRst.GetAddress();
constexpr inline const uintptr_t MC = MC_BASE;
constexpr inline const uintptr_t EMC = EMC_BASE;
constexpr inline const uintptr_t EMC0 = EMC0_BASE;
constexpr inline const uintptr_t EMC1 = EMC1_BASE;
static constinit bool g_next_pll = false;
static constinit bool g_did_first_training = false;
static constinit bool g_fsp_for_next_freq = false;
#include "fusee_mtc_tables_mariko.inc"
#include "fusee_mtc_ram_training_pattern.inc"
#define DECLARE_REGISTER_HANDLER(BASE, REG, NAME) BASE + REG,
constexpr inline const u32 BurstRegisters[] = {
FOREACH_BURST_REG(DECLARE_REGISTER_HANDLER)
};
constexpr inline const u32 TrimRegisters[] = {
FOREACH_TRIM_REG(DECLARE_REGISTER_HANDLER)
};
constexpr inline const u32 BurstMcRegisters[] = {
FOREACH_BURST_MC_REG(DECLARE_REGISTER_HANDLER)
};
constexpr inline const u32 LaScaleRegisters[] = {
FOREACH_LA_SCALE_REG(DECLARE_REGISTER_HANDLER)
};
constexpr inline const u32 PerChannelTrimRegisters[] = {
FOREACH_PER_CHANNEL_TRIM_REG(DECLARE_REGISTER_HANDLER)
};
constexpr inline const u32 PerChannelBurstRegisters[] = {
FOREACH_PER_CHANNEL_BURST_REG(DECLARE_REGISTER_HANDLER)
};
constexpr inline const u32 PerChannelVrefRegisters[] = {
FOREACH_PER_CHANNEL_VREF_REG(DECLARE_REGISTER_HANDLER)
};
constexpr inline const u32 PerChannelTrainingModRegisters[] = {
FOREACH_PER_CHANNEL_TRAINING_MOD_REG(DECLARE_REGISTER_HANDLER)
};
using EmcDvfsTimingTable = mariko::EmcDvfsTimingTable;
EmcDvfsTimingTable *GetEmcDvfsTimingTables(int index, void *mtc_tables_buffer) {
/* Get the compressed table. */
const u8 *cmp_table;
size_t cmp_table_size;
switch (index) {
#define HANDLE_CASE(N, TABLE) \
case N: \
cmp_table = TABLE; \
cmp_table_size = sizeof(TABLE); \
break;
HANDLE_CASE(0x00, T210b01SdevEmcDvfsTableS4gb01)
HANDLE_CASE(0x05, T210b01SdevEmcDvfsTableS4gb03)
HANDLE_CASE(0x06, T210b01SdevEmcDvfsTableS8gb03)
HANDLE_CASE(0x07, T210b01SdevEmcDvfsTableH4gb03)
HANDLE_CASE(0x08, T210b01SdevEmcDvfsTableM4gb03)
HANDLE_CASE(0x09, T210b01SdevEmcDvfsTableS4gbY01)
HANDLE_CASE(0x0A, T210b01SdevEmcDvfsTableS1y4gbY01)
HANDLE_CASE(0x0B, T210b01SdevEmcDvfsTableS1y8gbY01)
HANDLE_CASE(0x0C, T210b01SdevEmcDvfsTableS1y4gbX03)
HANDLE_CASE(0x0D, T210b01SdevEmcDvfsTableS1y8gbX03)
HANDLE_CASE(0x0E, T210b01SdevEmcDvfsTableS1y4gb01)
HANDLE_CASE(0x0F, T210b01SdevEmcDvfsTableM1y4gb01)
HANDLE_CASE(0x10, T210b01SdevEmcDvfsTableH1y4gb01)
HANDLE_CASE(0x11, T210b01SdevEmcDvfsTableS1y8gb04)
HANDLE_CASE(0x12, T210b01SdevEmcDvfsTableS1z4gb01)
default:
ShowFatalError("Unknown EmcDvfsTimingTableIndex: %d\n", index);
}
/* Uncompress the table. */
EmcDvfsTimingTable *out_tables = reinterpret_cast<EmcDvfsTimingTable *>(mtc_tables_buffer);
Uncompress(out_tables, 2 * sizeof(EmcDvfsTimingTable), cmp_table, cmp_table_size);
return out_tables;
}
bool IsSamePll(u32 next_2x, u32 prev_2x) {
if (next_2x == prev_2x) {
return true;
} else if ((next_2x == PLLM_OUT0 || next_2x == PLLM_UD) && (prev_2x == PLLM_OUT0 || prev_2x == PLLM_UD)) {
return true;
} else {
return false;
}
}
bool PllReprogram(u32 next_rate_khz, u32 next_clk_src, u32 prev_rate_khz, u32 prev_clk_src) {
/* Get current divp value. */
u32 pll_p;
switch (reg::GetValue(CLKRST + CLK_RST_CONTROLLER_CLK_SOURCE_EMC, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_SRC))) {
case PLLM_UD:
case PLLM_OUT0:
pll_p = reg::GetValue(CLKRST + CLK_RST_CONTROLLER_PLLM_BASE, CLK_RST_REG_BITS_MASK(PLLM_BASE_PLLM_DIVP_B01));
break;
case PLLMB_UD:
case PLLMB_OUT0:
pll_p = reg::GetValue(CLKRST + CLK_RST_CONTROLLER_PLLMB_BASE, CLK_RST_REG_BITS_MASK(PLLMB_BASE_PLLMB_DIVP_B01));
break;
default:
pll_p = 0;
break;
}
/* Get clk src/divisor. */
const u32 next_2x = reg::GetField(next_clk_src, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_SRC));
const u32 prev_2x = reg::GetField(prev_clk_src, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_SRC));
u32 next_div = reg::GetField(next_clk_src, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR));
u32 prev_div = reg::GetField(prev_clk_src, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR));
/* Update divisor, if necessary. */
if (next_2x == PLLM_UD || next_2x == PLLMB_UD) {
next_div = 0;
}
if (prev_2x == PLLM_UD || prev_2x == PLLMB_UD) {
prev_div = 0;
}
/* If the pll is different, reprogramming is necessary. */
if (!IsSamePll(next_2x, prev_2x)) {
return true;
}
/* Return whether the ratios are different. */
const float next_freq = next_rate_khz * (1 + (next_div >> 1) + (0.5 * (next_div & 1))) * (pll_p + 1);
const float prev_freq = prev_rate_khz * (1 + (prev_div >> 1) + (0.5 * (prev_div & 1))) * (pll_p + 1);
const float ratio = prev_freq / next_freq;
return ratio > 1.01 || ratio < 0.99;
}
u32 ProgramPllm(u32 next_rate_khz, u32 next_clk_src, u32 ret_clk_src, bool is_pllmb, EmcDvfsTimingTable *timing) {
u32 ret = ret_clk_src;
const uint32_t base = ((timing->pllmb_divm & 0xFF) | ((timing->pllmb_divn & 0xFF) << 8) | ((timing->pllmb_divp & 1) << 20));
if (is_pllmb) {
reg::Write(CLKRST + CLK_RST_CONTROLLER_PLLMB_BASE, base);
reg::Read(CLKRST + CLK_RST_CONTROLLER_PLLMB_BASE);
reg::SetBits(CLKRST + CLK_RST_CONTROLLER_PLLMB_MISC1, 0x10000000);
if (timing->pll_en_ssc & 1) {
reg::Write(CLKRST + CLK_RST_CONTROLLER_PLLMB_SS_CFG, timing->pllmb_ss_cfg);
reg::Write(CLKRST + CLK_RST_CONTROLLER_PLLMB_SS_CTRL1, timing->pllmb_ss_ctrl1);
reg::Write(CLKRST + CLK_RST_CONTROLLER_PLLMB_SS_CTRL2, timing->pllmb_ss_ctrl2);
} else {
reg::Write(CLKRST + CLK_RST_CONTROLLER_PLLMB_SS_CFG, timing->pllmb_ss_cfg & 0xBFFFFFFF);
reg::Write(CLKRST + CLK_RST_CONTROLLER_PLLMB_SS_CTRL2, timing->pllmb_ss_ctrl2 & 0x0000FFFF);
}
reg::SetBits(CLKRST + CLK_RST_CONTROLLER_PLLMB_BASE, 0x40000000);
switch (reg::GetField(ret, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_SRC))) {
case PLLM_OUT0:
reg::SetField(ret, CLK_RST_REG_BITS_VALUE(CLK_SOURCE_EMC_EMC_2X_CLK_SRC, PLLMB_OUT0));
break;
case PLLM_UD:
reg::SetField(ret, CLK_RST_REG_BITS_VALUE(CLK_SOURCE_EMC_EMC_2X_CLK_SRC, PLLMB_UD));
break;
}
while ((reg::Read(CLKRST + CLK_RST_CONTROLLER_PLLMB_BASE) & 0x8000000) == 0) { /* ... */ }
return ret;
} else {
reg::Write(CLKRST + CLK_RST_CONTROLLER_PLLM_BASE, base);
reg::Read(CLKRST + CLK_RST_CONTROLLER_PLLM_BASE);
reg::SetBits(CLKRST + CLK_RST_CONTROLLER_PLLM_MISC2, 0x10);
if (timing->pll_en_ssc & 1) {
reg::Write(CLKRST + CLK_RST_CONTROLLER_PLLM_SS_CFG, timing->pllm_ss_cfg);
reg::Write(CLKRST + CLK_RST_CONTROLLER_PLLM_SS_CTRL1, timing->pllm_ss_ctrl1);
reg::Write(CLKRST + CLK_RST_CONTROLLER_PLLM_SS_CTRL2, timing->pllm_ss_ctrl2);
} else {
reg::Write(CLKRST + CLK_RST_CONTROLLER_PLLM_SS_CFG, timing->pllm_ss_cfg & 0xBFFFFFFF);
reg::Write(CLKRST + CLK_RST_CONTROLLER_PLLM_SS_CTRL2, timing->pllm_ss_ctrl2 & 0x0000FFFF);
}
reg::SetBits(CLKRST + CLK_RST_CONTROLLER_PLLM_BASE, 0x40000000);
switch (reg::GetField(ret, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_SRC))) {
case PLLM_OUT0:
reg::SetField(ret, CLK_RST_REG_BITS_VALUE(CLK_SOURCE_EMC_EMC_2X_CLK_SRC, PLLM_OUT0));
break;
case PLLM_UD:
reg::SetField(ret, CLK_RST_REG_BITS_VALUE(CLK_SOURCE_EMC_EMC_2X_CLK_SRC, PLLM_UD));
break;
}
while ((reg::Read(CLKRST + CLK_RST_CONTROLLER_PLLM_BASE) & 0x8000000) == 0) { /* ... */ }
return ret;
}
}
u32 GetDllState(EmcDvfsTimingTable *timing) {
return (!(timing->emc_emrs & 0x1)) ? DLL_ON : DLL_OFF;
}
int WaitForUpdate(u32 reg_offset, u32 mask, bool updated, u32 fbio_cfg7) {
constexpr int StatusUpdateTimeout = 1000;
int result = 0;
if (reg::GetField(fbio_cfg7, EMC_REG_BITS_MASK(FBIO_CFG7_CH0_ENABLE)) == EMC_FBIO_CFG7_CH0_ENABLE_ENABLE) {
bool success = false;
for (int i = 0; i < StatusUpdateTimeout; ++i) {
if (((reg::Read(EMC0 + reg_offset) & mask) != 0) == updated) {
success = true;
break;
}
util::WaitMicroSeconds(1);
}
result |= success ? 0 : 4;
}
if (reg::GetField(fbio_cfg7, EMC_REG_BITS_MASK(FBIO_CFG7_CH1_ENABLE)) == EMC_FBIO_CFG7_CH1_ENABLE_ENABLE) {
bool success = false;
for (int i = 0; i < StatusUpdateTimeout; ++i) {
if (((reg::Read(EMC1 + reg_offset) & mask) != 0) == updated) {
success = true;
break;
}
util::WaitMicroSeconds(1);
}
result |= success ? 0 : 4;
}
return result;
}
void TimingUpdate(u32 fbio_cfg7) {
/* Trigger the timing update event. */
reg::Write(EMC + EMC_TIMING_CONTROL, 1);
/* Wait for the update to finish. */
WaitForUpdate(EMC_EMC_STATUS, 0x800000, false, fbio_cfg7);
}
void CcfifoWrite(u32 addr, u32 data, u32 wait) {
reg::Write(EMC + EMC_CCFIFO_DATA, data);
reg::Write(EMC + EMC_CCFIFO_ADDR, (addr & 0xFFFF) | ((wait & 0x7FFF) << 16) | 0x80000000);
}
u32 ActualOscClocks(u32 in) {
if (in < 0x40) {
return in * 0x10;
} else if (in < 0x80) {
return 0x800;
} else if (in < 0xC0) {
return 0x1000;
} else {
return 0x2000;
}
}
u32 DivideUpFloat(u32 a, u32 b) {
const float res = a / b;
const u32 floor = static_cast<u32>(res);
return floor + ((static_cast<float>(floor) + 0.01 < res) ? 1 : 0);
}
void StartPeriodicCompensation() {
reg::Write(EMC + EMC_MPC, 0x4B);
reg::Read(EMC + EMC_MPC);
}
u32 SetShadowBypass(u32 val, u32 emc_dbg) {
reg::SetField(emc_dbg, EMC_REG_BITS_VALUE(DBG_WRITE_MUX, val));
return emc_dbg;
}
constinit uint32_t g_periodic_timmer_compensation_intermediates[9 * 0x10] = {};
uint32_t ApplyPeriodicCompensationTrimmer(EmcDvfsTimingTable *timing, uint32_t trim_reg) {
/* Initialize variables. */
uint32_t rate_mhz = timing->rate_khz / 1000;
uint32_t adj[0x10] = { 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 };
int tree_delta[4] = {0};
uint32_t tree_delta_taps[4] = {0};
/* Generate the intermediate array. */
#define SET_TRIM_INTERMEDIATE(_arr_, _emc_, _rank_, _byte_) \
({ \
const uint32_t shft = timing->trim_perch_regs.emc## _emc_ ##_data_brlshft_## _rank_; \
const uint32_t base = ((shft >> (3 * _byte_)) & 7) << 6; \
const uint32_t val0 = timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank ## _rank_ ## _byte ## _byte_ ## _0; \
const uint32_t val1 = timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank ## _rank_ ## _byte ## _byte_ ## _1; \
const uint32_t val2 = timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank ## _rank_ ## _byte ## _byte_ ## _2; \
_arr_[9 * (8 * _rank_ + _byte_) + 0] = base + ((val0 >> 0) & 0xFF); \
_arr_[9 * (8 * _rank_ + _byte_) + 1] = base + ((val0 >> 8) & 0xFF); \
_arr_[9 * (8 * _rank_ + _byte_) + 2] = base + ((val0 >> 16) & 0xFF); \
_arr_[9 * (8 * _rank_ + _byte_) + 3] = base + ((val0 >> 24) & 0xFF); \
_arr_[9 * (8 * _rank_ + _byte_) + 4] = base + ((val1 >> 0) & 0xFF); \
_arr_[9 * (8 * _rank_ + _byte_) + 5] = base + ((val1 >> 8) & 0xFF); \
_arr_[9 * (8 * _rank_ + _byte_) + 6] = base + ((val1 >> 16) & 0xFF); \
_arr_[9 * (8 * _rank_ + _byte_) + 7] = base + ((val1 >> 24) & 0xFF); \
_arr_[9 * (8 * _rank_ + _byte_) + 8] = base + ((val2 >> 0) & 0xFF); \
})
{
SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 0, 0, 0);
SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 0, 0, 1);
SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 0, 0, 2);
SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 0, 0, 3);
SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 1, 0, 4);
SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 1, 0, 5);
SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 1, 0, 6);
SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 1, 0, 7);
SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 0, 1, 0);
SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 0, 1, 1);
SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 0, 1, 2);
SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 0, 1, 3);
SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 1, 1, 4);
SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 1, 1, 5);
SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 1, 1, 6);
SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 1, 1, 7);
}
#undef SET_TRIM_INTERMEDIATE
switch (trim_reg) {
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_2:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_2:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_2:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_2:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_2:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_2:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_2:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_2:
