/* * Copyright (c) Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "../fusee_fatal.hpp" #include "../fusee_uncompress.hpp" #include "fusee_mtc.hpp" #include "fusee_mtc_timing_table_mariko.hpp" namespace ams::nxboot { namespace { constexpr inline const uintptr_t CLKRST = secmon::MemoryRegionPhysicalDeviceClkRst.GetAddress(); constexpr inline const uintptr_t MC = MC_BASE; constexpr inline const uintptr_t EMC = EMC_BASE; constexpr inline const uintptr_t EMC0 = EMC0_BASE; constexpr inline const uintptr_t EMC1 = EMC1_BASE; static constinit bool g_next_pll = false; static constinit bool g_did_first_training = false; static constinit bool g_fsp_for_next_freq = false; #include "fusee_mtc_tables_mariko.inc" #include "fusee_mtc_ram_training_pattern.inc" #define DECLARE_REGISTER_HANDLER(BASE, REG, NAME) BASE + REG, constexpr inline const u32 BurstRegisters[] = { FOREACH_BURST_REG(DECLARE_REGISTER_HANDLER) }; constexpr inline const u32 TrimRegisters[] = { FOREACH_TRIM_REG(DECLARE_REGISTER_HANDLER) }; constexpr inline const u32 BurstMcRegisters[] = { FOREACH_BURST_MC_REG(DECLARE_REGISTER_HANDLER) }; constexpr inline const u32 LaScaleRegisters[] = { FOREACH_LA_SCALE_REG(DECLARE_REGISTER_HANDLER) }; constexpr inline const u32 PerChannelTrimRegisters[] = { FOREACH_PER_CHANNEL_TRIM_REG(DECLARE_REGISTER_HANDLER) }; constexpr inline const u32 PerChannelBurstRegisters[] = { FOREACH_PER_CHANNEL_BURST_REG(DECLARE_REGISTER_HANDLER) }; constexpr inline const u32 PerChannelVrefRegisters[] = { FOREACH_PER_CHANNEL_VREF_REG(DECLARE_REGISTER_HANDLER) }; constexpr inline const u32 PerChannelTrainingModRegisters[] = { FOREACH_PER_CHANNEL_TRAINING_MOD_REG(DECLARE_REGISTER_HANDLER) }; using EmcDvfsTimingTable = mariko::EmcDvfsTimingTable; EmcDvfsTimingTable *GetEmcDvfsTimingTables(int index, void *mtc_tables_buffer) { /* Get the compressed table. */ const u8 *cmp_table; size_t cmp_table_size; switch (index) { #define HANDLE_CASE(N, TABLE) \ case N: \ cmp_table = TABLE; \ cmp_table_size = sizeof(TABLE); \ break; HANDLE_CASE(0x00, T210b01SdevEmcDvfsTableS4gb01) HANDLE_CASE(0x05, T210b01SdevEmcDvfsTableS4gb03) HANDLE_CASE(0x06, T210b01SdevEmcDvfsTableS8gb03) HANDLE_CASE(0x07, T210b01SdevEmcDvfsTableH4gb03) HANDLE_CASE(0x08, T210b01SdevEmcDvfsTableM4gb03) HANDLE_CASE(0x09, T210b01SdevEmcDvfsTableS4gbY01) HANDLE_CASE(0x0A, T210b01SdevEmcDvfsTableS1y4gbY01) HANDLE_CASE(0x0B, T210b01SdevEmcDvfsTableS1y8gbY01) HANDLE_CASE(0x0C, T210b01SdevEmcDvfsTableS1y4gbX03) HANDLE_CASE(0x0D, T210b01SdevEmcDvfsTableS1y8gbX03) HANDLE_CASE(0x0E, T210b01SdevEmcDvfsTableS1y4gb01) HANDLE_CASE(0x0F, T210b01SdevEmcDvfsTableM1y4gb01) HANDLE_CASE(0x10, T210b01SdevEmcDvfsTableH1y4gb01) HANDLE_CASE(0x11, T210b01SdevEmcDvfsTableS1y8gb04) HANDLE_CASE(0x12, T210b01SdevEmcDvfsTableS1z4gb01) default: ShowFatalError("Unknown EmcDvfsTimingTableIndex: %d\n", index); } /* Uncompress the table. */ EmcDvfsTimingTable *out_tables = reinterpret_cast(mtc_tables_buffer); Uncompress(out_tables, 2 * sizeof(EmcDvfsTimingTable), cmp_table, cmp_table_size); return out_tables; } bool IsSamePll(u32 next_2x, u32 prev_2x) { if (next_2x == prev_2x) { return true; } else if ((next_2x == PLLM_OUT0 || next_2x == PLLM_UD) && (prev_2x == PLLM_OUT0 || prev_2x == PLLM_UD)) { return true; } else { return false; } } bool PllReprogram(u32 next_rate_khz, u32 next_clk_src, u32 prev_rate_khz, u32 prev_clk_src) { /* Get current divp value. */ u32 pll_p; switch (reg::GetValue(CLKRST + CLK_RST_CONTROLLER_CLK_SOURCE_EMC, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_SRC))) { case PLLM_UD: case PLLM_OUT0: pll_p = reg::GetValue(CLKRST + CLK_RST_CONTROLLER_PLLM_BASE, CLK_RST_REG_BITS_MASK(PLLM_BASE_PLLM_DIVP_B01)); break; case PLLMB_UD: case PLLMB_OUT0: pll_p = reg::GetValue(CLKRST + CLK_RST_CONTROLLER_PLLMB_BASE, CLK_RST_REG_BITS_MASK(PLLMB_BASE_PLLMB_DIVP_B01)); break; default: pll_p = 0; break; } /* Get clk src/divisor. */ const u32 next_2x = reg::GetField(next_clk_src, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_SRC)); const u32 prev_2x = reg::GetField(prev_clk_src, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_SRC)); u32 next_div = reg::GetField(next_clk_src, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR)); u32 prev_div = reg::GetField(prev_clk_src, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR)); /* Update divisor, if necessary. */ if (next_2x == PLLM_UD || next_2x == PLLMB_UD) { next_div = 0; } if (prev_2x == PLLM_UD || prev_2x == PLLMB_UD) { prev_div = 0; } /* If the pll is different, reprogramming is necessary. */ if (!IsSamePll(next_2x, prev_2x)) { return true; } /* Return whether the ratios are different. */ const float next_freq = next_rate_khz * (1 + (next_div >> 1) + (0.5 * (next_div & 1))) * (pll_p + 1); const float prev_freq = prev_rate_khz * (1 + (prev_div >> 1) + (0.5 * (prev_div & 1))) * (pll_p + 1); const float ratio = prev_freq / next_freq; return ratio > 1.01 || ratio < 0.99; } u32 ProgramPllm(u32 next_rate_khz, u32 next_clk_src, u32 ret_clk_src, bool is_pllmb, EmcDvfsTimingTable *timing) { u32 ret = ret_clk_src; const uint32_t base = ((timing->pllmb_divm & 0xFF) | ((timing->pllmb_divn & 0xFF) << 8) | ((timing->pllmb_divp & 1) << 20)); if (is_pllmb) { reg::Write(CLKRST + CLK_RST_CONTROLLER_PLLMB_BASE, base); reg::Read(CLKRST + CLK_RST_CONTROLLER_PLLMB_BASE); reg::SetBits(CLKRST + CLK_RST_CONTROLLER_PLLMB_MISC1, 0x10000000); if (timing->pll_en_ssc & 1) { reg::Write(CLKRST + CLK_RST_CONTROLLER_PLLMB_SS_CFG, timing->pllmb_ss_cfg); reg::Write(CLKRST + CLK_RST_CONTROLLER_PLLMB_SS_CTRL1, timing->pllmb_ss_ctrl1); reg::Write(CLKRST + CLK_RST_CONTROLLER_PLLMB_SS_CTRL2, timing->pllmb_ss_ctrl2); } else { reg::Write(CLKRST + CLK_RST_CONTROLLER_PLLMB_SS_CFG, timing->pllmb_ss_cfg & 0xBFFFFFFF); reg::Write(CLKRST + CLK_RST_CONTROLLER_PLLMB_SS_CTRL2, timing->pllmb_ss_ctrl2 & 0x0000FFFF); } reg::SetBits(CLKRST + CLK_RST_CONTROLLER_PLLMB_BASE, 0x40000000); switch (reg::GetField(ret, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_SRC))) { case PLLM_OUT0: reg::SetField(ret, CLK_RST_REG_BITS_VALUE(CLK_SOURCE_EMC_EMC_2X_CLK_SRC, PLLMB_OUT0)); break; case PLLM_UD: reg::SetField(ret, CLK_RST_REG_BITS_VALUE(CLK_SOURCE_EMC_EMC_2X_CLK_SRC, PLLMB_UD)); break; } while ((reg::Read(CLKRST + CLK_RST_CONTROLLER_PLLMB_BASE) & 0x8000000) == 0) { /* ... */ } return ret; } else { reg::Write(CLKRST + CLK_RST_CONTROLLER_PLLM_BASE, base); reg::Read(CLKRST + CLK_RST_CONTROLLER_PLLM_BASE); reg::SetBits(CLKRST + CLK_RST_CONTROLLER_PLLM_MISC2, 0x10); if (timing->pll_en_ssc & 1) { reg::Write(CLKRST + CLK_RST_CONTROLLER_PLLM_SS_CFG, timing->pllm_ss_cfg); reg::Write(CLKRST + CLK_RST_CONTROLLER_PLLM_SS_CTRL1, timing->pllm_ss_ctrl1); reg::Write(CLKRST + CLK_RST_CONTROLLER_PLLM_SS_CTRL2, timing->pllm_ss_ctrl2); } else { reg::Write(CLKRST + CLK_RST_CONTROLLER_PLLM_SS_CFG, timing->pllm_ss_cfg & 0xBFFFFFFF); reg::Write(CLKRST + CLK_RST_CONTROLLER_PLLM_SS_CTRL2, timing->pllm_ss_ctrl2 & 0x0000FFFF); } reg::SetBits(CLKRST + CLK_RST_CONTROLLER_PLLM_BASE, 0x40000000); switch (reg::GetField(ret, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_SRC))) { case PLLM_OUT0: reg::SetField(ret, CLK_RST_REG_BITS_VALUE(CLK_SOURCE_EMC_EMC_2X_CLK_SRC, PLLM_OUT0)); break; case PLLM_UD: reg::SetField(ret, CLK_RST_REG_BITS_VALUE(CLK_SOURCE_EMC_EMC_2X_CLK_SRC, PLLM_UD)); break; } while ((reg::Read(CLKRST + CLK_RST_CONTROLLER_PLLM_BASE) & 0x8000000) == 0) { /* ... */ } return ret; } } u32 GetDllState(EmcDvfsTimingTable *timing) { return (!(timing->emc_emrs & 0x1)) ? DLL_ON : DLL_OFF; } int WaitForUpdate(u32 reg_offset, u32 mask, bool updated, u32 fbio_cfg7) { constexpr int StatusUpdateTimeout = 1000; int result = 0; if (reg::GetField(fbio_cfg7, EMC_REG_BITS_MASK(FBIO_CFG7_CH0_ENABLE)) == EMC_FBIO_CFG7_CH0_ENABLE_ENABLE) { bool success = false; for (int i = 0; i < StatusUpdateTimeout; ++i) { if (((reg::Read(EMC0 + reg_offset) & mask) != 0) == updated) { success = true; break; } util::WaitMicroSeconds(1); } result |= success ? 