case EMC0_BASE + EMC_DATA_BRLSHFT_0:
case EMC1_BASE + EMC_DATA_BRLSHFT_0:
{
tree_delta[0] = 128 * (timing->current_dram_clktree_c0d0u0 - timing->trained_dram_clktree_c0d0u0);
tree_delta[1] = 128 * (timing->current_dram_clktree_c0d0u1 - timing->trained_dram_clktree_c0d0u1);
tree_delta[2] = 128 * (timing->current_dram_clktree_c1d0u0 - timing->trained_dram_clktree_c1d0u0);
tree_delta[3] = 128 * (timing->current_dram_clktree_c1d0u1 - timing->trained_dram_clktree_c1d0u1);
tree_delta_taps[0] = (tree_delta[0] * (int)rate_mhz) / 1000000;
tree_delta_taps[1] = (tree_delta[1] * (int)rate_mhz) / 1000000;
tree_delta_taps[2] = (tree_delta[2] * (int)rate_mhz) / 1000000;
tree_delta_taps[3] = (tree_delta[3] * (int)rate_mhz) / 1000000;
for (int i = 0; i < 4; ++i) {
const uint32_t sum = (tree_delta_taps[i] <= timing->tree_margin) ? 0 : tree_delta_taps[i];
for (int j = 0; j < 18; ++j) {
const uint32_t v = (g_periodic_timmer_compensation_intermediates[18 * i + j] += sum);
if (v < (adj[2 * i + (j < 9)] << 6)) {
adj[2 * i + (j < 9)] = v >> 6;
}
}
for (int j = 0; j < 18; ++j) {
g_periodic_timmer_compensation_intermediates[18 * i + j] -= (adj[2 * i + (j < 9)] << 6);
}
}
}
break;
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_2:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_2:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_2:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_2:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_2:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_2:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_2:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_2:
case EMC0_BASE + EMC_DATA_BRLSHFT_1:
case EMC1_BASE + EMC_DATA_BRLSHFT_1:
{
tree_delta[0] = 128 * (timing->current_dram_clktree_c0d1u0 - timing->trained_dram_clktree_c0d1u0);
tree_delta[1] = 128 * (timing->current_dram_clktree_c0d1u1 - timing->trained_dram_clktree_c0d1u1);
tree_delta[2] = 128 * (timing->current_dram_clktree_c1d1u0 - timing->trained_dram_clktree_c1d1u0);
tree_delta[3] = 128 * (timing->current_dram_clktree_c1d1u1 - timing->trained_dram_clktree_c1d1u1);
tree_delta_taps[0] = (tree_delta[0] * (int)rate_mhz) / 1000000;
tree_delta_taps[1] = (tree_delta[1] * (int)rate_mhz) / 1000000;
tree_delta_taps[2] = (tree_delta[2] * (int)rate_mhz) / 1000000;
tree_delta_taps[3] = (tree_delta[3] * (int)rate_mhz) / 1000000;
for (int i = 0; i < 4; ++i) {
const uint32_t sum = (tree_delta_taps[i] <= timing->tree_margin) ? 0 : tree_delta_taps[i];
for (int j = 0; j < 18; ++j) {
const uint32_t v = (g_periodic_timmer_compensation_intermediates[72 + 18 * i + j] += sum);
if (v < (adj[8 + 2 * i + (j < 9)] << 6)) {
adj[8 + 2 * i + (j < 9)] = v >> 6;
}
}
for (int j = 0; j < 18; ++j) {
g_periodic_timmer_compensation_intermediates[72 + 18 * i + j] -= (adj[8 + 2 * i + (j < 9)] << 6);
}
}
}
break;
}
uint32_t result = 0;
switch (trim_reg) {
case EMC0_BASE + EMC_DATA_BRLSHFT_0:
result = ((adj[ 0] & 7) << 0) | ((adj[ 1] & 7) << 3) | ((adj[ 2] & 7) << 6) | ((adj[ 3] & 7) << 9);
break;
case EMC1_BASE + EMC_DATA_BRLSHFT_0:
result = ((adj[ 4] & 7) << 12) | ((adj[ 5] & 7) << 15) | ((adj[ 6] & 7) << 18) | ((adj[ 7] & 7) << 21);
break;
case EMC0_BASE + EMC_DATA_BRLSHFT_1:
result = ((adj[ 8] & 7) << 0) | ((adj[ 9] & 7) << 3) | ((adj[10] & 7) << 6) | ((adj[11] & 7) << 9);
break;
case EMC1_BASE + EMC_DATA_BRLSHFT_1:
result = ((adj[12] & 7) << 12) | ((adj[13] & 7) << 15) | ((adj[14] & 7) << 18) | ((adj[15] & 7) << 21);
break;
#define ADD_TRIM_CASE(_ARR_, _RANK_, _BYTE_) \
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK ## _RANK_ ## _BYTE ## _BYTE_ ##_0: \
result = ((_ARR_[9 * (8 * _RANK_ + _BYTE_) + 0] & 0xFF) << 0) | ((_ARR_[9 * (8 * _RANK_ + _BYTE_) + 1] & 0xFF) << 8) | ((_ARR_[9 * (8 * _RANK_ + _BYTE_) + 2] & 0xFF) << 16) | ((_ARR_[9 * (8 * _RANK_ + _BYTE_) + 3] & 0xFF) << 24); \
break; \
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK ## _RANK_ ## _BYTE ## _BYTE_ ##_1: \
result = ((_ARR_[9 * (8 * _RANK_ + _BYTE_) + 4] & 0xFF) << 0) | ((_ARR_[9 * (8 * _RANK_ + _BYTE_) + 5] & 0xFF) << 8) | ((_ARR_[9 * (8 * _RANK_ + _BYTE_) + 6] & 0xFF) << 16) | ((_ARR_[9 * (8 * _RANK_ + _BYTE_) + 7] & 0xFF) << 24); \
break; \
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK ## _RANK_ ## _BYTE ## _BYTE_ ##_2: \
result = ((_ARR_[9 * (8 * _RANK_ + _BYTE_) + 8] & 0xFF) << 0); \
break;
ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 0, 0);
ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 0, 1);
ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 0, 2);
ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 0, 3);
ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 0, 4);
ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 0, 5);
ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 0, 6);
ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 0, 7);
ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 1, 0);
ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 1, 1);
ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 1, 2);
ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 1, 3);
ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 1, 4);
ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 1, 5);
ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 1, 6);
ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 1, 7);
#undef ADD_TRIM_CASE
}
return result;
}
u32 UpdateClockTreeDelay(EmcDvfsTimingTable *src_timing, EmcDvfsTimingTable *dst_timing, u32 dram_dev_num, u32 mode, int type) {
uint32_t mrr_req = 0, mrr_data = 0;
uint32_t temp0_0 = 0, temp0_1 = 0, temp1_0 = 0, temp1_1 = 0;
int tdel = 0, tmdel = 0, adel = 0;
uint32_t current_timing_rate_mhz = src_timing->rate_khz / 1000;
uint32_t next_timing_rate_mhz = dst_timing->rate_khz / 1000;
uint32_t fbio_cfg7 = dst_timing->emc_fbio_cfg7;
const bool ch0_enable = reg::GetField(fbio_cfg7, EMC_REG_BITS_MASK(FBIO_CFG7_CH0_ENABLE)) == EMC_FBIO_CFG7_CH0_ENABLE_ENABLE;
const bool ch1_enable = reg::GetField(fbio_cfg7, EMC_REG_BITS_MASK(FBIO_CFG7_CH1_ENABLE)) == EMC_FBIO_CFG7_CH1_ENABLE_ENABLE;
bool dvfs_pt1 = (type == DVFS_PT1);
bool training_pt1 = (type == TRAINING_PT1);
bool dvfs_update = (type == DVFS_UPDATE);
bool training_update = (type == TRAINING_UPDATE);
bool periodic_training_update = (type == PERIODIC_TRAINING_UPDATE);
/* Dev0 MSB. */
if (dvfs_pt1 || training_pt1 || periodic_training_update) {
mrr_req = ((2 << 30) | (19 << 16));
reg::Write(EMC + EMC_MRR, mrr_req);
WaitForUpdate(EMC_EMC_STATUS, (1 << 20), true, fbio_cfg7);
if (ch0_enable) {
mrr_data = (reg::Read(EMC0 + EMC_MRR) & 0xFFFF);
temp0_0 = ((mrr_data & 0xff) << 8);
temp0_1 = (mrr_data & 0xff00);
} else {
temp0_0 = temp0_1 = 0;
}
if (ch1_enable) {
mrr_data = (reg::Read(EMC1 + EMC_MRR) & 0xFFFF);
temp1_0 = ((mrr_data & 0xff) << 8);
temp1_1 = (mrr_data & 0xff00);
} else {
temp1_0 = temp1_1 = 0;
}
/* Dev0 LSB. */
mrr_req = ((mrr_req & ~(0xFF << 16)) | (18 << 16));
reg::Write(EMC + EMC_MRR, mrr_req);
WaitForUpdate(EMC_EMC_STATUS, (1 << 20), true, fbio_cfg7);
if (ch0_enable) {
mrr_data = (reg::Read(EMC0 + EMC_MRR) & 0xFFFF);
temp0_0 |= (mrr_data & 0xff);
temp0_1 |= (mrr_data & 0xff00) >> 8;
}
if (ch1_enable) {
mrr_data = (reg::Read(EMC1 + EMC_MRR) & 0xFFFF);
temp1_0 |= (mrr_data & 0xff);
temp1_1 |= (mrr_data & 0xff00) >> 8;
}
}
#define CVAL(v) ((uint32_t)((1000 * ((1000 * ActualOscClocks(src_timing->run_clocks)) / current_timing_rate_mhz)) / (2 * v)))
if (ch0_enable) {
if (dvfs_pt1 || training_pt1)
__INCREMENT_PTFV(c0d0u0, CVAL(temp0_0));
else if (dvfs_update)
__AVERAGE_PTFV(c0d0u0);
else if (training_update)
__AVERAGE_WRITE_PTFV(c0d0u0);
else if (periodic_training_update)
__WEIGHTED_UPDATE_PTFV(c0d0u0, CVAL(temp0_0));
if (dvfs_update || training_update || periodic_training_update) {
tdel = (dst_timing->current_dram_clktree_c0d0u0 - __MOVAVG_AC(dst_timing, c0d0u0));
tmdel = (tdel < 0) ? ~tdel : tdel;
adel = tmdel;
if (mode == 1 || ((adel * 128 * next_timing_rate_mhz) / 1000000) > dst_timing->tree_margin)
dst_timing->current_dram_clktree_c0d0u0 = __MOVAVG_AC(dst_timing, c0d0u0);
}
if (dvfs_pt1 || training_pt1)
__INCREMENT_PTFV(c0d0u1, CVAL(temp0_1));
else if (dvfs_update)
__AVERAGE_PTFV(c0d0u1);
else if (training_update)
__AVERAGE_WRITE_PTFV(c0d0u1);
else if (periodic_training_update)
__WEIGHTED_UPDATE_PTFV(c0d0u1, CVAL(temp0_1));
if (dvfs_update || training_update || periodic_training_update) {
tdel = (dst_timing->current_dram_clktree_c0d0u1 - __MOVAVG_AC(dst_timing, c0d0u1));
tmdel = (tdel < 0) ? -1 * tdel : tdel;
if (tmdel > adel)
adel = tmdel;
if (mode == 1 || (tmdel * 128 * next_timing_rate_mhz / 1000000) > dst_timing->tree_margin)
dst_timing->current_dram_clktree_c0d0u1 = __MOVAVG_AC(dst_timing, c0d0u1);
}
} else {
adel = 0;
}
if (ch1_enable) {
if (dvfs_pt1 || training_pt1)
__INCREMENT_PTFV(c1d0u0, CVAL(temp1_0));
else if (dvfs_update)
__AVERAGE_PTFV(c1d0u0);
else if (training_update)
__AVERAGE_WRITE_PTFV(c1d0u0);
else if (periodic_training_update)
__WEIGHTED_UPDATE_PTFV(c1d0u0, CVAL(temp1_0));
if (dvfs_update || training_update || periodic_training_update) {
tdel = (dst_timing->current_dram_clktree_c1d0u0 - __MOVAVG_AC(dst_timing, c1d0u0));
tmdel = (tdel < 0) ? -1 * tdel : tdel;
if (tmdel > adel)
adel = tmdel;
if (mode == 1 || (tmdel * 128 * next_timing_rate_mhz / 1000000) > dst_timing->tree_margin)
dst_timing->current_dram_clktree_c1d0u0 = __MOVAVG_AC(dst_timing, c1d0u0);
}
if (dvfs_pt1 || training_pt1)
__INCREMENT_PTFV(c1d0u1, CVAL(temp1_1));
else if (dvfs_update)
__AVERAGE_PTFV(c1d0u1);
else if (training_update)
__AVERAGE_WRITE_PTFV(c1d0u1);
else if (periodic_training_update)
__WEIGHTED_UPDATE_PTFV(c1d0u1, CVAL(temp1_1));
if (dvfs_update || training_update || periodic_training_update) {
tdel = (dst_timing->current_dram_clktree_c1d0u1 - __MOVAVG_AC(dst_timing, c1d0u1));
tmdel = (tdel < 0) ? -1 * tdel : tdel;
if (tmdel > adel)
adel = tmdel;
if (mode == 1 || (tmdel * 128 * next_timing_rate_mhz / 1000000) > dst_timing->tree_margin)
dst_timing->current_dram_clktree_c1d0u1 = __MOVAVG_AC(dst_timing, c1d0u1);
}
}
if (dram_dev_num == TWO_RANK) {
/* Dev1 MSB. */
if (dvfs_pt1 || training_pt1 || periodic_training_update) {
mrr_req = ((1 << 30) | (19 << 16));
reg::Write(EMC + EMC_MRR, mrr_req);
WaitForUpdate(EMC_EMC_STATUS, (1 << 20), true, fbio_cfg7);
if (ch0_enable) {
mrr_data = (reg::Read(EMC0 + EMC_MRR) & 0xFFFF);
temp0_0 = ((mrr_data & 0xff) << 8);
temp0_1 = (mrr_data & 0xff00);
}
if (ch1_enable) {
mrr_data = (reg::Read(EMC1 + EMC_MRR) & 0xFFFF);
temp1_0 = ((mrr_data & 0xff) << 8);
temp1_1 = (mrr_data & 0xff00);
}
/* Dev1 LSB. */
mrr_req = ((mrr_req & ~(0xFF << 16)) | (18 << 16));
reg::Write(EMC + EMC_MRR, mrr_req);
WaitForUpdate(EMC_EMC_STATUS, (1 << 20), true, fbio_cfg7);
if (ch0_enable) {
mrr_data = (reg::Read(EMC0 + EMC_MRR) & 0xFFFF);
temp0_0 |= ((mrr_data & 0xff) << 8);
temp0_1 |= (mrr_data & 0xff00);
}
if (ch1_enable) {
mrr_data = (reg::Read(EMC1 + EMC_MRR) & 0xFFFF);
temp1_0 |= ((mrr_data & 0xff) << 8);
temp1_1 |= (mrr_data & 0xff00);
}
}
if (ch0_enable) {
if (dvfs_pt1 || training_pt1)
__INCREMENT_PTFV(c0d1u0, CVAL(temp0_0));
else if (dvfs_update)
__AVERAGE_PTFV(c0d1u0);
else if (training_update)
__AVERAGE_WRITE_PTFV(c0d1u0);
else if (periodic_training_update)
__WEIGHTED_UPDATE_PTFV(c0d1u0, CVAL(temp0_0));
if (dvfs_update || training_update || periodic_training_update) {
tdel = (dst_timing->current_dram_clktree_c0d1u0 - __MOVAVG_AC(dst_timing, c0d1u0));
tmdel = (tdel < 0) ? -1 * tdel : tdel;
if (tmdel > adel)
adel = tmdel;
if (mode == 1 || (tmdel * 128 * next_timing_rate_mhz / 1000000) > dst_timing->tree_margin)
dst_timing->current_dram_clktree_c0d1u0 = __MOVAVG_AC(dst_timing, c0d1u0);
}
if (dvfs_pt1 || training_pt1)
__INCREMENT_PTFV(c0d1u1, CVAL(temp0_1));
else if (dvfs_update)
__AVERAGE_PTFV(c0d1u1);
else if (training_update)
__AVERAGE_WRITE_PTFV(c0d1u1);
else if (periodic_training_update)
__WEIGHTED_UPDATE_PTFV(c0d1u1, CVAL(temp0_1));
if (dvfs_update || training_update || periodic_training_update) {
tdel = (dst_timing->current_dram_clktree_c0d1u1 - __MOVAVG_AC(dst_timing, c0d1u1));
tmdel = (tdel < 0) ? -1 * tdel : tdel;
if (tmdel > adel)
adel = tmdel;
if (mode == 1 || (tmdel * 128 * next_timing_rate_mhz / 1000000) > dst_timing->tree_margin)
dst_timing->current_dram_clktree_c0d1u1 = __MOVAVG_AC(dst_timing, c0d1u1);
}
}
if (ch1_enable) {
if (dvfs_pt1 || training_pt1)
__INCREMENT_PTFV(c1d1u0, CVAL(temp1_0));
else if (dvfs_update)
__AVERAGE_PTFV(c1d1u0);
else if (training_update)
__AVERAGE_WRITE_PTFV(c1d1u0);
else if (periodic_training_update)
__WEIGHTED_UPDATE_PTFV(c1d1u0, CVAL(temp1_0));
if (dvfs_update || training_update || periodic_training_update) {
tdel = (dst_timing->current_dram_clktree_c1d1u0 - __MOVAVG_AC(dst_timing, c1d1u0));
tmdel = (tdel < 0) ? -1 * tdel : tdel;
if (tmdel > adel)
adel = tmdel;
if (mode == 1 || (tmdel * 128 * next_timing_rate_mhz / 1000000) > dst_timing->tree_margin)
dst_timing->current_dram_clktree_c1d1u0 = __MOVAVG_AC(dst_timing, c1d1u0);
}
if (dvfs_pt1 || training_pt1)
__INCREMENT_PTFV(c1d1u1, CVAL(temp1_1));
else if (dvfs_update)
__AVERAGE_PTFV(c1d1u1);
else if (training_update)
__AVERAGE_WRITE_PTFV(c1d1u1);
else if (periodic_training_update)
__WEIGHTED_UPDATE_PTFV(c1d1u1, CVAL(temp1_1));
if (dvfs_update || training_update || periodic_training_update) {
tdel = (dst_timing->current_dram_clktree_c1d1u1 - __MOVAVG_AC(dst_timing, c1d1u1));
tmdel = (tdel < 0) ? -1 * tdel : tdel;
if (tmdel > adel)
adel = tmdel;
if (mode == 1 || (tmdel * 128 * next_timing_rate_mhz / 1000000) > dst_timing->tree_margin)
dst_timing->current_dram_clktree_c1d1u1 = __MOVAVG_AC(dst_timing, c1d1u1);
}
}
}
#undef CVAL
if (mode == 1) {
dst_timing->trained_dram_clktree_c0d0u0 = dst_timing->current_dram_clktree_c0d0u0;
dst_timing->trained_dram_clktree_c0d0u1 = dst_timing->current_dram_clktree_c0d0u1;
dst_timing->trained_dram_clktree_c0d1u0 = dst_timing->current_dram_clktree_c0d1u0;
dst_timing->trained_dram_clktree_c0d1u1 = dst_timing->current_dram_clktree_c0d1u1;
dst_timing->trained_dram_clktree_c1d0u0 = dst_timing->current_dram_clktree_c1d0u0;
dst_timing->trained_dram_clktree_c1d0u1 = dst_timing->current_dram_clktree_c1d0u1;
dst_timing->trained_dram_clktree_c1d1u0 = dst_timing->current_dram_clktree_c1d1u0;
dst_timing->trained_dram_clktree_c1d1u1 = dst_timing->current_dram_clktree_c1d1u1;
}
return adel;
}
u32 PeriodicCompensationHandler(int type, u32 dram_dev_num, EmcDvfsTimingTable *src_timing, EmcDvfsTimingTable *dst_timing) {
if (!dst_timing->periodic_training) {
return 0;
}
uint32_t adel = 0;
uint32_t samples = dst_timing->ptfv_dvfs_samples;
uint32_t samples_write = dst_timing->ptfv_write_samples;
uint32_t delay = 2 + (1000 * ActualOscClocks(src_timing->run_clocks) / src_timing->rate_khz);
if (type == DVFS_SEQUENCE) {
if (src_timing->periodic_training && (dst_timing->ptfv_config_ctrl & 1)) {
/* If the previous frequency was using periodic calibration then we can reuse the previous frequencies EMA data. */
dst_timing->ptfv_dqsosc_movavg_c0d0u0 = src_timing->ptfv_dqsosc_movavg_c0d0u0 * samples;
dst_timing->ptfv_dqsosc_movavg_c0d0u1 = src_timing->ptfv_dqsosc_movavg_c0d0u1 * samples;
dst_timing->ptfv_dqsosc_movavg_c1d0u0 = src_timing->ptfv_dqsosc_movavg_c1d0u0 * samples;
dst_timing->ptfv_dqsosc_movavg_c1d0u1 = src_timing->ptfv_dqsosc_movavg_c1d0u1 * samples;
dst_timing->ptfv_dqsosc_movavg_c0d1u0 = src_timing->ptfv_dqsosc_movavg_c0d1u0 * samples;
dst_timing->ptfv_dqsosc_movavg_c0d1u1 = src_timing->ptfv_dqsosc_movavg_c0d1u1 * samples;
dst_timing->ptfv_dqsosc_movavg_c1d1u0 = src_timing->ptfv_dqsosc_movavg_c1d1u0 * samples;
dst_timing->ptfv_dqsosc_movavg_c1d1u1 = src_timing->ptfv_dqsosc_movavg_c1d1u1 * samples;
} else {
/* Reset the EMA. */
dst_timing->ptfv_dqsosc_movavg_c0d0u0 = 0;
dst_timing->ptfv_dqsosc_movavg_c0d0u1 = 0;
dst_timing->ptfv_dqsosc_movavg_c0d1u0 = 0;
dst_timing->ptfv_dqsosc_movavg_c0d1u1 = 0;
dst_timing->ptfv_dqsosc_movavg_c1d0u0 = 0;
dst_timing->ptfv_dqsosc_movavg_c1d0u1 = 0;
dst_timing->ptfv_dqsosc_movavg_c1d1u0 = 0;
dst_timing->ptfv_dqsosc_movavg_c1d1u1 = 0;
for (uint32_t i = 0; i < samples; ++i) {
StartPeriodicCompensation();
util::WaitMicroSeconds(delay);
/* Generate next sample of data. */
adel = UpdateClockTreeDelay(src_timing, dst_timing, dram_dev_num, 0, DVFS_PT1);
}
}
adel = UpdateClockTreeDelay(src_timing, dst_timing, dram_dev_num, 0, DVFS_UPDATE);
} else if (type == WRITE_TRAINING_SEQUENCE) {
/* Reset the EMA. */
dst_timing->ptfv_dqsosc_movavg_c0d0u0 = 0;
dst_timing->ptfv_dqsosc_movavg_c0d0u1 = 0;
dst_timing->ptfv_dqsosc_movavg_c0d1u0 = 0;
dst_timing->ptfv_dqsosc_movavg_c0d1u1 = 0;
dst_timing->ptfv_dqsosc_movavg_c1d0u0 = 0;
dst_timing->ptfv_dqsosc_movavg_c1d0u1 = 0;
dst_timing->ptfv_dqsosc_movavg_c1d1u0 = 0;
dst_timing->ptfv_dqsosc_movavg_c1d1u1 = 0;
for (uint32_t i = 0; i < samples_write; ++i) {
StartPeriodicCompensation();
util::WaitMicroSeconds(delay);
/* Generate next sample of data. */
adel = UpdateClockTreeDelay(src_timing, dst_timing, dram_dev_num, 1, TRAINING_PT1);
}
adel = UpdateClockTreeDelay(src_timing, dst_timing, dram_dev_num, 1, TRAINING_UPDATE);
} else if (type == PERIODIC_TRAINING_SEQUENCE) {
StartPeriodicCompensation();
util::WaitMicroSeconds(delay);
adel = UpdateClockTreeDelay(src_timing, dst_timing, dram_dev_num, 0, PERIODIC_TRAINING_UPDATE);
}
return adel;
}
void ChangeDllSrc(EmcDvfsTimingTable *dst_timing, u32 next_clk_src) {
u32 dll_setting = ((next_clk_src & 0xE00000FF) | (dst_timing->dll_clk_src & 0x1FFFFF00)) & 0xFFFFF3FF;
switch (reg::GetField(next_clk_src, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_SRC))) {
case PLLMB_UD:
dll_setting |= 0x400; /* PLLM_VCOB */
break;
case PLLM_UD:
dll_setting |= 0x000; /* PLLM_VCOA */
break;
default:
dll_setting |= 0x800; /* EMC_DLL_SWITCH_OUT */
break;
}
reg::Write(CLKRST + CLK_RST_CONTROLLER_CLK_SOURCE_EMC_DLL, dll_setting);
reg::ReadWrite(CLKRST + CLK_RST_CONTROLLER_CLK_OUT_ENB_X, CLK_RST_REG_BITS_ENUM_SEL(CLK_ENB_X_CLK_ENB_EMC_DLL, (dst_timing->clk_out_enb_x_0_clk_enb_emc_dll & 1), ENABLE, DISABLE));
reg::Read(CLKRST + CLK_RST_CONTROLLER_CLK_OUT_ENB_X);
}
void DllPrelock(EmcDvfsTimingTable *dst_timing, EmcDvfsTimingTable *src_timing, bool training_enabled, u32 next_clk_src) {
/* Update EMC_CFG_DIG_DLL */
reg::Write(EMC + EMC_CFG_DIG_DLL, (reg::Read(EMC + EMC_CFG_DIG_DLL) & 0xFFFFFFE4) | 0x00000008);
/* Request a timing update event */
TimingUpdate(dst_timing->emc_fbio_cfg7);
/* Update EMC_CFG_DIG_DLL */
reg::Write(EMC + EMC_CFG_DIG_DLL, (reg::Read(EMC + EMC_CFG_DIG_DLL) & 0xFFFFF824) | 0x000003C8);
/* Request a timing update event */
TimingUpdate(dst_timing->emc_fbio_cfg7);
/* Wait until CFG_DLL_EN is cleared. */
WaitForUpdate(EMC_CFG_DIG_DLL, (1 << 0), false, dst_timing->emc_fbio_cfg7);
/* Configure PMACRO_DLL_CFG */
reg::Write(EMC + EMC_PMACRO_DLL_CFG_0, dst_timing->burst_regs.emc_pmacro_dll_cfg_0);
reg::Read(EMC + EMC_PMACRO_DLL_CFG_1);
reg::Write(EMC + EMC_PMACRO_DLL_CFG_1, (dst_timing->burst_regs.emc_pmacro_dll_cfg_1 & 0xFFFFDFFF) | (reg::Read(EMC + EMC_PMACRO_DLL_CFG_1) & 0x00002000));
/* Request a timing update event */
TimingUpdate(dst_timing->emc_fbio_cfg7);
/* Change the dll clock source. */
ChangeDllSrc(dst_timing, next_clk_src);
/* Wait 2 us. */
util::WaitMicroSeconds(2);
/* Enable dll. */
reg::SetBits(EMC + EMC_CFG_DIG_DLL, 0x1);
/* Request a timing update event */
TimingUpdate(dst_timing->emc_fbio_cfg7);
/* Wait until CFG_DLL_EN is set. */
WaitForUpdate(EMC_CFG_DIG_DLL, (1 << 0), true, dst_timing->emc_fbio_cfg7);
/* Wait for DLL_LOCK to be set */
WaitForUpdate(EMC_DIG_DLL_STATUS, (1 << 2), true, dst_timing->emc_fbio_cfg7);
if (training_enabled) {
/* Disable dll. */
reg::SetBits(EMC + EMC_DBG, 0x2);
reg::ClearBits(EMC + EMC_CFG_DIG_DLL, 0x1);
reg::ClearBits(EMC + EMC_DBG, 0x2);
/* Wait until CFG_DLL_EN is cleared. */
WaitForUpdate(EMC_CFG_DIG_DLL, (1 << 0), false, dst_timing->emc_fbio_cfg7);
}
reg::Read(EMC + EMC_PMACRO_DIG_DLL_STATUS_0);
}
void DllDisable(u32 fbio_cfg7) {
/* Disable dll. */
reg::ClearBits(EMC + EMC_CFG_DIG_DLL, 0x1);
/* Request a timing update event */
TimingUpdate(fbio_cfg7);
/* Wait until CFG_DLL_EN is cleared. */
WaitForUpdate(EMC_CFG_DIG_DLL, (1 << 0), false, fbio_cfg7);
}
void PllDisable(u32 dst_clk_src) {
switch (reg::GetField(dst_clk_src, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_SRC))) {
case PLLM_OUT0:
case PLLM_UD:
reg::ClearBits(CLKRST + CLK_RST_CONTROLLER_PLLMB_BASE, 0x40000000);
break;
case PLLMB_OUT0:
case PLLMB_UD:
reg::ClearBits(CLKRST + CLK_RST_CONTROLLER_PLLM_BASE, 0x40000000);
break;
default:
reg::ClearBits(CLKRST + CLK_RST_CONTROLLER_PLLMB_BASE, 0x40000000);
reg::ClearBits(CLKRST + CLK_RST_CONTROLLER_PLLM_BASE, 0x40000000);
break;
}
}
void DvfsPowerRampDown(EmcDvfsTimingTable *src_timing, EmcDvfsTimingTable *dst_timing, bool flip_backward, u32 vtt_vdda_channel) {
auto *from_table = (flip_backward ? dst_timing : src_timing);
auto *to_table = (flip_backward ? src_timing : dst_timing);
uint32_t from_rate_khz = from_table->rate_khz;
uint32_t from_period = 1000000000 / from_rate_khz;
uint32_t to_rate_khz = to_table->rate_khz;
uint32_t clk_div = 1000 * dst_timing->src_clock_div;
uint32_t delay = util::DivideUp(clk_div, from_period);
if (from_rate_khz >= 407997 || to_rate_khz <= 407996) {
if (from_rate_khz >= 407997 && to_rate_khz <= 407996) {
uint32_t pmacro_vttgen_ctrl_1 = reg::Read(EMC + EMC_PMACRO_VTTGEN_CTRL_1);
if (dst_timing->vtt_vdda_dual_channel) {
if (vtt_vdda_channel != 1) {
return;
}
CcfifoWrite(EMC_PMACRO_VTTGEN_CTRL_1, (pmacro_vttgen_ctrl_1 & 0xFFFF03FF) | ((to_table->vtt_vdda_ctrl_4 & 0x3F) << 10), delay);
CcfifoWrite(EMC_PMACRO_VTTGEN_CTRL_1, (pmacro_vttgen_ctrl_1 & 0xFFFF03FF) | ((to_table->vtt_vdda_ctrl_0 & 0x3F) << 10), delay * 2);
} else {
CcfifoWrite(EMC_PMACRO_VTTGEN_CTRL_1, (pmacro_vttgen_ctrl_1 & 0xFFFF03FF) | ((dst_timing->vtt_vdda_ctrl_0 & 0x3F) << 10), 0);
}
}
} else {
uint32_t pmacro_vttgen_ctrl_1 = reg::Read(EMC + EMC_PMACRO_VTTGEN_CTRL_1);
if (dst_timing->vtt_vdda_dual_channel) {
if (vtt_vdda_channel == 1) {
CcfifoWrite(EMC_PMACRO_VTTGEN_CTRL_1, (pmacro_vttgen_ctrl_1 & 0xFFFF03FF) | ((dst_timing->vtt_vdda_ctrl_3 & 0x3F) << 10), delay);
CcfifoWrite(EMC_PMACRO_VTTGEN_CTRL_1, (pmacro_vttgen_ctrl_1 & 0xFFFF03FF) | ((dst_timing->vtt_vdda_ctrl_0 & 0x3F) << 10), delay);
} else if (vtt_vdda_channel == 0) {
CcfifoWrite(EMC_PMACRO_VTTGEN_CTRL_1, (pmacro_vttgen_ctrl_1 & 0xFFFF03FF) | ((dst_timing->vtt_vdda_ctrl_1 & 0x3F) << 10), delay);
CcfifoWrite(EMC_PMACRO_VTTGEN_CTRL_1, (pmacro_vttgen_ctrl_1 & 0xFFFF03FF) | ((dst_timing->vtt_vdda_ctrl_2 & 0x3F) << 10), delay);
}
} else {
CcfifoWrite(EMC_PMACRO_VTTGEN_CTRL_1, (pmacro_vttgen_ctrl_1 & 0xFFFF03FF) | ((dst_timing->vtt_vdda_ctrl_0 & 0x3F) << 10), 0);
}
}
}
u32 DvfsPowerRampUp(u32 dst_clock_period, bool flip_backward, EmcDvfsTimingTable *src_timing, EmcDvfsTimingTable *dst_timing, u32 training) {
uint32_t misc_cfg_1 = flip_backward ? src_timing->misc_cfg_1 : dst_timing->misc_cfg_1;
uint32_t emc_pmacro_cmd_pad_tx_ctrl, emc_pmacro_brick_ctrl_rfu1, emc_fbio_cfg5;
if (flip_backward) {
emc_pmacro_cmd_pad_tx_ctrl = src_timing->burst_regs.emc_pmacro_cmd_pad_tx_ctrl;
emc_pmacro_brick_ctrl_rfu1 = src_timing->burst_regs.emc_pmacro_brick_ctrl_rfu1;
emc_fbio_cfg5 = src_timing->burst_regs.emc_fbio_cfg5;
} else if (training & (CA_TRAINING | CA_VREF_TRAINING)) {
emc_pmacro_cmd_pad_tx_ctrl = dst_timing->shadow_regs_ca_train.emc_pmacro_cmd_pad_tx_ctrl;
emc_pmacro_brick_ctrl_rfu1 = dst_timing->shadow_regs_ca_train.emc_pmacro_brick_ctrl_rfu1;
emc_fbio_cfg5 = dst_timing->shadow_regs_ca_train.emc_fbio_cfg5;
} else if (training & (WRITE_TRAINING | WRITE_VREF_TRAINING | READ_TRAINING | READ_VREF_TRAINING)) {
emc_pmacro_cmd_pad_tx_ctrl = dst_timing->shadow_regs_rdwr_train.emc_pmacro_cmd_pad_tx_ctrl;
emc_pmacro_brick_ctrl_rfu1 = dst_timing->shadow_regs_rdwr_train.emc_pmacro_brick_ctrl_rfu1;
emc_fbio_cfg5 = dst_timing->shadow_regs_rdwr_train.emc_fbio_cfg5;
} else {
emc_pmacro_cmd_pad_tx_ctrl = dst_timing->burst_regs.emc_pmacro_cmd_pad_tx_ctrl;
emc_pmacro_brick_ctrl_rfu1 = dst_timing->burst_regs.emc_pmacro_brick_ctrl_rfu1;
emc_fbio_cfg5 = dst_timing->burst_regs.emc_fbio_cfg5;