0 : 4; } if (reg::GetField(fbio_cfg7, EMC_REG_BITS_MASK(FBIO_CFG7_CH1_ENABLE)) == EMC_FBIO_CFG7_CH1_ENABLE_ENABLE) { bool success = false; for (int i = 0; i < StatusUpdateTimeout; ++i) { if (((reg::Read(EMC1 + reg_offset) & mask) != 0) == updated) { success = true; break; } util::WaitMicroSeconds(1); } result |= success ? 0 : 4; } return result; } void TimingUpdate(u32 fbio_cfg7) { /* Trigger the timing update event. */ reg::Write(EMC + EMC_TIMING_CONTROL, 1); /* Wait for the update to finish. */ WaitForUpdate(EMC_EMC_STATUS, 0x800000, false, fbio_cfg7); } void CcfifoWrite(u32 addr, u32 data, u32 wait) { reg::Write(EMC + EMC_CCFIFO_DATA, data); reg::Write(EMC + EMC_CCFIFO_ADDR, (addr & 0xFFFF) | ((wait & 0x7FFF) << 16) | 0x80000000); } u32 ActualOscClocks(u32 in) { if (in < 0x40) { return in * 0x10; } else if (in < 0x80) { return 0x800; } else if (in < 0xC0) { return 0x1000; } else { return 0x2000; } } u32 DivideUpFloat(u32 a, u32 b) { const float res = a / b; const u32 floor = static_cast(res); return floor + ((static_cast(floor) + 0.01 < res) ? 1 : 0); } void StartPeriodicCompensation() { reg::Write(EMC + EMC_MPC, 0x4B); reg::Read(EMC + EMC_MPC); } u32 SetShadowBypass(u32 val, u32 emc_dbg) { reg::SetField(emc_dbg, EMC_REG_BITS_VALUE(DBG_WRITE_MUX, val)); return emc_dbg; } constinit uint32_t g_periodic_timmer_compensation_intermediates[9 * 0x10] = {}; uint32_t ApplyPeriodicCompensationTrimmer(EmcDvfsTimingTable *timing, uint32_t trim_reg) { /* Initialize variables. */ uint32_t rate_mhz = timing->rate_khz / 1000; uint32_t adj[0x10] = { 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 }; int tree_delta[4] = {0}; uint32_t tree_delta_taps[4] = {0}; /* Generate the intermediate array. */ #define SET_TRIM_INTERMEDIATE(_arr_, _emc_, _rank_, _byte_) \ ({ \ const uint32_t shft = timing->trim_perch_regs.emc## _emc_ ##_data_brlshft_## _rank_; \ const uint32_t base = ((shft >> (3 * _byte_)) & 7) << 6; \ const uint32_t val0 = timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank ## _rank_ ## _byte ## _byte_ ## _0; \ const uint32_t val1 = timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank ## _rank_ ## _byte ## _byte_ ## _1; \ const uint32_t val2 = timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank ## _rank_ ## _byte ## _byte_ ## _2; \ _arr_[9 * (8 * _rank_ + _byte_) + 0] = base + ((val0 >> 0) & 0xFF); \ _arr_[9 * (8 * _rank_ + _byte_) + 1] = base + ((val0 >> 8) & 0xFF); \ _arr_[9 * (8 * _rank_ + _byte_) + 2] = base + ((val0 >> 16) & 0xFF); \ _arr_[9 * (8 * _rank_ + _byte_) + 3] = base + ((val0 >> 24) & 0xFF); \ _arr_[9 * (8 * _rank_ + _byte_) + 4] = base + ((val1 >> 0) & 0xFF); \ _arr_[9 * (8 * _rank_ + _byte_) + 5] = base + ((val1 >> 8) & 0xFF); \ _arr_[9 * (8 * _rank_ + _byte_) + 6] = base + ((val1 >> 16) & 0xFF); \ _arr_[9 * (8 * _rank_ + _byte_) + 7] = base + ((val1 >> 24) & 0xFF); \ _arr_[9 * (8 * _rank_ + _byte_) + 8] = base + ((val2 >> 0) & 0xFF); \ }) { SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 0, 0, 0); SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 0, 0, 1); SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 0, 0, 2); SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 0, 0, 3); SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 1, 0, 4); SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 1, 0, 5); SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 1, 0, 6); SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 1, 0, 7); SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 0, 1, 0); SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 0, 1, 1); SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 0, 1, 2); SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 0, 1, 3); SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 1, 1, 4); SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 1, 1, 5); SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 