}
bool misc_flag = (misc_cfg_1 & 3) == 3;
uint32_t timescale = 100000 << ((misc_cfg_1 >> 2) & 7);
uint32_t delay = (timescale / dst_clock_period);
if (dst_clock_period < 869 || misc_flag) {
CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, emc_pmacro_brick_ctrl_rfu1 & 0xFE40FE40, delay + 1);
CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, emc_pmacro_brick_ctrl_rfu1 & 0xFEEDFEED, delay + 1);
CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, emc_pmacro_brick_ctrl_rfu1 & 0xFFFFFFFF, delay + 1);
CcfifoWrite(EMC_FBIO_CFG5, emc_fbio_cfg5 & 0xFFFFFEFF, delay + 10);
CcfifoWrite(EMC_PMACRO_CMD_PAD_TX_CTRL, emc_pmacro_cmd_pad_tx_ctrl & 0xFBFFFFFF, 5);
return timescale + 10 * dst_clock_period + 3 * timescale;
} else if (dst_clock_period > 1665) {
CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, emc_pmacro_brick_ctrl_rfu1 | 0x00000600, 0);
CcfifoWrite(EMC_FBIO_CFG5, emc_fbio_cfg5 & 0xFFFFFEFF, 12);
CcfifoWrite(EMC_PMACRO_CMD_PAD_TX_CTRL, emc_pmacro_cmd_pad_tx_ctrl & 0xFBFFFFFF, 5);
return 12 * dst_clock_period;
} else {
CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, emc_pmacro_brick_ctrl_rfu1 | 0x06000600, delay + 1);
CcfifoWrite(EMC_FBIO_CFG5, emc_fbio_cfg5 & 0xFFFFFEFF, delay + 10);
CcfifoWrite(EMC_PMACRO_CMD_PAD_TX_CTRL, emc_pmacro_cmd_pad_tx_ctrl & 0xFBFFFFFF, 5);
return timescale + 10 * dst_clock_period;
}
}
void FreqChange(EmcDvfsTimingTable *src_timing, EmcDvfsTimingTable *dst_timing, u32 training, u32 dst_clk_src) {
/* Extract training values */
const bool train_ca = (training & CA_TRAINING);
const bool train_ca_vref = (training & CA_VREF_TRAINING);
//const bool train_quse = (training & QUSE_TRAINING);
//const bool train_quse_vref = (training & QUSE_VREF_TRAINING);
const bool train_wr = (training & WRITE_TRAINING);
const bool train_wr_vref = (training & WRITE_VREF_TRAINING);
const bool train_rd = (training & READ_TRAINING);
const bool train_rd_vref = (training & READ_VREF_TRAINING);
const bool train_second_rank = (training & TRAIN_SECOND_RANK);
const bool train_bit_level = (training & BIT_LEVEL_TRAINING);
/* Check if we should do training. */
const bool training_enabled = (training & (CA_TRAINING | CA_VREF_TRAINING | WRITE_TRAINING | WRITE_VREF_TRAINING | READ_TRAINING | READ_VREF_TRAINING));
uint32_t dst_emc_fbio_cfg7 = dst_timing->emc_fbio_cfg7;
uint32_t dst_misc_cfg_0 = dst_timing->misc_cfg_0;
uint32_t dst_misc_cfg_1 = dst_timing->misc_cfg_1;
uint32_t dst_misc_cfg_2 = dst_timing->misc_cfg_2;
uint32_t src_misc_cfg_0 = src_timing->misc_cfg_0;
uint32_t src_misc_cfg_1 = src_timing->misc_cfg_1;
uint32_t src_t_rp = src_timing->dram_timings.t_rp;
uint32_t src_t_rfc = src_timing->dram_timings.t_rfc;
uint32_t dst_t_pdex = dst_timing->dram_timings.t_pdex;
uint32_t dst_t_fc_lpddr4 = dst_timing->dram_timings.t_fc_lpddr4;
const bool ch0_enable = reg::GetField(dst_emc_fbio_cfg7, EMC_REG_BITS_MASK(FBIO_CFG7_CH0_ENABLE)) == EMC_FBIO_CFG7_CH0_ENABLE_ENABLE;
const bool ch1_enable = reg::GetField(dst_emc_fbio_cfg7, EMC_REG_BITS_MASK(FBIO_CFG7_CH1_ENABLE)) == EMC_FBIO_CFG7_CH1_ENABLE_ENABLE;
g_fsp_for_next_freq = !g_fsp_for_next_freq;
const int dram_type = reg::GetValue(EMC + EMC_FBIO_CFG5, EMC_REG_BITS_MASK(FBIO_CFG5_DRAM_TYPE));
uint32_t src_emc_zcal_wait_cnt = src_timing->burst_regs.emc_zcal_wait_cnt;
bool shared_zq_resistor = (src_emc_zcal_wait_cnt >> 31) & 1;
bool opt_zcal_en_cc = (dst_timing->burst_regs.emc_zcal_interval && !src_timing->burst_regs.emc_zcal_interval) || (dram_type == DRAM_TYPE_LPDDR4);
uint32_t dst_t_fc_lpddr4_hz = 1000 * dst_t_fc_lpddr4;
bool is_lpddr2 = (dram_type == DRAM_TYPE_LPDDR2);
bool is_lpddr3 = is_lpddr2 && ((dst_timing->burst_regs.emc_fbio_cfg5 >> 25) & 1);
uint32_t opt_dll_mode = (dram_type == DRAM_TYPE_DDR4) ? GetDllState(dst_timing) : DLL_OFF;
int dram_dev_num = ((reg::Read(MC + MC_EMEM_ADR_CFG) & 1) + 1);
uint32_t tZQCAL_lpddr4 = dst_timing->tZQCAL_lpddr4;
uint32_t zqcal_before_cc_cutoff = dst_timing->zqcal_before_cc_cutoff;
uint32_t opt_cc_short_zcal = dst_timing->opt_cc_short_zcal;
uint32_t opt_short_zcal = dst_timing->opt_short_zcal;
uint32_t opt_do_sw_qrst = dst_timing->opt_do_sw_qrst;
uint32_t save_restore_clkstop_pd = dst_timing->save_restore_clkstop_pd;
// uint32_t opt_E90 = dst_timing->opt_E90;
uint32_t cya_allow_ref_cc = dst_timing->cya_allow_ref_cc;
uint32_t ref_b4_sref_en = dst_timing->ref_b4_sref_en;
uint32_t cya_issue_pc_ref = dst_timing->cya_issue_pc_ref;
uint32_t src_rate_khz = src_timing->rate_khz;
uint32_t dst_rate_khz = dst_timing->rate_khz;
uint32_t src_clock_period = 1000000000 / src_rate_khz;
uint32_t dst_clock_period = 1000000000 / dst_rate_khz;
uint32_t emc_auto_cal_config = reg::Read(EMC + EMC_AUTO_CAL_CONFIG);
uint32_t adj_dst_t_fc_lpddr4 = (dst_clock_period <= zqcal_before_cc_cutoff) ? dst_t_fc_lpddr4_hz : 0;
uint32_t emc_dbg_o = reg::Read(EMC + EMC_DBG);
uint32_t emc_pin_o = reg::Read(EMC + EMC_PIN);
uint32_t emc_cfg_pipe_clk_o = reg::Read(EMC + EMC_CFG_PIPE_CLK);
uint32_t emc_dbg = emc_dbg_o;
uint32_t emc_cfg = dst_timing->burst_regs.emc_cfg;
uint32_t emc_sel_dpd_ctrl = dst_timing->emc_sel_dpd_ctrl;
uint32_t next_push, next_dq_e_ivref, next_dqs_e_ivref;
/* Step 1:
* Pre DVFS SW sequence.
*/
/* Step 1.1: Disable DLL. */
uint32_t tmp = reg::Read(EMC + EMC_CFG_DIG_DLL);
tmp &= ~(1 << 0);
reg::Write(EMC + EMC_CFG_DIG_DLL, tmp);
/* Calculate 14000 / dst_period. */
uint32_t div_14000_by_dst_period = std::max<u32>(util::DivideUp(14000, dst_clock_period), 10);
/* Request a timing update. */
TimingUpdate(dst_emc_fbio_cfg7);
/* Wait for DLL to be disabled. */
WaitForUpdate(EMC_CFG_DIG_DLL, (1 << 0), false, dst_emc_fbio_cfg7);
/* Step 1.2: Disable AUTOCAL. */
emc_auto_cal_config = (dst_timing->emc_auto_cal_config & 0x7FFFF9FF) | 0x600;
reg::Write(EMC + EMC_AUTO_CAL_CONFIG, emc_auto_cal_config);
reg::Read(EMC + EMC_AUTO_CAL_CONFIG);
/* Step 1.3: Disable other power features. */
emc_dbg = SetShadowBypass(ACTIVE, emc_dbg_o);
reg::Write(EMC + EMC_DBG, emc_dbg);
reg::Write(EMC + EMC_CFG, emc_cfg & 0x0FFFFFFF);
reg::Write(EMC + EMC_SEL_DPD_CTRL, emc_sel_dpd_ctrl & 0xFFFFFEC3);
reg::Write(EMC + EMC_DBG, emc_dbg_o);
/* Skip this if dvfs_with_training is set. */
bool compensate_trimmer_applicable = false;
uint32_t adel = 0;
if (!training_enabled && dst_timing->periodic_training) {
/* Wait for DRAM to get out of power down. */
WaitForUpdate(EMC_EMC_STATUS, dram_dev_num == TWO_RANK ? 0x30 : 0x10, false, dst_emc_fbio_cfg7);
/* Wait for DRAM to get out of self refresh. */
WaitForUpdate(EMC_EMC_STATUS, 0x300, false, dst_emc_fbio_cfg7);
if (dst_timing->periodic_training) {
/* Reset all clock tree values. */
dst_timing->current_dram_clktree_c0d0u0 = dst_timing->trained_dram_clktree_c0d0u0;
dst_timing->current_dram_clktree_c0d0u1 = dst_timing->trained_dram_clktree_c0d0u1;
dst_timing->current_dram_clktree_c0d1u0 = dst_timing->trained_dram_clktree_c0d1u0;
dst_timing->current_dram_clktree_c0d1u1 = dst_timing->trained_dram_clktree_c0d1u1;
dst_timing->current_dram_clktree_c1d0u0 = dst_timing->trained_dram_clktree_c1d0u0;
dst_timing->current_dram_clktree_c1d0u1 = dst_timing->trained_dram_clktree_c1d0u1;
dst_timing->current_dram_clktree_c1d1u0 = dst_timing->trained_dram_clktree_c1d1u0;
dst_timing->current_dram_clktree_c1d1u1 = dst_timing->trained_dram_clktree_c1d1u1;
/* Do DVFS_SEQUENCE. */
adel = PeriodicCompensationHandler(DVFS_SEQUENCE, dram_dev_num, src_timing, dst_timing);
/* Check if we should use compensate trimmer. */
compensate_trimmer_applicable = dst_timing->periodic_training && ((adel * 128 * (dst_rate_khz / 1000)) / 1000000) > dst_timing->tree_margin;
}
}
reg::Write(EMC + EMC_INTSTATUS, (1 << 4));
emc_dbg = SetShadowBypass(ACTIVE, emc_dbg);
reg::Write(EMC + EMC_DBG, emc_dbg);
reg::Write(EMC + EMC_CFG, emc_cfg & 0x0FFFFFFF);
reg::Write(EMC + EMC_SEL_DPD_CTRL, emc_sel_dpd_ctrl & 0xFFFFFEC3);
reg::Write(EMC + EMC_CFG_PIPE_CLK, emc_cfg_pipe_clk_o | (1 << 0));
reg::Write(EMC + EMC_FDPD_CTRL_CMD_NO_RAMP, dst_timing->emc_fdpd_ctrl_cmd_no_ramp & ~(1 << 0));
/* Adjust pllm_misc1 as needed. */
if (dst_timing->pllm_misc1_0_pllm_clamp_ph90) {
reg::ClearBits(CLKRST + CLK_RST_CONTROLLER_PLLM_MISC1, 0x80000000);
}
/* Check if we need to turn on VREF generator. */
if (((!(src_timing->burst_regs.emc_pmacro_data_pad_tx_ctrl &
(1 << 0))) &&
((dst_timing->burst_regs.emc_pmacro_data_pad_tx_ctrl &
(1 << 0)))) ||
((!(src_timing->burst_regs.emc_pmacro_data_pad_tx_ctrl &
(1 << 10))) &&
((dst_timing->burst_regs.emc_pmacro_data_pad_tx_ctrl &
(1 << 10)))))
{
uint32_t pad_tx_ctrl = dst_timing->burst_regs.emc_pmacro_data_pad_tx_ctrl;
uint32_t last_pad_tx_ctrl = src_timing->burst_regs.emc_pmacro_data_pad_tx_ctrl;
next_dqs_e_ivref = pad_tx_ctrl & (1 << 10);
next_dq_e_ivref = pad_tx_ctrl & (1 << 0);
next_push = (last_pad_tx_ctrl & ~(1 << 0) & ~(1 << 10)) | next_dq_e_ivref | next_dqs_e_ivref;
reg::Write(EMC + EMC_PMACRO_DATA_PAD_TX_CTRL, next_push);
reg::Write(EMC + EMC_DBG, emc_dbg_o);
util::WaitMicroSeconds(1);
} else {
reg::Write(EMC + EMC_DBG, emc_dbg_o);
}
/* Check if we need to fixup xm2comppadctrl */
if ((dst_misc_cfg_1 & 0x20) == 0) {
reg::Write(EMC + EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_o));
uint32_t xm2comppadctrl = reg::Read(EMC + EMC_XM2COMPPADCTRL);
reg::Write(EMC + EMC_XM2COMPPADCTRL, xm2comppadctrl | 0x08000000);
util::WaitMicroSeconds(1);
reg::Write(EMC + EMC_XM2COMPPADCTRL, xm2comppadctrl | 0x18000000);
util::WaitMicroSeconds(1);
reg::Write(EMC + EMC_XM2COMPPADCTRL, xm2comppadctrl | 0x38000000);
util::WaitMicroSeconds(1);
reg::Write(EMC + EMC_DBG, SetShadowBypass(ASSEMBLY, emc_dbg_o));
}
/* Step 2:
* Prelock the DLL.
*/
if (dst_timing->burst_regs.emc_cfg_dig_dll & (1 << 0)) {
reg::Write(EMC + EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_o));
reg::ClearBits(EMC + EMC_PMACRO_DLL_CFG_1, 0x2000);
reg::Read(EMC + EMC_PMACRO_DLL_CFG_1);
reg::Write(EMC + EMC_DBG, SetShadowBypass(ASSEMBLY, emc_dbg_o));
reg::Read(EMC + EMC_DBG);
DllPrelock(dst_timing, src_timing, training_enabled, dst_clk_src);
} else {
DllDisable(dst_emc_fbio_cfg7);
}
/* Step 3:
* Prepare autocal for the clock change.
*/
/* Disable AUTOCAL. */
emc_auto_cal_config = (dst_timing->emc_auto_cal_config & 0x7FFFF9FF) | 0x600;
reg::Write(EMC + EMC_AUTO_CAL_CONFIG, emc_auto_cal_config);
reg::Write(EMC + EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_o));
reg::Write(EMC + EMC_AUTO_CAL_CONFIG2, dst_timing->emc_auto_cal_config2);
if (ch0_enable || ch1_enable) {
reg::Write(EMC0 + EMC_AUTO_CAL_CONFIG3, dst_timing->emc_auto_cal_config3);
reg::Write(EMC0 + EMC_AUTO_CAL_CONFIG4, dst_timing->emc_auto_cal_config4);
reg::Write(EMC0 + EMC_AUTO_CAL_CONFIG5, dst_timing->emc_auto_cal_config5);
reg::Write(EMC0 + EMC_AUTO_CAL_CONFIG6, dst_timing->emc_auto_cal_config6);
reg::Write(EMC0 + EMC_AUTO_CAL_CONFIG7, dst_timing->emc_auto_cal_config7);
reg::Write(EMC0 + EMC_AUTO_CAL_CONFIG8, dst_timing->emc_auto_cal_config8);
}
reg::Write(EMC + EMC_DBG, emc_dbg_o);
emc_auto_cal_config = (dst_timing->emc_auto_cal_config & 0x7FFFF9FE) | 0x601;
reg::Write(EMC + EMC_AUTO_CAL_CONFIG, emc_auto_cal_config);
/* Step 4:
* Update EMC_CFG.
*/
reg::ClearBits(EMC + EMC_CFG, 0x10000000);
reg::Write(EMC + EMC_CFG_2, dst_timing->emc_cfg_2);
/* Step 5:
* Prepare reference variables for ZQCAL regs.
*/
//print(SCREEN_LOG_LEVEL_DEBUG, "[MTC]: freq_change - step 5\n");
//mdelay(500);
uint32_t emc_zcal_interval = src_timing->burst_regs.emc_zcal_interval & 0xFF000000;
uint32_t dst_emc_zcal_wait_cnt = dst_timing->burst_regs.emc_zcal_wait_cnt;
uint32_t zq_wait_long, zq_wait_short;
if (dram_type == DRAM_TYPE_LPDDR4) {
zq_wait_long = std::max<u32>(util::DivideUp(1000000, dst_clock_period), 1);
zq_wait_short = std::max<u32>(util::DivideUp(30000, dst_clock_period), 8) + 1;
} else if (is_lpddr2 || is_lpddr3) {
zq_wait_long = std::max<u32>(util::DivideUp(360000, dst_clock_period), dst_timing->min_mrs_wait) + 4;
zq_wait_short = 0;
} else if (dram_type == DRAM_TYPE_DDR4) {
zq_wait_long = std::max<u32>(util::DivideUp(320000, dst_clock_period), 256);
zq_wait_short = 0;
} else {
zq_wait_long = 0;
zq_wait_short = 0;
}
/* Step 6:
* Training code.
*/
{
uint32_t pintemp = reg::Read(EMC + EMC_PIN);
if ((train_ca || train_ca_vref) && (dram_dev_num == TWO_RANK)) {
reg::Write(EMC + EMC_PIN, pintemp | 0x7);
}
}
/* Step 7:
* Program FSP reference registers and send MRWs to new FSPWR.
*/
uint32_t mr13_flip_fspop, mr13_flip_fspwr;
if (!g_fsp_for_next_freq) {
mr13_flip_fspwr = (dst_timing->emc_mrw3 & 0xffffff3f) | 0x80;
mr13_flip_fspop = (dst_timing->emc_mrw3 & 0xffffff3f) | 0x00;
} else {
mr13_flip_fspwr = (dst_timing->emc_mrw3 & 0xffffff3f) | 0x40;
mr13_flip_fspop = (dst_timing->emc_mrw3 & 0xffffff3f) | 0xc0;
}
uint32_t mr13_catr_enable = mr13_flip_fspwr | 1;
if (dram_dev_num == TWO_RANK) {
if (train_ca || train_ca_vref) {
mr13_flip_fspop = (mr13_flip_fspop & 0x3FFFFFFF) | (train_second_rank ? 0x80000000 : 0x40000000);
}
mr13_catr_enable = (mr13_catr_enable & 0x3FFFFFFF) | (train_second_rank ? 0x40000000 : 0x80000000);
}
if (dram_type == DRAM_TYPE_LPDDR4) {
reg::Write(EMC + EMC_MRW3, mr13_flip_fspwr);
reg::Write(EMC + EMC_MRW, dst_timing->emc_mrw);
reg::Write(EMC + EMC_MRW2, dst_timing->emc_mrw2);
}
/* Step 8:
* Program the shadow registers.
*/
/* Set burst registers. */
{
uint32_t pmacro_vttgen_ctrl_1 = reg::Read(EMC + EMC_PMACRO_VTTGEN_CTRL_1);
uint32_t xm2comppadctrl = reg::Read(EMC + EMC_XM2COMPPADCTRL);
for (u32 i = 0; i < dst_timing->num_burst; ++i) {
if (!BurstRegisters[i]) {
continue;
}
const u32 reg_addr = BurstRegisters[i];
uint32_t wval;
if (train_ca || train_ca_vref) {
wval = dst_timing->shadow_regs_ca_train_arr[i];
} else if (train_wr || train_wr_vref || train_rd || train_rd_vref) {
wval = dst_timing->shadow_regs_rdwr_train_arr[i];
} else {
wval = dst_timing->burst_regs_arr[i];
}
/* Adjust the value to write. */
switch (reg_addr) {
case EMC_BASE + EMC_CFG:
wval &= (dram_type == DRAM_TYPE_LPDDR4) ? 0x0FFFFFFF : 0xCFFFFFFF;
break;
case EMC_BASE + EMC_MRS_WAIT_CNT:
if (opt_zcal_en_cc && is_lpddr2 && (opt_cc_short_zcal == 0) && (opt_short_zcal != 0)) {
wval = (wval & 0xFFFFFC00) | (zq_wait_long & 0x3FF);
}
break;
case EMC_BASE + EMC_ZCAL_WAIT_CNT:
if ((opt_short_zcal != 0) && opt_zcal_en_cc && (opt_cc_short_zcal == 0) && (dram_type == DRAM_TYPE_DDR4)) {
wval = (wval & 0xFFFFF800) | (zq_wait_long & 0x7FF);
}
break;
case EMC_BASE + EMC_ZCAL_INTERVAL:
if (opt_zcal_en_cc) {
wval = 0;
}
break;
case EMC_BASE + EMC_PMACRO_BRICK_CTRL_RFU1:
wval &= 0xF800F800;
break;
case EMC_BASE + EMC_PMACRO_CMD_PAD_TX_CTRL:
wval |= 0x04000000;
break;
case EMC_BASE + EMC_PMACRO_AUTOCAL_CFG_COMMON:
wval |= 0x00010000;
break;
case EMC_BASE + EMC_TRAINING_CTRL:
if (train_second_rank) {
wval |= 0x4000;
}
break;
case EMC_BASE + EMC_REFRESH:
case EMC_BASE + EMC_TREFBW:
wval >>= 0;
break;
case EMC_BASE + EMC_XM2COMPPADCTRL:
if ((dst_misc_cfg_1 & 0x20) == 0) {
wval = (wval & 0x00FFFFFF) | (xm2comppadctrl & 0xFF000000);
}
break;
case EMC_BASE + EMC_DLL_CFG_1:
wval = (wval & 0xFFFFDFFF) | (reg::Read(EMC + EMC_PMACRO_DLL_CFG_1) & 0x00002000);
break;
case EMC_BASE + EMC_PMACRO_VTTGEN_CTRL_1:
wval = (wval & 0xFFFF03FF) | (pmacro_vttgen_ctrl_1 & 0xFC00);
break;
case EMC_BASE + EMC_MRW6:
case EMC_BASE + EMC_MRW7:
case EMC_BASE + EMC_MRW8:
case EMC_BASE + EMC_MRW9:
case EMC_BASE + EMC_MRW14:
case EMC_BASE + EMC_MRW15:
case EMC0_BASE + EMC_MRW10:
case EMC0_BASE + EMC_MRW11:
case EMC0_BASE + EMC_MRW12:
case EMC0_BASE + EMC_MRW13:
case EMC1_BASE + EMC_MRW10:
case EMC1_BASE + EMC_MRW11:
case EMC1_BASE + EMC_MRW12:
case EMC1_BASE + EMC_MRW13:
if (dram_type != DRAM_TYPE_LPDDR4) {
continue;
}
break;
}
/* Write the value. */
reg::Write(reg_addr, wval);
}
}
if (dram_type == DRAM_TYPE_LPDDR4) {
/* Use the current timing when training. */
uint32_t mrw_req;
if (training_enabled)
mrw_req = (23 << 16) | (src_timing->run_clocks & (0xFF << 0));
else
mrw_req = (23 << 16) | (dst_timing->run_clocks & (0xFF << 0));
reg::Write(EMC + EMC_MRW, mrw_req);
}
/* Per channel burst registers. */
if (dram_type == DRAM_TYPE_LPDDR4) {
for (u32 i = 0; i < dst_timing->num_burst_per_ch; i++) {
if (!PerChannelBurstRegisters[i]) {
continue;
}
const u32 addr = PerChannelBurstRegisters[i];
const u32 base = addr & ~0xFFF;
/* Filter out channels. */
if ((!ch0_enable && base == EMC0) || (!ch1_enable && base == EMC1)) {
continue;
}
/* Write the value. */
reg::Write(addr, dst_timing->burst_perch_regs_arr[i]);
}
}
/* Vref regs. */
for (u32 i = 0; i < dst_timing->vref_num; i++) {
if (!PerChannelVrefRegisters[i]) {
continue;
}
const u32 addr = PerChannelVrefRegisters[i];
const u32 base = addr & ~0xFFF;
/* Filter out channels. */
if ((!ch0_enable && base == EMC0) || (!ch1_enable && base == EMC1)) {
continue;
}
/* Write the value. */
reg::Write(addr, dst_timing->vref_perch_regs_arr[i]);
}
/* Training regs. */
if (training_enabled) {
for (u32 i = 0; i < dst_timing->training_mod_num; i++) {
if (!PerChannelTrainingModRegisters[i]) {
continue;
}
const u32 addr = PerChannelTrainingModRegisters[i];
const u32 base = addr & ~0xFFF;
/* Filter out channels. */
if ((!ch0_enable && base == EMC0) || (!ch1_enable && base == EMC1)) {
continue;
}
/* Write the value. */
reg::Write(addr, dst_timing->training_mod_regs_arr[i]);
}
}
/* Per channel trimmers. */
for (u32 i = 0; i < dst_timing->num_trim_per_ch; i++) {
if (!PerChannelTrimRegisters[i]) {
continue;
}
const u32 addr = PerChannelTrimRegisters[i];
const u32 base = addr & ~0xFFF;
/* Filter out channels. */
if ((!ch0_enable && base == EMC0) || (!ch1_enable && base == EMC1)) {
continue;
}
uint32_t wval = dst_timing->trim_perch_regs_arr[i];
if (compensate_trimmer_applicable) {
switch (addr) {
case EMC0_BASE + EMC_DATA_BRLSHFT_0:
case EMC1_BASE + EMC_DATA_BRLSHFT_0:
case EMC0_BASE + EMC_DATA_BRLSHFT_1:
case EMC1_BASE + EMC_DATA_BRLSHFT_1:
wval = ApplyPeriodicCompensationTrimmer(dst_timing, addr);
break;
}
}
/* Write the value. */
reg::Write(addr, wval);
}
/* Trimmers. */
for (u32 i = 0; i < dst_timing->num_trim; ++i) {
if (!TrimRegisters[i]) {
continue;
}
const u32 addr = TrimRegisters[i];
u32 wval = dst_timing->trim_regs_arr[i];
if (compensate_trimmer_applicable) {
switch (addr) {
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_2:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_2:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_2:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_2:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_2:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_2:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_2:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_2:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_2:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_2:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_2:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_2:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_2:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_2:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_2:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_0:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_1:
case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_2:
wval = ApplyPeriodicCompensationTrimmer(dst_timing, addr);
break;
}
}
/* Write the value. */
reg::Write(addr, wval);
}
if (training_enabled) {
if (train_wr && dst_timing->periodic_training) {
PeriodicCompensationHandler(WRITE_TRAINING_SEQUENCE, dram_dev_num, src_timing, dst_timing);
}
} else {
/* Write burst_mc_regs. */
for (u32 i = 0; i < dst_timing->num_mc_regs; i++) {
reg::Write(BurstMcRegisters[i], dst_timing->burst_mc_regs_arr[i]);
}
/* Registers to be programmed on the faster clock. */
if (dst_timing->rate_khz < src_timing->rate_khz) {
for (u32 i = 0; i < dst_timing->num_up_down; i++) {
reg::Write(LaScaleRegisters[i], dst_timing->la_scale_regs_arr[i]);
}
}
}
if ((dst_misc_cfg_1 & 2) != 0 && (dst_misc_cfg_1 & 1) == 0) {
reg::Write(EMC + EMC_PMACRO_BRICK_CTRL_RFU1, dst_timing->burst_regs.emc_pmacro_brick_ctrl_rfu1);
reg::Write(EMC + EMC_PMACRO_CMD_PAD_TX_CTRL, dst_timing->burst_regs.emc_pmacro_cmd_pad_tx_ctrl);
}
reg::Write(EMC + EMC_CFG_PIPE_CLK, (1 << 0));
reg::Write(EMC + EMC_FDPD_CTRL_CMD_NO_RAMP, dst_timing->emc_fdpd_ctrl_cmd_no_ramp & ~(1 << 0));
/* Step 9:
* LPDDR4 section A.
*/
uint32_t emc_dbg_write_active = emc_dbg_o;
if (dram_type == DRAM_TYPE_LPDDR4) {
reg::Write(EMC + EMC_ZCAL_INTERVAL, emc_zcal_interval);
reg::Write(EMC + EMC_ZCAL_WAIT_CNT, (dst_emc_zcal_wait_cnt & 0xFFFFF800) | 1);
reg::Write(EMC + EMC_DBG, emc_dbg_o | ((1 << 1) | (1 << 30)));
reg::Write(EMC + EMC_ZCAL_INTERVAL, emc_zcal_interval);
reg::Write(EMC + EMC_DBG, emc_dbg_o);
if (training_enabled) {
reg::Write(EMC + EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_o));
reg::Write(EMC + EMC_PMACRO_AUTOCAL_CFG_COMMON, dst_timing->burst_regs.emc_pmacro_autocal_cfg_common | (1 << 16));
if (train_ca || train_ca_vref) {
reg::Write(EMC + EMC_FBIO_CFG5, src_timing->burst_regs.emc_fbio_cfg5 | (1 << 27));
}
reg::Write(EMC + EMC_DBG, emc_dbg_o);
if (dst_emc_fbio_cfg7 == 0x6) {
CcfifoWrite(EMC_CFG_SYNC, 1, 0);
}
/* Change CFG_SWAP. */
CcfifoWrite(EMC_DBG, ((emc_dbg_o & 0xF3FFFFFF) | 0x4000000), 0);
}
CcfifoWrite(EMC_SELF_REF, 0x101, 0);
if (!(train_ca || train_ca_vref) && dst_clock_period <= zqcal_before_cc_cutoff) {
CcfifoWrite(EMC_MRW3, mr13_flip_fspwr ^ 0x40, 0);
CcfifoWrite(EMC_MRW6, (src_timing->burst_regs.emc_mrw6 & 0x0000C0C0) | (dst_timing->burst_regs.emc_mrw6 & 0xFFFF3F3F), 0);
CcfifoWrite(EMC_MRW14, (src_timing->burst_regs.emc_mrw14 & 0x00003838) | (dst_timing->burst_regs.emc_mrw14 & 0xFFFF0707), 0);
if (dram_dev_num == TWO_RANK) {
CcfifoWrite(EMC_MRW7, (src_timing->burst_regs.emc_mrw7 & 0x0000C0C0) | (dst_timing->burst_regs.emc_mrw7 & 0xFFFF3F3F), 0);
CcfifoWrite(EMC_MRW15, (src_timing->burst_regs.emc_mrw15 & 0x00003838) | (dst_timing->burst_regs.emc_mrw15 & 0xFFFF0707), 0);
}
if (opt_zcal_en_cc) {
if (dram_dev_num == ONE_RANK || shared_zq_resistor) {
CcfifoWrite(EMC_ZQ_CAL, (2 << 30) | (1 << 0), 0);
} else {
CcfifoWrite(EMC_ZQ_CAL, (1 << 0), 0);
}
}
}
if (training_enabled) {
emc_dbg_write_active = (emc_dbg_o & 0xF7FFFFFF) | 0x4000000 | (1 << 30);
CcfifoWrite(EMC_DBG, emc_dbg_write_active, 0);
}
if (train_ca || train_ca_vref) {
CcfifoWrite(EMC_PMACRO_DATA_RX_TERM_MODE, src_timing->burst_regs.emc_pmacro_data_rx_term_mode & 0xFFFFFCCC, 0);
if (dram_dev_num == TWO_RANK && train_second_rank) {
CcfifoWrite(EMC_MRW3, mr13_flip_fspop | 0x8, (1000 * src_t_rp) / src_clock_period);
CcfifoWrite(EMC_MRW3, mr13_catr_enable | 0x8, 0);
} else {
CcfifoWrite(EMC_MRW3, mr13_catr_enable | 0x8, (1000 * src_t_rp) / src_clock_period);
}
CcfifoWrite(EMC_TR_CTRL_0, (dst_timing->emc_tr_ctrl_0 & 0x3F1000) | 0x100012A, 0);
CcfifoWrite(EMC_INTSTATUS, 0, 1000000 / src_clock_period);
} else {
CcfifoWrite(EMC_MRW3, mr13_flip_fspop | 0x8, (1000 * src_t_rp) / src_clock_period);
CcfifoWrite(EMC_INTSTATUS, 0, std::max<u32>(DivideUpFloat(dst_t_fc_lpddr4_hz, src_clock_period), std::max<u32>(DivideUpFloat(14000, src_clock_period), 10)));
}
uint32_t t = 30 + (cya_allow_ref_cc ? ((4000 * src_t_rfc + 1000 * src_t_rp) / src_clock_period) : 0);
CcfifoWrite(EMC_PIN, emc_pin_o & 0xFFFFFFF8, t);
} else {
CcfifoWrite(EMC_SELF_REF, 0x1, 0);
}
uint32_t ref_delay_mult = 1;
if (ref_b4_sref_en) ++ref_delay_mult;
if (cya_allow_ref_cc) ++ref_delay_mult;
if (cya_issue_pc_ref) ++ref_delay_mult;
uint32_t ref_delay = 20 + ref_delay_mult * (((1000 * src_t_rfc) / src_clock_period) + ((1000 * src_t_rp) / src_clock_period));
/* Step 11:
* Ramp down.
*/
CcfifoWrite(EMC_CFG_SYNC, 1, (dram_type == DRAM_TYPE_LPDDR4) ? 0 : ref_delay);
bool do_ramp_up = (dst_misc_cfg_1 & 2) == 0 || (dst_misc_cfg_1 & 1) != 0;
if (!do_ramp_up) {
CcfifoWrite(EMC_FBIO_CFG5, reg::Read(EMC + EMC_FBIO_CFG5) & 0xF7FFFFFF, 12);
}
CcfifoWrite(EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_write_active & 0xBFFFFFFF), 0);
if ((dst_misc_cfg_2 & 0x10) == 0) {
DvfsPowerRampDown(src_timing, dst_timing, false, 0);
}
CcfifoWrite(EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_write_active | 0x40000000), 0);
uint32_t ramp_down_wait = 0;
if (do_ramp_up) {
CcfifoWrite(EMC_PMACRO_CMD_PAD_TX_CTRL, src_timing->burst_regs.emc_pmacro_cmd_pad_tx_ctrl | (1 << 26), 0);
CcfifoWrite(EMC_FBIO_CFG5, src_timing->burst_regs.emc_fbio_cfg5 | 0x100, 12);
bool misc_flag = (dst_misc_cfg_1 & 3) == 3;
uint32_t timescale = (100000 << ((dst_misc_cfg_1 >> 2) & 7));
uint32_t delay = (timescale / src_clock_period);
if (src_rate_khz > 1150747 || misc_flag) {
CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, src_timing->burst_regs.emc_pmacro_brick_ctrl_rfu1 & 0xFEEDFEED, delay + 1);
CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, src_timing->burst_regs.emc_pmacro_brick_ctrl_rfu1 & 0xFE40FE40, delay + 1);
CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, src_timing->burst_regs.emc_pmacro_brick_ctrl_rfu1 & 0xF800F800, delay + 1);
ramp_down_wait = 3 * timescale + 12 * src_clock_period;
} else {
CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, src_timing->burst_regs.emc_pmacro_brick_ctrl_rfu1 & 0xF800F800, delay + 20);
ramp_down_wait = timescale + 32 * src_clock_period;
}
if (src_rate_khz > 600240 || misc_flag) {
CcfifoWrite(EMC_INTSTATUS, 0, delay + 1);
ramp_down_wait += 2 * timescale;
}
}
/* Step 12:
* Trigger the clock change.
*/
CcfifoWrite(EMC_STALL_THEN_EXE_AFTER_CLKCHANGE, 1, 0);
CcfifoWrite(EMC_INTSTATUS, 0, dst_timing->clkchange_delay);
CcfifoWrite(EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_write_active & 0xBFFFFFFF), 0);
if ((dst_misc_cfg_2 & 0x10) == 0) {
DvfsPowerRampDown(src_timing, dst_timing, false, 1);
}
if (training_enabled) {
CcfifoWrite(EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_write_active | 0x40000000), 0);
}
/* Step 13:
* Ramp up.
*/
uint32_t ramp_up_wait = 0;
if (do_ramp_up) {
ramp_up_wait = DvfsPowerRampUp(dst_clock_period, false, src_timing, dst_timing, training);
}
if (ramp_up_wait < 1001000 && src_timing->ramp_wait != dst_timing->ramp_wait) {
CcfifoWrite(EMC_INTSTATUS, 0, 1 + ((1001000 - ramp_up_wait) / dst_clock_period));
}
if (do_ramp_up) {
CcfifoWrite(EMC_DBG, emc_dbg_write_active, 0);
} else {
CcfifoWrite(EMC_FBIO_CFG5, reg::Read(EMC + EMC_FBIO_CFG5), 0);
CcfifoWrite(EMC_DBG, emc_dbg_write_active, 12);
}
/* Step 14:
* Bringup CKE pins.
*/
if (dram_type == DRAM_TYPE_LPDDR4) {
uint32_t pin_val;
if (train_ca || train_ca_vref) {
pin_val = (dst_misc_cfg_0 & 1) ? ((emc_pin_o & 0xFFFCFFF8) | (((dst_misc_cfg_0 >> 1) & 3) << 16)) : emc_pin_o;
pin_val &= 0xFFFFFFF8;
if (dram_dev_num == TWO_RANK) {
if (train_second_rank) {
pin_val |= 5;
} else {
pin_val |= 6;
}
}
} else {
pin_val = (dst_misc_cfg_0 & 1) ? ((emc_pin_o & 0xFFFCFFFF) | (((dst_misc_cfg_0 >> 1) & 3) << 16)) : emc_pin_o;
pin_val &= 0xFFFFFFF8;
if (dram_dev_num == TWO_RANK) {
pin_val |= 7;
} else {
pin_val |= 1;
}
}
CcfifoWrite(EMC_PIN, pin_val, 0);
}
/* Step 15:
* Calculate zqlatch wait time; has dependency on ramping times.
*/
uint32_t dst_t_pdex_hz = 1000 * dst_t_pdex;
uint32_t zq_latch_dvfs_wait_time;
if (dst_clock_period <= zqcal_before_cc_cutoff) {
zq_latch_dvfs_wait_time = (ramp_up_wait + ramp_down_wait) / dst_clock_period;
} else {
zq_latch_dvfs_wait_time = util::DivideUp(dst_t_pdex_hz, dst_clock_period);
}
if (!(train_ca || train_ca_vref) && (dram_type == DRAM_TYPE_LPDDR4) && opt_zcal_en_cc) {
int offset = (int)((tZQCAL_lpddr4 - adj_dst_t_fc_lpddr4) / dst_clock_period) - (int)zq_latch_dvfs_wait_time;
int addl_wait = (int)util::DivideUp(dst_t_pdex_hz, dst_clock_period);
if (dram_dev_num == TWO_RANK) {
if (shared_zq_resistor) {
if (dst_clock_period > zqcal_before_cc_cutoff) {
CcfifoWrite(EMC_ZQ_CAL, (2 << 30) | (1 << 0), std::max<int>(0, addl_wait));
}
CcfifoWrite(EMC_ZQ_CAL, (2 << 30) | (1 << 1), std::max<int>(0, offset + addl_wait));
CcfifoWrite(EMC_ZQ_CAL, (1 << 30) | (1 << 0), 0);
if (!training_enabled) {
CcfifoWrite(EMC_MRW3, (mr13_flip_fspop & 0xFFFFFFF7) | 0xC000000 | (dst_misc_cfg_2 & 8), 0);
CcfifoWrite(EMC_SELF_REF, 0, 0);
CcfifoWrite(EMC_REF, 0, 0);
}
CcfifoWrite(EMC_ZQ_CAL, (1 << 30) | (1 << 1), zq_wait_short + div_14000_by_dst_period + (tZQCAL_lpddr4 / dst_clock_period));
} else {
if (dst_clock_period > zqcal_before_cc_cutoff) {
CcfifoWrite(EMC_ZQ_CAL, (0 << 30) | (1 << 0), std::max<int>(0, addl_wait));
}
if (!training_enabled) {
CcfifoWrite(EMC_MRW3, (mr13_flip_fspop & 0xFFFFFFF7) | 0xC000000 | (dst_misc_cfg_2 & 8), std::max<int>(0, addl_wait));
CcfifoWrite(EMC_SELF_REF, 0, 0);
CcfifoWrite(EMC_REF, 0, 0);
}
CcfifoWrite(EMC_ZQ_CAL, (0 << 30) | (1 << 1), div_14000_by_dst_period + std::max<int>(0, offset));
}
} else {
if (dst_clock_period > zqcal_before_cc_cutoff) {
CcfifoWrite(EMC_ZQ_CAL, (2 << 30) | (1 << 0), std::max<int>(0, addl_wait));
}
if (!training_enabled) {
CcfifoWrite(EMC_MRW3, (mr13_flip_fspop & 0xFFFFFFF7) | 0xC000000 | (dst_misc_cfg_2 & 8), std::max<int>(0, addl_wait));
CcfifoWrite(EMC_SELF_REF, 0, 0);
CcfifoWrite(EMC_REF, 0x80000000, 0);
}
CcfifoWrite(EMC_ZQ_CAL, (2 << 30) | (1 << 1), div_14000_by_dst_period + std::max<int>(0, offset));
}
}
/* WAR: delay for zqlatch */
CcfifoWrite(EMC_INTSTATUS, 0, 10);
/* Step 16:
* LPDDR4 Conditional Training Kickoff.
*/
if (training_enabled && dram_type == DRAM_TYPE_LPDDR4) {
if (opt_do_sw_qrst) {
CcfifoWrite(EMC_ISSUE_QRST, 1, 0);
CcfifoWrite(EMC_ISSUE_QRST, 0, 2);
}
CcfifoWrite(EMC_INTSTATUS, 0, (1020000 / dst_clock_period));
{
uint32_t train_cmd = 0;
if (train_ca) {
train_cmd |= (1 << 1); /* CA */
}
if (train_ca_vref) {
train_cmd |= (1 << 5); /* CA_VREF */
}
if (train_wr) {
train_cmd |= (1 << 3); /* WR */
}
if (train_wr_vref) {
train_cmd |= (1 << 6); /* WR_VREF */
}
if (train_rd) {
train_cmd |= (1 << 2); /* RD */
}
if (train_rd_vref) {
train_cmd |= (1 << 7); /* RD_VREF */
}
train_cmd |= (1 << 31); /* GO */
CcfifoWrite(EMC_TRAINING_CMD, train_cmd, 0);
}
CcfifoWrite(EMC_SWITCH_BACK_CTRL, 1, 0);
if (!(train_ca || train_ca_vref) || train_second_rank) {
CcfifoWrite(EMC_MRW3, mr13_flip_fspop ^ 0xC0, 0);
CcfifoWrite(EMC_INTSTATUS, 0, (1000000 / dst_clock_period));
}
{
uint32_t pin_val = (dst_misc_cfg_0 & 1) ? ((emc_pin_o & 0xFFFCFFFF) | (((dst_misc_cfg_0 >> 1) & 3) << 16)) : emc_pin_o;
CcfifoWrite(EMC_PIN, pin_val & 0xFFFFFFF8, 0);
}
CcfifoWrite(EMC_CFG_SYNC, 1, 0);
if ((src_misc_cfg_1 & 3) != 2) {
CcfifoWrite(EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_write_active | 0x40000000), 0);
CcfifoWrite(EMC_PMACRO_CMD_PAD_TX_CTRL, dst_timing->burst_regs.emc_pmacro_cmd_pad_tx_ctrl | (1 << 26), 0);
CcfifoWrite(EMC_FBIO_CFG5, dst_timing->burst_regs.emc_fbio_cfg5 | 0x100, 12);
bool misc_flag = (src_misc_cfg_1 & 3) == 3;
uint32_t timescale = (100000 << ((src_misc_cfg_1 >> 2) & 7));
uint32_t delay = (timescale / dst_clock_period);
if (dst_rate_khz > 1150747 || misc_flag) {
CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, dst_timing->burst_regs.emc_pmacro_brick_ctrl_rfu1 & 0xFEEDFEED, delay + 1);
CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, dst_timing->burst_regs.emc_pmacro_brick_ctrl_rfu1 & 0xFE40FE40, delay + 1);
CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, dst_timing->burst_regs.emc_pmacro_brick_ctrl_rfu1 & 0xF800F800, delay + 1);
} else {
CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, dst_timing->burst_regs.emc_pmacro_brick_ctrl_rfu1 & 0xF800F800, delay + 20);
}
if (dst_rate_khz > 600240 || misc_flag) {
CcfifoWrite(EMC_INTSTATUS, 0, delay + 1);
}
} else {
CcfifoWrite(EMC_FBIO_CFG5, reg::Read(EMC + EMC_FBIO_CFG5) & 0xF7FFFFFF, 12);
CcfifoWrite(EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_write_active | 0x40000000), 0);
}
CcfifoWrite(EMC_STALL_THEN_EXE_AFTER_CLKCHANGE, 1, 0);
CcfifoWrite(EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_write_active & 0xBFFFFFFF), 0);
if ((dst_misc_cfg_2 & 0x10) == 0) {
DvfsPowerRampDown(src_timing, dst_timing, true, 1);
}
if ((src_misc_cfg_1 & 3) != 2) {
DvfsPowerRampUp(src_clock_period, true, src_timing, dst_timing, training);
if (ramp_up_wait < 1001000 && src_timing->ramp_wait != dst_timing->ramp_wait) {
CcfifoWrite(EMC_INTSTATUS, 0, 1 + ((1001000 - ramp_up_wait) / dst_clock_period));
}
CcfifoWrite(EMC_DBG, emc_dbg_write_active, 0);
} else {
if (ramp_up_wait < 1001000 && src_timing->ramp_wait != dst_timing->ramp_wait) {
CcfifoWrite(EMC_INTSTATUS, 0, 1 + ((1001000 - ramp_up_wait) / dst_clock_period));
}
CcfifoWrite(EMC_FBIO_CFG5, reg::Read(EMC + EMC_FBIO_CFG5), 0);
CcfifoWrite(EMC_DBG, emc_dbg_write_active, 12);
}
{
uint32_t pin_val = (src_misc_cfg_0 & 1) ? ((emc_pin_o & 0xFFFCFFFF) | (((src_misc_cfg_0 >> 1) & 3) << 16)) : emc_pin_o;
pin_val &= 0xFFFFFFF8;
pin_val |= (dram_dev_num == TWO_RANK) ? 7 : 1;
CcfifoWrite(EMC_PIN, pin_val, 0);
}
if (train_ca || train_ca_vref) {
CcfifoWrite(EMC_TR_CTRL_0, 0x2A, (200000 / src_clock_period));
CcfifoWrite(EMC_TR_CTRL_0, 0x20, (1000000 / src_clock_period));
CcfifoWrite(EMC_MRW3, mr13_catr_enable & 0xFFFFFFFE, 0);
CcfifoWrite(EMC_INTSTATUS, 0, (1000000 / src_clock_period));
CcfifoWrite(EMC_PMACRO_DATA_RX_TERM_MODE, src_timing->burst_regs.emc_pmacro_data_rx_term_mode, 0);
}
CcfifoWrite(EMC_DBG, emc_dbg_o, 0);
if (opt_zcal_en_cc) {
if (shared_zq_resistor) {
CcfifoWrite(EMC_ZQ_CAL, (2 << 30) | (1 << 0), 0);
CcfifoWrite(EMC_ZQ_CAL, (2 << 30) | (1 << 1), 1 + util::DivideUp(1000000, src_clock_period));
if ((!(train_ca || train_ca_vref) || train_second_rank) && dram_dev_num == TWO_RANK) {
CcfifoWrite(EMC_ZQ_CAL, (1 << 30) | (1 << 0), 0);
CcfifoWrite(EMC_ZQ_CAL, (1 << 30) | (1 << 1), 1 + util::DivideUp(1000000, src_clock_period));
}
} else {
CcfifoWrite(EMC_ZQ_CAL, (dram_dev_num == ONE_RANK ? (2 << 30) : (0 << 30)) | (1 << 0), 0);
CcfifoWrite(EMC_ZQ_CAL, (dram_dev_num == ONE_RANK ? (2 << 30) : (0 << 30)) | (1 << 1), 1 + util::DivideUp(1000000, src_clock_period));
}
}
if (!(train_ca || train_ca_vref)) {
CcfifoWrite(EMC_MRW3, ((mr13_flip_fspop & 0xF3FFFFF7) | (dst_misc_cfg_2 & 8)) ^ 0x0C0000C0, 0);
}
CcfifoWrite(EMC_SELF_REF, 0x0, 0);
}
/* Step 17:
* exit self refresh.
*/
if (dram_type != DRAM_TYPE_LPDDR4) {
CcfifoWrite(EMC_SELF_REF, 0, 0);
}
/* Step 18:
* Send MRWs to LPDDR3/DDR3.
*/
if (is_lpddr2) {
CcfifoWrite(EMC_MRW2, dst_timing->emc_mrw2, 0);
CcfifoWrite(EMC_MRW, dst_timing->emc_mrw, 0);
if (is_lpddr3) {
CcfifoWrite(EMC_MRW4, dst_timing->emc_mrw4, 0);
}
} else if (dram_type == DRAM_TYPE_DDR4) {
if (opt_dll_mode) {
CcfifoWrite(EMC_EMRS, dst_timing->emc_emrs & ~(1 << 26), 0);
}
CcfifoWrite(EMC_EMRS2, dst_timing->emc_emrs2 & ~(1 << 26), 0);
CcfifoWrite(EMC_MRS, dst_timing->emc_mrs | (1 << 26), 0);
}
/* Step 19:
* ZQCAL for LPDDR3/DDR3
*/
if (opt_zcal_en_cc) {
if (is_lpddr2) {
uint32_t zq_op = opt_cc_short_zcal ? dst_timing->zq_op_cc_short_zcal : dst_timing->zq_op_cc_long_zcal;
uint32_t zcal_wait_time_ps = opt_cc_short_zcal ? dst_timing->zcal_wait_time_ps_cc_short_zcal : dst_timing->zcal_wait_time_ps_cc_long_zcal;
uint32_t zcal_wait_time_clocks = util::DivideUp(zcal_wait_time_ps, dst_clock_period);
CcfifoWrite(EMC_MRS_WAIT_CNT2, (zcal_wait_time_clocks & 0x3FF) | ((zcal_wait_time_clocks & 0x7FF) << 16), 0);
CcfifoWrite(EMC_MRW, (zq_op | 0x880C0000) - 0x20000, 0);
if (dram_dev_num == TWO_RANK) {
CcfifoWrite(EMC_MRW, zq_op | 0x480A0000, 0);
}
} else if (dram_type == DRAM_TYPE_DDR4) {
CcfifoWrite(EMC_ZQ_CAL, (2 << 30) | (1 << 0) | (opt_cc_short_zcal ? 0 : (1 << 4)), 0);
if (dram_dev_num == TWO_RANK) {
CcfifoWrite(EMC_ZQ_CAL, (1 << 30) | (1 << 0) | (opt_cc_short_zcal ? 0 : (1 << 4)), 0);
}
}
}
/* Step 20:
* Issue ref and optional QRST.
*/
if (training_enabled || dram_type != DRAM_TYPE_LPDDR4) {
CcfifoWrite(EMC_REF, dram_dev_num == ONE_RANK ? 0x80000000 : 0x00000000, 0);
}
if (opt_do_sw_qrst) {
CcfifoWrite(EMC_ISSUE_QRST, 1, 0);
CcfifoWrite(EMC_ISSUE_QRST, 0, 2);
}
/* Step 21:
* Restore ZCAL and ZCAL interval.
*/
if (save_restore_clkstop_pd || opt_zcal_en_cc || (training_enabled && dram_type == DRAM_TYPE_LPDDR4)) {
CcfifoWrite(EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_o), 0);
if (opt_zcal_en_cc) {
if (training_enabled) {
CcfifoWrite(EMC_ZCAL_INTERVAL, (dst_misc_cfg_2 & 2) ? 0 : src_timing->burst_regs.emc_zcal_interval, 0);
} else if (dram_type != DRAM_TYPE_LPDDR4) {
CcfifoWrite(EMC_ZCAL_INTERVAL, (dst_misc_cfg_2 & 2) ? 0 : dst_timing->burst_regs.emc_zcal_interval, 0);
}
}
if (save_restore_clkstop_pd || (training_enabled && dram_type == DRAM_TYPE_LPDDR4)) {
CcfifoWrite(EMC_CFG, dst_timing->burst_regs.emc_cfg & ~(1 << 28), 0);
}
if (training_enabled && dram_type == DRAM_TYPE_LPDDR4) {
CcfifoWrite(EMC_SEL_DPD_CTRL, src_timing->emc_sel_dpd_ctrl, 0);
}
CcfifoWrite(EMC_DBG, emc_dbg_o, 0);
}
/* Step 22:
* Restore EMC_CFG_PIPE_CLK.
*/
CcfifoWrite(EMC_CFG_PIPE_CLK, emc_cfg_pipe_clk_o, 0);
CcfifoWrite(EMC_INTSTATUS, 0, dst_timing->pipe_clk_delay);
/* Step 23:
* Do clock change.
*/
if (training_enabled) {
uint32_t clk_source_emc;
if (ch0_enable || ch1_enable) {
clk_source_emc = reg::Read(CLKRST + CLK_RST_CONTROLLER_CLK_SOURCE_EMC);
reg::Write(CLKRST + CLK_RST_CONTROLLER_CLK_SOURCE_EMC_SAFE, clk_source_emc);
} else {
clk_source_emc = 0;
}
ChangeDllSrc(src_timing, clk_source_emc);
}
{
uint32_t dig_dll = (reg::Read(EMC + EMC_CFG_DIG_DLL) & 0xFFFFFFE4) | 8;
if ((dst_misc_cfg_2 & 1) == 0) {
dig_dll = (dig_dll & 0xFFFFFF3F) | 0x80;
}
reg::Write(EMC + EMC_CFG_DIG_DLL, dig_dll);
reg::Read(EMC + EMC_CFG_DIG_DLL);
}
reg::Read(MC + MC_EMEM_ADR_CFG);
reg::Read(EMC + EMC_INTSTATUS);
if (ch0_enable || ch1_enable) {
reg::Write(CLKRST + CLK_RST_CONTROLLER_CLK_SOURCE_EMC, dst_clk_src);
reg::Read(CLKRST + CLK_RST_CONTROLLER_CLK_SOURCE_EMC);
}
if (WaitForUpdate(EMC_INTSTATUS, (1 << 4), true, dst_emc_fbio_cfg7)) {
return;
}
/* Step 24:
* Save training results.
*/
if (training_enabled) {
uint32_t tmp_emem_numdev = reg::Read(MC + MC_EMEM_ADR_CFG) & 1;
uint32_t emc_dbg_tmp = reg::Read(EMC + EMC_DBG);
reg::Write(EMC + EMC_DBG, emc_dbg_tmp | 1); /* Set READ_MUX to ASSEMBLY. */
uint32_t tmp_dram_dev_num = 1 + tmp_emem_numdev;
/* Save CA results. */
if (train_ca) {
dst_timing->trim_perch_regs.emc0_cmd_brlshft_0 = reg::Read(EMC0 + EMC_CMD_BRLSHFT_0);
dst_timing->trim_perch_regs.emc1_cmd_brlshft_1 = reg::Read(EMC1 + EMC_CMD_BRLSHFT_1);
dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank0_4 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_4);
dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank0_5 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_5);
if (train_bit_level) {
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd0_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD0_0);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd0_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD0_1);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd0_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD0_2);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd1_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD1_0);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd1_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD1_1);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd1_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD1_2);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd2_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD2_0);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd2_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD2_1);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd2_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD2_2);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd3_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD3_0);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd3_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD3_1);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd3_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD3_2);
}
}
/* Save CA_VREF results. */
if (train_ca_vref) {
uint32_t emc0_training_opt_ca_vref = reg::Read(EMC0 + EMC_TRAINING_OPT_CA_VREF);
uint32_t emc1_training_opt_ca_vref = reg::Read(EMC1 + EMC_TRAINING_OPT_CA_VREF);
uint32_t rank_mask = tmp_dram_dev_num == TWO_RANK ? 0x480C0000 : 0xC80C0000;
dst_timing->burst_perch_regs.emc0_mrw10 = (emc0_training_opt_ca_vref & 0xFFFF) | 0x880C0000;
dst_timing->burst_perch_regs.emc1_mrw10 = (emc1_training_opt_ca_vref & 0xFFFF) | 0x880C0000;
dst_timing->burst_perch_regs.emc0_mrw11 = (rank_mask & 0xFFFFFF00) | ((emc0_training_opt_ca_vref >> 16) & 0xFFFF);
dst_timing->burst_perch_regs.emc1_mrw11 = (rank_mask & 0xFFFFFF00) | ((emc1_training_opt_ca_vref >> 16) & 0xFFFF);
}
/* Save RD results. */
if (train_rd) {
dst_timing->trim_regs.emc_pmacro_ib_ddll_long_dqs_rank0_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_0);
dst_timing->trim_regs.emc_pmacro_ib_ddll_long_dqs_rank0_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_1);
dst_timing->trim_regs.emc_pmacro_ib_ddll_long_dqs_rank0_2 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_2);
dst_timing->trim_regs.emc_pmacro_ib_ddll_long_dqs_rank0_3 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_3);
if (tmp_dram_dev_num == TWO_RANK) {
dst_timing->trim_regs.emc_pmacro_ib_ddll_long_dqs_rank1_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_0);
dst_timing->trim_regs.emc_pmacro_ib_ddll_long_dqs_rank1_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_1);
dst_timing->trim_regs.emc_pmacro_ib_ddll_long_dqs_rank1_2 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_2);
dst_timing->trim_regs.emc_pmacro_ib_ddll_long_dqs_rank1_3 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_3);
}
if (train_bit_level) {
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte0_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE0_0);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte0_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE0_1);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte0_2 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE0_2);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte1_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE1_0);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte1_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE1_1);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte1_2 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE1_2);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte2_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE2_0);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte2_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE2_1);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte2_2 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE2_2);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte3_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE3_0);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte3_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE3_1);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte3_2 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE3_2);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte4_0 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE4_0);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte4_1 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE4_1);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte4_2 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE4_2);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte5_0 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE5_0);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte5_1 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE5_1);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte5_2 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE5_2);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte6_0 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE6_0);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte6_1 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE6_1);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte6_2 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE6_2);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte7_0 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE7_0);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte7_1 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE7_1);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte7_2 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE7_2);
if (tmp_dram_dev_num == TWO_RANK) {
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte0_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE0_0);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte0_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE0_1);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte0_2 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE0_2);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte1_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE1_0);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte1_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE1_1);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte1_2 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE1_2);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte2_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE2_0);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte2_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE2_1);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte2_2 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE2_2);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte3_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE3_0);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte3_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE3_1);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte3_2 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE3_2);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte4_0 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE4_0);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte4_1 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE4_1);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte4_2 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE4_2);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte5_0 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE5_0);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte5_1 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE5_1);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte5_2 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE5_2);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte6_0 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE6_0);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte6_1 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE6_1);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte6_2 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE6_2);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte7_0 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE7_0);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte7_1 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE7_1);
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte7_2 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE7_2);
}
}
/* Save RD_VREF results. */
if (train_rd_vref) {
uint32_t emc_pmacro_ib_vref_dq_0 = reg::Read(EMC0 + EMC_PMACRO_IB_VREF_DQ_0);
uint32_t emc_pmacro_ib_vref_dq_1 = reg::Read(EMC0 + EMC_PMACRO_IB_VREF_DQ_1);
#define GET_SAVE_RESTORE_MOD_REG(n) ((dst_timing->save_restore_mod_regs[n] & 0x80000000) ? (~dst_timing->save_restore_mod_regs[n]) : (dst_timing->save_restore_mod_regs[n]))
uint8_t ib_vref_dq_byte0_icr = ((emc_pmacro_ib_vref_dq_0 >> 0) & 0x7F) + (GET_SAVE_RESTORE_MOD_REG(0) & 0x7F);
uint8_t ib_vref_dq_byte1_icr = ((emc_pmacro_ib_vref_dq_0 >> 8) & 0x7F) + (GET_SAVE_RESTORE_MOD_REG(1) & 0x7F);
uint8_t ib_vref_dq_byte2_icr = ((emc_pmacro_ib_vref_dq_0 >> 16) & 0x7F) + (GET_SAVE_RESTORE_MOD_REG(2) & 0x7F);
uint8_t ib_vref_dq_byte3_icr = ((emc_pmacro_ib_vref_dq_0 >> 24) & 0x7F) + (GET_SAVE_RESTORE_MOD_REG(3) & 0x7F);
uint8_t ib_vref_dq_byte4_icr = ((emc_pmacro_ib_vref_dq_1 >> 0) & 0x7F) + (GET_SAVE_RESTORE_MOD_REG(4) & 0x7F);
uint8_t ib_vref_dq_byte5_icr = ((emc_pmacro_ib_vref_dq_1 >> 8) & 0x7F) + (GET_SAVE_RESTORE_MOD_REG(5) & 0x7F);
uint8_t ib_vref_dq_byte6_icr = ((emc_pmacro_ib_vref_dq_1 >> 16) & 0x7F) + (GET_SAVE_RESTORE_MOD_REG(6) & 0x7F);
uint8_t ib_vref_dq_byte7_icr = ((emc_pmacro_ib_vref_dq_1 >> 24) & 0x7F) + (GET_SAVE_RESTORE_MOD_REG(7) & 0x7F);
dst_timing->trim_regs.emc_pmacro_ib_vref_dq_0 = ((ib_vref_dq_byte0_icr & 0x7F) | (ib_vref_dq_byte1_icr & 0x7F) << 8) | ((ib_vref_dq_byte2_icr & 0x7F) << 16) | ((ib_vref_dq_byte3_icr & 0x7F) << 24);
dst_timing->trim_regs.emc_pmacro_ib_vref_dq_1 = ((ib_vref_dq_byte4_icr & 0x7F) | (ib_vref_dq_byte5_icr & 0x7F) << 8) | ((ib_vref_dq_byte6_icr & 0x7F) << 16) | ((ib_vref_dq_byte7_icr & 0x7F) << 24);
#undef GET_SAVE_RESTORE_MOD_REG
}
}
/* Save WR results. */
if (train_wr) {
dst_timing->trim_perch_regs.emc0_data_brlshft_0 = reg::Read(EMC0 + EMC_DATA_BRLSHFT_0);
dst_timing->trim_perch_regs.emc1_data_brlshft_0 = reg::Read(EMC1 + EMC_DATA_BRLSHFT_0);
if (tmp_dram_dev_num == TWO_RANK) {
dst_timing->trim_perch_regs.emc0_data_brlshft_1 = reg::Read(EMC0 + EMC_DATA_BRLSHFT_1);
dst_timing->trim_perch_regs.emc1_data_brlshft_1 = reg::Read(EMC1 + EMC_DATA_BRLSHFT_1);
}
dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank0_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0);
dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank0_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1);
dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank0_2 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2);
dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank0_3 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3);
if (tmp_dram_dev_num == TWO_RANK) {
dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank1_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0);
dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank1_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1);
dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank1_2 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2);
dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank1_3 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3);
}
if (train_bit_level) {
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte0_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_0);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte0_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_1);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte0_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_2);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte1_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_0);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte1_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_1);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte1_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_2);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte2_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_0);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte2_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_1);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte2_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_2);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte3_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_0);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte3_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_1);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte3_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_2);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte4_0 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_0);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte4_1 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_1);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte4_2 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_2);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte5_0 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_0);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte5_1 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_1);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte5_2 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_2);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte6_0 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_0);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte6_1 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_1);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte6_2 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_2);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte7_0 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_0);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte7_1 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_1);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte7_2 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_2);
if (tmp_dram_dev_num == TWO_RANK) {
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte0_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_0);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte0_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_1);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte0_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_2);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte1_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_0);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte1_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_1);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte1_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_2);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte2_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_0);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte2_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_1);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte2_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_2);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte3_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_0);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte3_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_1);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte3_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_2);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte4_0 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_0);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte4_1 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_1);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte4_2 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_2);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte5_0 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_0);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte5_1 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_1);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte5_2 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_2);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte6_0 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_0);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte6_1 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_1);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte6_2 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_2);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte7_0 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_0);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte7_1 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_1);
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte7_2 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_2);
}
}
/* Save WR_VREF results. */
if (train_wr_vref) {
uint32_t emc0_training_opt_dq_ob_vref = reg::Read(EMC0 + EMC_TRAINING_OPT_DQ_OB_VREF);
uint32_t emc1_training_opt_dq_ob_vref = reg::Read(EMC1 + EMC_TRAINING_OPT_DQ_OB_VREF);
#define GET_SAVE_RESTORE_MOD_REG(n) ((dst_timing->save_restore_mod_regs[n] & 0x80000000) ? (~dst_timing->save_restore_mod_regs[n]) : (dst_timing->save_restore_mod_regs[n]))
uint8_t mod_reg_8 = GET_SAVE_RESTORE_MOD_REG( 8);
uint8_t mod_reg_9 = GET_SAVE_RESTORE_MOD_REG( 9);
uint8_t mod_reg_10 = GET_SAVE_RESTORE_MOD_REG(10);
uint8_t mod_reg_11 = GET_SAVE_RESTORE_MOD_REG(11);
#undef GET_SAVE_RESTORE_MOD_REG
uint32_t rank_mask = tmp_dram_dev_num == TWO_RANK ? 0x480E0000 : 0xC80E0000;
uint8_t emc0_mrw12_byte0 = (mod_reg_8 + ((emc0_training_opt_dq_ob_vref >> 0) & 0xFF));
uint8_t emc0_mrw12_byte1 = (mod_reg_9 + ((emc0_training_opt_dq_ob_vref >> 8) & 0xFF));
uint8_t emc0_mrw13_byte0 = (mod_reg_8 + ((emc0_training_opt_dq_ob_vref >> 16) & 0xFF));
uint8_t emc0_mrw13_byte1 = (mod_reg_9 + ((emc0_training_opt_dq_ob_vref >> 24) & 0xFF));
uint8_t emc1_mrw12_byte0 = (mod_reg_10 + ((emc1_training_opt_dq_ob_vref >> 0) & 0xFF));
uint8_t emc1_mrw12_byte1 = (mod_reg_11 + ((emc1_training_opt_dq_ob_vref >> 8) & 0xFF));
uint8_t emc1_mrw13_byte0 = (mod_reg_10 + ((emc1_training_opt_dq_ob_vref >> 16) & 0xFF));
uint8_t emc1_mrw13_byte1 = (mod_reg_11 + ((emc1_training_opt_dq_ob_vref >> 24) & 0xFF));
dst_timing->burst_perch_regs.emc0_mrw12 = (emc0_mrw12_byte0 << 0) | (emc0_mrw12_byte1 << 8) | 0x880E0000;
dst_timing->burst_perch_regs.emc1_mrw12 = (emc1_mrw12_byte0 << 0) | (emc1_mrw12_byte1 << 8) | 0x880E0000;
dst_timing->burst_perch_regs.emc1_mrw13 = (emc1_mrw13_byte0 << 0) | (emc1_mrw13_byte1 << 8) | rank_mask;
dst_timing->burst_perch_regs.emc0_mrw13 = (emc0_mrw13_byte0 << 0) | (emc0_mrw13_byte1 << 8) | rank_mask;
}
}
reg::Write(EMC + EMC_DBG, emc_dbg_tmp);
}
/* Step 25:
* Program MC updown registers.
*/
if (dst_timing->rate_khz > src_timing->rate_khz && !training_enabled) {
for (u32 i = 0; i < dst_timing->num_up_down; i++) {
reg::Write(LaScaleRegisters[i], dst_timing->la_scale_regs_arr[i]);
}
/* Request a timing update. */
TimingUpdate(dst_emc_fbio_cfg7);
}
/* Step 26:
* Restore ZCAL registers.
*/
if (dram_type == DRAM_TYPE_LPDDR4 && !training_enabled) {
reg::Write(EMC + EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_o));
reg::Write(EMC + EMC_ZCAL_WAIT_CNT, dst_timing->burst_regs.emc_zcal_wait_cnt);
reg::Write(EMC + EMC_ZCAL_INTERVAL, (dst_misc_cfg_2 & 2) ? 0 : dst_timing->burst_regs.emc_zcal_interval);
reg::Write(EMC + EMC_DBG, emc_dbg_o);
}
if (dram_type != DRAM_TYPE_LPDDR4 && opt_cc_short_zcal && opt_zcal_en_cc && !opt_short_zcal) {
util::WaitMicroSeconds(2);
if (is_lpddr2) {
reg::Write(EMC + EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_o));
reg::Write(EMC + EMC_MRS_WAIT_CNT, dst_timing->burst_regs.emc_mrs_wait_cnt);
reg::Write(EMC + EMC_DBG, emc_dbg_o);
} else if (dram_type == DRAM_TYPE_DDR4) {
reg::Write(EMC + EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_o));
reg::Write(EMC + EMC_ZCAL_WAIT_CNT, dst_timing->burst_regs.emc_zcal_wait_cnt);
reg::Write(EMC + EMC_DBG, emc_dbg_o);
}
}
if (training_enabled) {
if (!src_timing->pllm_misc1_0_pllm_clamp_ph90) {
reg::SetBits(CLKRST + CLK_RST_CONTROLLER_PLLM_MISC1, 0x80000000);
}
} else {
if (!dst_timing->pllm_misc1_0_pllm_clamp_ph90) {
reg::SetBits(CLKRST + CLK_RST_CONTROLLER_PLLM_MISC1, 0x80000000);
}
}
/* Step 27:
* Restore EMC_CFG, FDPD registers.
*/
reg::Write(EMC + EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_o));
reg::Write(EMC + EMC_CFG, dst_timing->burst_regs.emc_cfg);
reg::Write(EMC + EMC_DBG, emc_dbg_o);
reg::Write(EMC + EMC_FDPD_CTRL_CMD_NO_RAMP, dst_timing->emc_fdpd_ctrl_cmd_no_ramp);
reg::Write(EMC + EMC_SEL_DPD_CTRL, dst_timing->emc_sel_dpd_ctrl);
/* Step 28:
* Training recover.
*/
if (training_enabled && dram_type == DRAM_TYPE_LPDDR4) {
reg::Write(EMC + EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_o));
reg::Write(EMC + EMC_CFG, dst_timing->burst_regs.emc_cfg);
reg::Write(EMC + EMC_SEL_DPD_CTRL, dst_timing->emc_sel_dpd_ctrl);
reg::Write(EMC + EMC_ZCAL_WAIT_CNT, src_timing->burst_regs.emc_zcal_wait_cnt);
reg::Write(EMC + EMC_ZCAL_INTERVAL, (dst_misc_cfg_2 & 2) ? 0 : dst_timing->burst_regs.emc_zcal_interval);
reg::Write(EMC + EMC_AUTO_CAL_CONFIG2, dst_timing->emc_auto_cal_config2);
if (ch0_enable || ch1_enable) {
reg::Write(EMC0 + EMC_AUTO_CAL_CONFIG3, dst_timing->emc_auto_cal_config3);
reg::Write(EMC0 + EMC_AUTO_CAL_CONFIG4, dst_timing->emc_auto_cal_config4);
reg::Write(EMC0 + EMC_AUTO_CAL_CONFIG5, dst_timing->emc_auto_cal_config5);
reg::Write(EMC0 + EMC_AUTO_CAL_CONFIG6, dst_timing->emc_auto_cal_config6);
reg::Write(EMC0 + EMC_AUTO_CAL_CONFIG7, dst_timing->emc_auto_cal_config7);
reg::Write(EMC0 + EMC_AUTO_CAL_CONFIG8, dst_timing->emc_auto_cal_config8);
}
reg::Write(EMC + EMC_DBG, emc_dbg_o);
reg::Write(EMC + EMC_TR_DVFS, dst_timing->burst_regs.emc_tr_dvfs & ~(1 << 0));
}
/* Step 29:
* Power fix WAR.
*/
reg::Write(EMC + EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_o));
reg::Write(EMC + EMC_PMACRO_AUTOCAL_CFG_COMMON, dst_timing->burst_regs.emc_pmacro_autocal_cfg_common);
reg::Write(EMC + EMC_DBG, emc_dbg_o);
reg::Write(EMC + EMC_PMACRO_CFG_PM_GLOBAL_0, 0xFF0000);
reg::Write(EMC + EMC_PMACRO_TRAINING_CTRL_0, 0x8);
reg::Write(EMC + EMC_PMACRO_TRAINING_CTRL_1, 0x8);
reg::Write(EMC + EMC_PMACRO_CFG_PM_GLOBAL_0, 0);
reg::Write(EMC + EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_o));
/* Fixup xm2comppadctrl */
if ((dst_misc_cfg_1 & 0x20) == 0) {
uint32_t xm2comppadctrl = reg::Read(EMC + EMC_XM2COMPPADCTRL);
reg::Write(EMC + EMC_XM2COMPPADCTRL, xm2comppadctrl & 0x1CFFFFFF);
util::WaitMicroSeconds(1);
reg::Write(EMC + EMC_XM2COMPPADCTRL, xm2comppadctrl & 0x0CFFFFFF);
util::WaitMicroSeconds(1);
reg::Write(EMC + EMC_XM2COMPPADCTRL, xm2comppadctrl & 0x04FFFFFF);
util::WaitMicroSeconds(1);
}
reg::SetBits(EMC + EMC_PMACRO_DLL_CFG_1, 0x2000);
reg::Read(EMC + EMC_PMACRO_DLL_CFG_1);
util::WaitMicroSeconds(2);
/* Select EMC DLL clock source. */
{
reg::SetBits(CLKRST + CLK_RST_CONTROLLER_CLK_SOURCE_EMC_DLL, 0xC00);
reg::Read(CLKRST + CLK_RST_CONTROLLER_CLK_SOURCE_EMC_DLL);
}
reg::Write(EMC + EMC_DBG, SetShadowBypass(ASSEMBLY, emc_dbg_o));
reg::Read(EMC + EMC_DBG);
/* Step 30:
* Re-enable autocal.
*/
if (!training_enabled) {
if (dst_timing->burst_regs.emc_cfg_dig_dll & 1) {
uint32_t dig_dll = (reg::Read(EMC + EMC_CFG_DIG_DLL) & 0xFFFFFFE4) | 9;
if ((dst_misc_cfg_2 & 1) == 0) {
dig_dll = (dig_dll & 0xFFFFFF3F) | 0x80;
}
reg::Write(EMC + EMC_CFG_DIG_DLL, dig_dll);
/* Request a timing update. */
TimingUpdate(dst_emc_fbio_cfg7);
}
}
if (!(training_enabled && dram_type == DRAM_TYPE_LPDDR4)) {
reg::Write(EMC + EMC_AUTO_CAL_CONFIG, training_enabled ? src_timing->emc_auto_cal_config : dst_timing->emc_auto_cal_config);
}
if (training_enabled) {
g_fsp_for_next_freq = !g_fsp_for_next_freq;
}
if (src_timing->periodic_training) {
/* Reset all clock tree values. */
src_timing->current_dram_clktree_c0d0u0 = src_timing->trained_dram_clktree_c0d0u0;
src_timing->current_dram_clktree_c0d0u1 = src_timing->trained_dram_clktree_c0d0u1;
src_timing->current_dram_clktree_c0d1u0 = src_timing->trained_dram_clktree_c0d1u0;
src_timing->current_dram_clktree_c0d1u1 = src_timing->trained_dram_clktree_c0d1u1;
src_timing->current_dram_clktree_c1d0u0 = src_timing->trained_dram_clktree_c1d0u0;
src_timing->current_dram_clktree_c1d0u1 = src_timing->trained_dram_clktree_c1d0u1;
src_timing->current_dram_clktree_c1d1u0 = src_timing->trained_dram_clktree_c1d1u0;
src_timing->current_dram_clktree_c1d1u1 = src_timing->trained_dram_clktree_c1d1u1;
}
/* Disable pll. */
PllDisable(dst_clk_src);
}
void CleanupActiveShadowCopy(EmcDvfsTimingTable *src_timing, EmcDvfsTimingTable *dst_timing) {
/* Change CFG_SWAP to ASSEMBLY_ONLY */
uint32_t emc_dbg = reg::Read(EMC + EMC_DBG);
emc_dbg = ((emc_dbg & 0xF3FFFFFF) | 0x8000000);
reg::Write(EMC + EMC_DBG, emc_dbg);
/* Wait for update. */
TimingUpdate(src_timing->emc_fbio_cfg7);
/* Change CFG_SWAP to ACTIVE_ONLY */
emc_dbg = reg::Read(EMC + EMC_DBG);
emc_dbg &= 0xF3FFFFFF;
reg::Write(EMC + EMC_DBG, emc_dbg);
/* Set PMACRO_DLL_CFG_1, preserving MDDLL_SEL_CLK_SRC */
reg::Write(EMC + EMC_PMACRO_DLL_CFG_1, (reg::Read(EMC + EMC_PMACRO_DLL_CFG_1) & 0x00002000) | (src_timing->burst_regs.emc_pmacro_dll_cfg_1 & 0xFFFFDFFF));
/* Update CFG_DIG_DLL */
uint32_t emc_cfg_dig_dll = reg::Read(EMC + EMC_CFG_DIG_DLL);
emc_cfg_dig_dll = (dst_timing->misc_cfg_2 & 1) ? (emc_cfg_dig_dll & 0xFFFFFFFE) : ((emc_cfg_dig_dll & 0xFFFFFF3E) | 0x80);
reg::Write(EMC + EMC_CFG_DIG_DLL, emc_cfg_dig_dll);
/* Wait for update. */
TimingUpdate(src_timing->emc_fbio_cfg7);
/* Disable or enable DLL */
emc_cfg_dig_dll = reg::Read(EMC + EMC_CFG_DIG_DLL);
if (src_timing->burst_regs.emc_cfg_dig_dll & 1) {
emc_cfg_dig_dll |= 0x01;
} else {
emc_cfg_dig_dll &= 0xFFFFFFFE;
}
if ((dst_timing->misc_cfg_2 & 1) == 0) {
emc_cfg_dig_dll = ((emc_cfg_dig_dll & 0xFFFFFF3F) | 0x80);
}
reg::Write(EMC + EMC_CFG_DIG_DLL, emc_cfg_dig_dll);
/* Wait for update. */
TimingUpdate(src_timing->emc_fbio_cfg7);
/* Wait for DLL_LOCK to be set */
WaitForUpdate(EMC_DIG_DLL_STATUS, (1 << 2), true, src_timing->emc_fbio_cfg7);
/* Wait for update. */
TimingUpdate(src_timing->emc_fbio_cfg7);
/* Set AUTO_CAL_CONFIG. */
uint32_t emc_auto_cal_config = reg::Read(EMC + EMC_AUTO_CAL_CONFIG);
emc_auto_cal_config = (dst_timing->misc_cfg_2 & 4) ? (emc_auto_cal_config & 0xDFFFF9FF) : ((emc_auto_cal_config & 0x5FFFF9FF) | 0x80000000);
reg::Write(EMC + EMC_AUTO_CAL_CONFIG, emc_auto_cal_config | 0x20000000);
}
void TrainFreq(EmcDvfsTimingTable *src_timing, EmcDvfsTimingTable *dst_timing, u32 next_clk_src) {
/* Get dram dev num. */
const u32 dram_dev_num = (reg::Read(MC + MC_EMEM_ADR_CFG) & 1) + 1;
/* Write RAM patterns, if first training. */
if (!g_did_first_training) {
const auto * const pattern = GetEmcRamTrainingPattern();
for (u32 i = 0; i < 0x100; ++i) {
reg::Write(EMC + EMC_TRAINING_PATRAM_DQ, pattern[dst_timing->training_pattern].dq[i]);
reg::Write(EMC + EMC_TRAINING_PATRAM_DMI, pattern[dst_timing->training_pattern].dmi[i]);
reg::Write(EMC + EMC_TRAINING_PATRAM_CTRL, 0x80000000 | i);
}
g_did_first_training = true;
}
reg::Write(EMC + EMC_TRAINING_QUSE_CTRL_MISC, (dst_timing->burst_regs.emc_training_read_ctrl_misc & 0xFFFF0000) | 0x00001000);
/* Do training, if we need to. */
const u32 needed_training = dst_timing->needs_training;
if (needed_training && !dst_timing->trained) {
/* Determine what training to do. */
u32 training_params[4];
u32 num_params = 0;
if (needed_training & (CA_TRAINING | CA_VREF_TRAINING)) {
training_params[num_params++] = (needed_training & (CA_TRAINING | CA_VREF_TRAINING | BIT_LEVEL_TRAINING));
if (dram_dev_num == TWO_RANK) {
training_params[num_params++] = (needed_training & (CA_TRAINING | CA_VREF_TRAINING | TRAIN_SECOND_RANK | BIT_LEVEL_TRAINING));
}
}
if (needed_training & (WRITE_TRAINING | WRITE_VREF_TRAINING | READ_TRAINING | READ_VREF_TRAINING)) {
training_params[num_params++] = (needed_training & (WRITE_TRAINING | WRITE_VREF_TRAINING | READ_TRAINING | READ_VREF_TRAINING | BIT_LEVEL_TRAINING));
}
/* Apply all training. */
for (u32 i = 0; i < num_params; ++i) {
FreqChange(src_timing, dst_timing, training_params[i], next_clk_src);
CleanupActiveShadowCopy(src_timing, dst_timing);
}
/* Set tables as trained. */
dst_timing->trained = 1;
}
}
void Dvfs(EmcDvfsTimingTable *dst_timing, EmcDvfsTimingTable *src_timing, bool train) {
/* Get the clock sources/rates. */
u32 clk_src_emc_from = src_timing->clk_src_emc;
u32 clk_src_emc_to = dst_timing->clk_src_emc;
u32 rate_from = src_timing->rate_khz;
u32 rate_to = dst_timing->rate_khz;
/* Get channel enables. */
const bool ch0_enable = reg::GetField(dst_timing->emc_fbio_cfg7, EMC_REG_BITS_MASK(FBIO_CFG7_CH0_ENABLE)) == EMC_FBIO_CFG7_CH0_ENABLE_ENABLE;
const bool ch1_enable = reg::GetField(dst_timing->emc_fbio_cfg7, EMC_REG_BITS_MASK(FBIO_CFG7_CH1_ENABLE)) == EMC_FBIO_CFG7_CH1_ENABLE_ENABLE;
/* Reprogram pll. */
const u32 prev_2x_clk_src = reg::GetField(clk_src_emc_from, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_SRC));
const u32 next_2x_clk_src = reg::GetField(clk_src_emc_to, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_SRC));
if (next_2x_clk_src != PLLP_OUT0 && next_2x_clk_src != PLLP_UD) {
if (ch0_enable || ch1_enable) {
if (PllReprogram(rate_to, clk_src_emc_to, rate_from, clk_src_emc_from)) {
if (prev_2x_clk_src == PLLMB_UD || prev_2x_clk_src == PLLMB_OUT0) {
g_next_pll = 0;
} else if (prev_2x_clk_src == PLLM_UD || prev_2x_clk_src == PLLM_OUT0) {
g_next_pll = !g_next_pll;
}
clk_src_emc_to = ProgramPllm(rate_to, clk_src_emc_to, clk_src_emc_to, g_next_pll, dst_timing);
} else {
if (next_2x_clk_src == PLLM_UD || next_2x_clk_src == PLLMB_UD) {
if (g_next_pll) {
reg::SetField(clk_src_emc_to, CLK_RST_REG_BITS_VALUE(CLK_SOURCE_EMC_EMC_2X_CLK_SRC, PLLMB_UD));
}
} else if (next_2x_clk_src == PLLM_OUT0 || next_2x_clk_src == PLLMB_OUT0) {
if (g_next_pll) {
reg::SetField(clk_src_emc_to, CLK_RST_REG_BITS_VALUE(CLK_SOURCE_EMC_EMC_2X_CLK_SRC, PLLMB_OUT0));
}
}
}
}
}
if (train) {
TrainFreq(src_timing, dst_timing, clk_src_emc_to);
if (ch0_enable || ch1_enable) {
if (PllReprogram(dst_timing->rate_khz, dst_timing->clk_src_emc, src_timing->rate_khz, src_timing->clk_src_emc)) {
g_next_pll = !g_next_pll;
}
}
} else {
FreqChange(src_timing, dst_timing, 0, clk_src_emc_to);
}
}
}
void DoMemoryTrainingMariko(bool *out_did_training, int index, void *mtc_tables_buffer) {
/* Get timing tables. */
auto *timing = GetEmcDvfsTimingTables(index, mtc_tables_buffer);
auto *src_timing = timing + 0;
auto *dst_timing = timing + 1;
/* Check timing tables. */
if (src_timing->rate_khz != 204000 || dst_timing->rate_khz != 1600000) {
ShowFatalError("EmcDvfsTimingTables seem corrupted %" PRIu32 " %" PRIu32 "?\n", src_timing->rate_khz, dst_timing->rate_khz);
}
/* Check that we should do training. */
if (src_timing->clk_src_emc != reg::Read(CLKRST + CLK_RST_CONTROLLER_CLK_SOURCE_EMC)) {
/* Our clock source isn't what's expected, so presumably training has already been done? */
/* Either way, the safe bet is to skip it. */
*out_did_training = false;
return;
}
/* Train 1600MHz. */
Dvfs(dst_timing, src_timing, true);
/* Switch to 1600MHz. */
Dvfs(dst_timing, src_timing, false);
/* Set ourselves as having done training */
*out_did_training = true;
}
void RestoreMemoryClockRateMariko(void *mtc_tables_buffer) {
/* Get timing tables. */
auto *timing_tables = reinterpret_cast<EmcDvfsTimingTable *>(mtc_tables_buffer);
auto *src_timing = timing_tables + 0;
auto *dst_timing = timing_tables + 1;
/* Check timing tables. */
if (src_timing->rate_khz != 204000 || dst_timing->rate_khz != 1600000) {
ShowFatalError("EmcDvfsTimingTables seem corrupted %" PRIu32 " %" PRIu32 "?\n", src_timing->rate_khz, dst_timing->rate_khz);
}
/* Switch to 204MHz */
Dvfs(src_timing, dst_timing, false);
}
}