1, 1, 6); SET_TRIM_INTERMEDIATE(g_periodic_timmer_compensation_intermediates, 1, 1, 7); } #undef SET_TRIM_INTERMEDIATE switch (trim_reg) { case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_2: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_2: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_2: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_2: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_2: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_2: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_2: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_2: case EMC0_BASE + EMC_DATA_BRLSHFT_0: case EMC1_BASE + EMC_DATA_BRLSHFT_0: { tree_delta[0] = 128 * (timing->current_dram_clktree_c0d0u0 - timing->trained_dram_clktree_c0d0u0); tree_delta[1] = 128 * (timing->current_dram_clktree_c0d0u1 - timing->trained_dram_clktree_c0d0u1); tree_delta[2] = 128 * (timing->current_dram_clktree_c1d0u0 - timing->trained_dram_clktree_c1d0u0); tree_delta[3] = 128 * (timing->current_dram_clktree_c1d0u1 - timing->trained_dram_clktree_c1d0u1); tree_delta_taps[0] = (tree_delta[0] * (int)rate_mhz) / 1000000; tree_delta_taps[1] = (tree_delta[1] * (int)rate_mhz) / 1000000; tree_delta_taps[2] = (tree_delta[2] * (int)rate_mhz) / 1000000; tree_delta_taps[3] = (tree_delta[3] * (int)rate_mhz) / 1000000; for (int i = 0; i < 4; ++i) { const uint32_t sum = (tree_delta_taps[i] <= timing->tree_margin) ? 0 : tree_delta_taps[i]; for (int j = 0; j < 18; ++j) { const uint32_t v = (g_periodic_timmer_compensation_intermediates[18 * i + j] += sum); if (v < (adj[2 * i + (j < 9)] << 6)) { adj[2 * i + (j < 9)] = v >> 6; } } for (int j = 0; j < 18; ++j) { g_periodic_timmer_compensation_intermediates[18 * i + j] -= (adj[2 * i + (j < 9)] << 6); } } } break; case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_2: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_2: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_2: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_2: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_2: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_2: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_2: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_2: case EMC0_BASE + EMC_DATA_BRLSHFT_1: case EMC1_BASE + EMC_DATA_BRLSHFT_1: { tree_delta[0] = 128 * (timing->current_dram_clktree_c0d1u0 - timing->trained_dram_clktree_c0d1u0); tree_delta[1] = 128 * (timing->current_dram_clktree_c0d1u1 - timing->trained_dram_clktree_c0d1u1); tree_delta[2] = 128 * (timing->current_dram_clktree_c1d1u0 - timing->trained_dram_clktree_c1d1u0); tree_delta[3] = 128 * (timing->current_dram_clktree_c1d1u1 - timing->trained_dram_clktree_c1d1u1); tree_delta_taps[0] = (tree_delta[0] * (int)rate_mhz) / 1000000; tree_delta_taps[1] = (tree_delta[1] * (int)rate_mhz) / 1000000; tree_delta_taps[2] = (tree_delta[2] * (int)rate_mhz) / 1000000; tree_delta_taps[3] = (tree_delta[3] * (int)rate_mhz) / 1000000; for (int i = 0; i < 4; ++i) { const uint32_t sum = (tree_delta_taps[i] <= timing->tree_margin) ? 0 : tree_delta_taps[i]; for (int j = 0; j < 18; ++j) { const uint32_t v = (g_periodic_timmer_compensation_intermediates[72 + 18 * i + j] += sum); if (v < (adj[8 + 2 * i + (j < 9)] << 6)) { adj[8 + 2 * i + (j < 9)] = v >> 6; } } for (int j = 0; j < 18; ++j) { g_periodic_timmer_compensation_intermediates[72 + 18 * i + j] -= (adj[8 + 2 * i + (j < 9)] << 6); } } } break; } uint32_t result = 0; switch (trim_reg) { case EMC0_BASE + EMC_DATA_BRLSHFT_0: result = ((adj[ 0] & 7) << 0) | ((adj[ 1] & 7) << 3) | ((adj[ 2] & 7) << 6) | ((adj[ 3] & 7) << 9); break; case EMC1_BASE + EMC_DATA_BRLSHFT_0: result = ((adj[ 4] & 7) << 12) | ((adj[ 5] & 7) << 15) | ((adj[ 6] & 7) << 18) | ((adj[ 7] & 7) << 21); break; case EMC0_BASE + EMC_DATA_BRLSHFT_1: result = ((adj[ 8] & 7) << 0) | ((adj[ 9] & 7) << 3) | ((adj[10] & 7) << 6) | ((adj[11] & 7) << 9); break; case EMC1_BASE + EMC_DATA_BRLSHFT_1: result = ((adj[12] & 7) << 12) | ((adj[13] & 7) << 15) | ((adj[14] & 7) << 18) | ((adj[15] & 7) << 21); break; #define ADD_TRIM_CASE(_ARR_, _RANK_, _BYTE_) \ case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK ## _RANK_ ## _BYTE ## _BYTE_ ##_0: \ result = ((_ARR_[9 * (8 * _RANK_ + _BYTE_) + 0] & 0xFF) << 0) | ((_ARR_[9 * (8 * _RANK_ + _BYTE_) + 1] & 0xFF) << 8) | ((_ARR_[9 * (8 * _RANK_ + _BYTE_) + 2] & 0xFF) << 16) | ((_ARR_[9 * (8 * _RANK_ + _BYTE_) + 3] & 0xFF) << 24); \ break; \ case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK ## _RANK_ ## _BYTE ## _BYTE_ ##_1: \ result = ((_ARR_[9 * (8 * _RANK_ + _BYTE_) + 4] & 0xFF) << 0) | ((_ARR_[9 * (8 * _RANK_ + _BYTE_) + 5] & 0xFF) << 8) | ((_ARR_[9 * (8 * _RANK_ + _BYTE_) + 6] & 0xFF) << 16) | ((_ARR_[9 * (8 * _RANK_ + _BYTE_) + 7] & 0xFF) << 24); \ break; \ case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK ## _RANK_ ## _BYTE ## _BYTE_ ##_2: \ result = ((_ARR_[9 * (8 * _RANK_ + _BYTE_) + 8] & 0xFF) << 0); \ break; ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 0, 0); ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 0, 1); ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 0, 2); ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 0, 3); ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 0, 4); ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 0, 5); ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 0, 6); ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 0, 7); ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 1, 0); ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 1, 1); ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 1, 2); ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 1, 3); ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 1, 4); ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 1, 5); ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 1, 6); ADD_TRIM_CASE(g_periodic_timmer_compensation_intermediates, 1, 7); #undef ADD_TRIM_CASE } return result; } u32 UpdateClockTreeDelay(EmcDvfsTimingTable *src_timing, EmcDvfsTimingTable *dst_timing, u32 dram_dev_num, u32 mode, int type) { uint32_t mrr_req = 0, mrr_data = 0; uint32_t temp0_0 = 0, temp0_1 = 0, temp1_0 = 0, temp1_1 = 0; int tdel = 0, tmdel = 0, adel = 0; uint32_t current_timing_rate_mhz = src_timing->rate_khz / 1000; uint32_t next_timing_rate_mhz = dst_timing->rate_khz / 1000; uint32_t fbio_cfg7 = dst_timing->emc_fbio_cfg7; const bool ch0_enable = reg::GetField(fbio_cfg7, EMC_REG_BITS_MASK(FBIO_CFG7_CH0_ENABLE)) == EMC_FBIO_CFG7_CH0_ENABLE_ENABLE; const bool ch1_enable = reg::GetField(fbio_cfg7, EMC_REG_BITS_MASK(FBIO_CFG7_CH1_ENABLE)) == EMC_FBIO_CFG7_CH1_ENABLE_ENABLE; bool dvfs_pt1 = (type == DVFS_PT1); bool training_pt1 = (type == TRAINING_PT1); bool dvfs_update = (type == DVFS_UPDATE); bool training_update = (type == TRAINING_UPDATE); bool periodic_training_update = (type == PERIODIC_TRAINING_UPDATE); /* Dev0 MSB. */ if (dvfs_pt1 || training_pt1 || periodic_training_update) { mrr_req = ((2 << 30) | (19 << 16)); reg::Write(EMC + EMC_MRR, mrr_req); WaitForUpdate(EMC_EMC_STATUS, (1 << 20), true, fbio_cfg7); if (ch0_enable) { mrr_data = (reg::Read(EMC0 + EMC_MRR) & 0xFFFF); temp0_0 = ((mrr_data & 0xff) << 8); temp0_1 = (mrr_data & 0xff00); } else { temp0_0 = temp0_1 = 0; } if (ch1_enable) { mrr_data = (reg::Read(EMC1 + EMC_MRR) & 0xFFFF); temp1_0 = ((mrr_data & 0xff) << 8); temp1_1 = (mrr_data & 0xff00); } else { temp1_0 = temp1_1 = 0; } /* Dev0 LSB. */ mrr_req = ((mrr_req & ~(0xFF << 16)) | (18 << 16)); reg::Write(EMC + EMC_MRR, mrr_req); WaitForUpdate(EMC_EMC_STATUS, (1 << 20), true, fbio_cfg7); if (ch0_enable) { mrr_data = (reg::Read(EMC0 + EMC_MRR) & 0xFFFF); temp0_0 |= (mrr_data & 0xff); temp0_1 |= (mrr_data & 0xff00) >> 8; } if (ch1_enable) { mrr_data = (reg::Read(EMC1 + EMC_MRR) & 0xFFFF); temp1_0 |= (mrr_data & 0xff); temp1_1 |= (mrr_data & 0xff00) >> 8; } } #define CVAL(v) ((uint32_t)((1000 * ((1000 * ActualOscClocks(src_timing->run_clocks)) / current_timing_rate_mhz)) / (2 * v))) if (ch0_enable) { if (dvfs_pt1 || training_pt1) __INCREMENT_PTFV(c0d0u0, CVAL(temp0_0)); else if (dvfs_update) __AVERAGE_PTFV(c0d0u0); else if (training_update) __AVERAGE_WRITE_PTFV(c0d0u0); else if (periodic_training_update) __WEIGHTED_UPDATE_PTFV(c0d0u0, CVAL(temp0_0)); if (dvfs_update || training_update || periodic_training_update) { tdel = (dst_timing->current_dram_clktree_c0d0u0 - __MOVAVG_AC(dst_timing, c0d0u0)); tmdel = (tdel < 0) ? ~tdel : tdel; adel = tmdel; if (mode == 1 || ((adel * 128 * next_timing_rate_mhz) / 1000000) > dst_timing->tree_margin) dst_timing->current_dram_clktree_c0d0u0 = __MOVAVG_AC(dst_timing, c0d0u0); } if (dvfs_pt1 || training_pt1) __INCREMENT_PTFV(c0d0u1, CVAL(temp0_1)); else if (dvfs_update) __AVERAGE_PTFV(c0d0u1); else if (training_update) __AVERAGE_WRITE_PTFV(c0d0u1); else if (periodic_training_update) __WEIGHTED_UPDATE_PTFV(c0d0u1, CVAL(temp0_1)); if (dvfs_update || training_update || periodic_training_update) { tdel = (dst_timing->current_dram_clktree_c0d0u1 - __MOVAVG_AC(dst_timing, c0d0u1)); tmdel = (tdel < 0) ? -1 * tdel : tdel; if (tmdel > adel) adel = tmdel; if (mode == 1 || (tmdel * 128 * next_timing_rate_mhz / 1000000) > dst_timing->tree_margin) dst_timing->current_dram_clktree_c0d0u1 = __MOVAVG_AC(dst_timing, c0d0u1); } } else { adel = 0; } if (ch1_enable) { if (dvfs_pt1 || training_pt1) __INCREMENT_PTFV(c1d0u0, CVAL(temp1_0)); else if (dvfs_update) __AVERAGE_PTFV(c1d0u0); else if (training_update) __AVERAGE_WRITE_PTFV(c1d0u0); else if (periodic_training_update) __WEIGHTED_UPDATE_PTFV(c1d0u0, CVAL(temp1_0)); if (dvfs_update || training_update || periodic_training_update) { tdel = (dst_timing->current_dram_clktree_c1d0u0 - __MOVAVG_AC(dst_timing, c1d0u0)); tmdel = (tdel < 0) ? -1 * tdel : tdel; if (tmdel > adel) adel = tmdel; if (mode == 1 || (tmdel * 128 * next_timing_rate_mhz / 1000000) > dst_timing->tree_margin) dst_timing->current_dram_clktree_c1d0u0 = __MOVAVG_AC(dst_timing, c1d0u0); } if (dvfs_pt1 || training_pt1) __INCREMENT_PTFV(c1d0u1, CVAL(temp1_1)); else if (dvfs_update) __AVERAGE_PTFV(c1d0u1); else if (training_update) __AVERAGE_WRITE_PTFV(c1d0u1); else if (periodic_training_update) __WEIGHTED_UPDATE_PTFV(c1d0u1, CVAL(temp1_1)); if (dvfs_update || training_update || periodic_training_update) { tdel = (dst_timing->current_dram_clktree_c1d0u1 - __MOVAVG_AC(dst_timing, c1d0u1)); tmdel = (tdel < 0) ? -1 * tdel : tdel; if (tmdel > adel) adel = tmdel; if (mode == 1 || (tmdel * 128 * next_timing_rate_mhz / 1000000) > dst_timing->tree_margin) dst_timing->current_dram_clktree_c1d0u1 = __MOVAVG_AC(dst_timing, c1d0u1); } } if (dram_dev_num == TWO_RANK) { /* Dev1 MSB. */ if (dvfs_pt1 || training_pt1 || periodic_training_update) { mrr_req = ((1 << 30) | (19 << 16)); reg::Write(EMC + EMC_MRR, mrr_req); WaitForUpdate(EMC_EMC_STATUS, (1 << 20), true, fbio_cfg7); if (ch0_enable) { mrr_data = (reg::Read(EMC0 + EMC_MRR) & 0xFFFF); temp0_0 = ((mrr_data & 0xff) << 8); temp0_1 = (mrr_data & 0xff00); } if (ch1_enable) { mrr_data = (reg::Read(EMC1 + EMC_MRR) & 0xFFFF); temp1_0 = ((mrr_data & 0xff) << 8); temp1_1 = (mrr_data & 0xff00); } /* Dev1 LSB. */ mrr_req = ((mrr_req & ~(0xFF << 16)) | (18 << 16)); reg::Write(EMC + EMC_MRR, mrr_req); WaitForUpdate(EMC_EMC_STATUS, (1 << 20), true, fbio_cfg7); if (ch0_enable) { mrr_data = (reg::Read(EMC0 + EMC_MRR) & 0xFFFF); temp0_0 |= ((mrr_data & 0xff) << 8); temp0_1 |= (mrr_data & 0xff00); } if (ch1_enable) { mrr_data = (reg::Read(EMC1 + EMC_MRR) & 0xFFFF); temp1_0 |= ((mrr_data & 0xff) << 8); temp1_1 |= (mrr_data & 0xff00); } } if (ch0_enable) { if (dvfs_pt1 || training_pt1) __INCREMENT_PTFV(c0d1u0, CVAL(temp0_0)); else if (dvfs_update) __AVERAGE_PTFV(c0d1u0); else if (training_update) __AVERAGE_WRITE_PTFV(c0d1u0); else if (periodic_training_update) __WEIGHTED_UPDATE_PTFV(c0d1u0, CVAL(temp0_0)); if (dvfs_update || training_update || periodic_training_update) { tdel = (dst_timing->current_dram_clktree_c0d1u0 - __MOVAVG_AC(dst_timing, c0d1u0)); tmdel = (tdel < 0) ? -1 * tdel : tdel; if (tmdel > adel) adel = tmdel; if (mode == 1 || (tmdel * 128 * next_timing_rate_mhz / 1000000) > dst_timing->tree_margin) dst_timing->current_dram_clktree_c0d1u0 = __MOVAVG_AC(dst_timing, c0d1u0); } if (dvfs_pt1 || training_pt1) __INCREMENT_PTFV(c0d1u1, CVAL(temp0_1)); else if (dvfs_update) __AVERAGE_PTFV(c0d1u1); else if (training_update) __AVERAGE_WRITE_PTFV(c0d1u1); else if (periodic_training_update) __WEIGHTED_UPDATE_PTFV(c0d1u1, CVAL(temp0_1)); if (dvfs_update || training_update || periodic_training_update) { tdel = (dst_timing->current_dram_clktree_c0d1u1 - __MOVAVG_AC(dst_timing, c0d1u1)); tmdel = (tdel < 0) ? -1 * tdel : tdel; if (tmdel > adel) adel = tmdel; if (mode == 1 || (tmdel * 128 * next_timing_rate_mhz / 1000000) > dst_timing->tree_margin) dst_timing->current_dram_clktree_c0d1u1 = __MOVAVG_AC(dst_timing, c0d1u1); } } if (ch1_enable) { if (dvfs_pt1 || training_pt1) __INCREMENT_PTFV(c1d1u0, CVAL(temp1_0)); else if (dvfs_update) __AVERAGE_PTFV(c1d1u0); else if (training_update) __AVERAGE_WRITE_PTFV(c1d1u0); else if (periodic_training_update) __WEIGHTED_UPDATE_PTFV(c1d1u0, CVAL(temp1_0)); if (dvfs_update || training_update || periodic_training_update) { tdel = (dst_timing->current_dram_clktree_c1d1u0 - __MOVAVG_AC(dst_timing, c1d1u0)); tmdel = (tdel < 0) ? -1 * tdel : tdel; if (tmdel > adel) adel = tmdel; if (mode == 1 || (tmdel * 128 * next_timing_rate_mhz / 1000000) > dst_timing->tree_margin) dst_timing->current_dram_clktree_c1d1u0 = __MOVAVG_AC(dst_timing, c1d1u0); } if (dvfs_pt1 || training_pt1) __INCREMENT_PTFV(c1d1u1, CVAL(temp1_1)); else if (dvfs_update) __AVERAGE_PTFV(c1d1u1); else if (training_update) __AVERAGE_WRITE_PTFV(c1d1u1); else if (periodic_training_update) __WEIGHTED_UPDATE_PTFV(c1d1u1, CVAL(temp1_1)); if (dvfs_update || training_update || periodic_training_update) { tdel = (dst_timing->current_dram_clktree_c1d1u1 - __MOVAVG_AC(dst_timing, c1d1u1)); tmdel = (tdel < 0) ? -1 * tdel : tdel; if (tmdel > adel) adel = tmdel; if (mode == 1 || (tmdel * 128 * next_timing_rate_mhz / 1000000) > dst_timing->tree_margin) dst_timing->current_dram_clktree_c1d1u1 = __MOVAVG_AC(dst_timing, c1d1u1); } } } #undef CVAL if (mode == 1) { dst_timing->trained_dram_clktree_c0d0u0 = dst_timing->current_dram_clktree_c0d0u0; dst_timing->trained_dram_clktree_c0d0u1 = dst_timing->current_dram_clktree_c0d0u1; dst_timing->trained_dram_clktree_c0d1u0 = dst_timing->current_dram_clktree_c0d1u0; dst_timing->trained_dram_clktree_c0d1u1 = dst_timing->current_dram_clktree_c0d1u1; dst_timing->trained_dram_clktree_c1d0u0 = dst_timing->current_dram_clktree_c1d0u0; dst_timing->trained_dram_clktree_c1d0u1 = dst_timing->current_dram_clktree_c1d0u1; dst_timing->trained_dram_clktree_c1d1u0 = dst_timing->current_dram_clktree_c1d1u0; dst_timing->trained_dram_clktree_c1d1u1 = dst_timing->current_dram_clktree_c1d1u1; } return adel; } u32 PeriodicCompensationHandler(int type, u32 dram_dev_num, EmcDvfsTimingTable *src_timing, EmcDvfsTimingTable *dst_timing) { if (!dst_timing->periodic_training) { return 0; } uint32_t adel = 0; uint32_t samples = dst_timing->ptfv_dvfs_samples; uint32_t samples_write = dst_timing->ptfv_write_samples; uint32_t delay = 2 + (1000 * ActualOscClocks(src_timing->run_clocks) / src_timing->rate_khz); if (type == DVFS_SEQUENCE) { if (src_timing->periodic_training && (dst_timing->ptfv_config_ctrl & 1)) { /* If the previous frequency was using periodic calibration then we can reuse the previous frequencies EMA data. */ dst_timing->ptfv_dqsosc_movavg_c0d0u0 = src_timing->ptfv_dqsosc_movavg_c0d0u0 * samples; dst_timing->ptfv_dqsosc_movavg_c0d0u1 = src_timing->ptfv_dqsosc_movavg_c0d0u1 * samples; dst_timing->ptfv_dqsosc_movavg_c1d0u0 = src_timing->ptfv_dqsosc_movavg_c1d0u0 * samples; dst_timing->ptfv_dqsosc_movavg_c1d0u1 = src_timing->ptfv_dqsosc_movavg_c1d0u1 * samples; dst_timing->ptfv_dqsosc_movavg_c0d1u0 = src_timing->ptfv_dqsosc_movavg_c0d1u0 * samples; dst_timing->ptfv_dqsosc_movavg_c0d1u1 = src_timing->ptfv_dqsosc_movavg_c0d1u1 * samples; dst_timing->ptfv_dqsosc_movavg_c1d1u0 = src_timing->ptfv_dqsosc_movavg_c1d1u0 * samples; dst_timing->ptfv_dqsosc_movavg_c1d1u1 = src_timing->ptfv_dqsosc_movavg_c1d1u1 * samples; } else { /* Reset the EMA. */ dst_timing->ptfv_dqsosc_movavg_c0d0u0 = 0; dst_timing->ptfv_dqsosc_movavg_c0d0u1 = 0; dst_timing->ptfv_dqsosc_movavg_c0d1u0 = 0; dst_timing->ptfv_dqsosc_movavg_c0d1u1 = 0; dst_timing->ptfv_dqsosc_movavg_c1d0u0 = 0; dst_timing->ptfv_dqsosc_movavg_c1d0u1 = 0; dst_timing->ptfv_dqsosc_movavg_c1d1u0 = 0; dst_timing->ptfv_dqsosc_movavg_c1d1u1 = 0; for (uint32_t i = 0; i < samples; ++i) { StartPeriodicCompensation(); util::WaitMicroSeconds(delay); /* Generate next sample of data. */ adel = UpdateClockTreeDelay(src_timing, dst_timing, dram_dev_num, 0, DVFS_PT1); } } adel = UpdateClockTreeDelay(src_timing, dst_timing, dram_dev_num, 0, DVFS_UPDATE); } else if (type == WRITE_TRAINING_SEQUENCE) { /* Reset the EMA. */ dst_timing->ptfv_dqsosc_movavg_c0d0u0 = 0; dst_timing->ptfv_dqsosc_movavg_c0d0u1 = 0; dst_timing->ptfv_dqsosc_movavg_c0d1u0 = 0; dst_timing->ptfv_dqsosc_movavg_c0d1u1 = 0; dst_timing->ptfv_dqsosc_movavg_c1d0u0 = 0; dst_timing->ptfv_dqsosc_movavg_c1d0u1 = 0; dst_timing->ptfv_dqsosc_movavg_c1d1u0 = 0; dst_timing->ptfv_dqsosc_movavg_c1d1u1 = 0; for (uint32_t i = 0; i < samples_write; ++i) { StartPeriodicCompensation(); util::WaitMicroSeconds(delay); /* Generate next sample of data. */ adel = UpdateClockTreeDelay(src_timing, dst_timing, dram_dev_num, 1, TRAINING_PT1); } adel = UpdateClockTreeDelay(src_timing, dst_timing, dram_dev_num, 1, TRAINING_UPDATE); } else if (type == PERIODIC_TRAINING_SEQUENCE) { StartPeriodicCompensation(); util::WaitMicroSeconds(delay); adel = UpdateClockTreeDelay(src_timing, dst_timing, dram_dev_num, 0, PERIODIC_TRAINING_UPDATE); } return adel; } void ChangeDllSrc(EmcDvfsTimingTable *dst_timing, u32 next_clk_src) { u32 dll_setting = ((next_clk_src & 0xE00000FF) | (dst_timing->dll_clk_src & 0x1FFFFF00)) & 0xFFFFF3FF; switch (reg::GetField(next_clk_src, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_SRC))) { case PLLMB_UD: dll_setting |= 0x400; /* PLLM_VCOB */ break; case PLLM_UD: dll_setting |= 0x000; /* PLLM_VCOA */ break; default: dll_setting |= 0x800; /* EMC_DLL_SWITCH_OUT */ break; } reg::Write(CLKRST + CLK_RST_CONTROLLER_CLK_SOURCE_EMC_DLL, dll_setting); reg::ReadWrite(CLKRST + CLK_RST_CONTROLLER_CLK_OUT_ENB_X, CLK_RST_REG_BITS_ENUM_SEL(CLK_ENB_X_CLK_ENB_EMC_DLL, (dst_timing->clk_out_enb_x_0_clk_enb_emc_dll & 1), ENABLE, DISABLE)); reg::Read(CLKRST + CLK_RST_CONTROLLER_CLK_OUT_ENB_X); } void DllPrelock(EmcDvfsTimingTable *dst_timing, EmcDvfsTimingTable *src_timing, bool training_enabled, u32 next_clk_src) { /* Update EMC_CFG_DIG_DLL */ reg::Write(EMC + EMC_CFG_DIG_DLL, (reg::Read(EMC + EMC_CFG_DIG_DLL) & 0xFFFFFFE4) | 0x00000008); /* Request a timing update event */ TimingUpdate(dst_timing->emc_fbio_cfg7); /* Update EMC_CFG_DIG_DLL */ reg::Write(EMC + EMC_CFG_DIG_DLL, (reg::Read(EMC + EMC_CFG_DIG_DLL) & 0xFFFFF824) | 0x000003C8); /* Request a timing update event */ TimingUpdate(dst_timing->emc_fbio_cfg7); /* Wait until CFG_DLL_EN is cleared. */ WaitForUpdate(EMC_CFG_DIG_DLL, (1 << 0), false, dst_timing->emc_fbio_cfg7); /* Configure PMACRO_DLL_CFG */ reg::Write(EMC + EMC_PMACRO_DLL_CFG_0, dst_timing->burst_regs.emc_pmacro_dll_cfg_0); reg::Read(EMC + EMC_PMACRO_DLL_CFG_1); reg::Write(EMC + EMC_PMACRO_DLL_CFG_1, (dst_timing->burst_regs.emc_pmacro_dll_cfg_1 & 0xFFFFDFFF) | (reg::Read(EMC + EMC_PMACRO_DLL_CFG_1) & 0x00002000)); /* Request a timing update event */ TimingUpdate(dst_timing->emc_fbio_cfg7); /* Change the dll clock source. */ ChangeDllSrc(dst_timing, next_clk_src); /* Wait 2 us. */ util::WaitMicroSeconds(2); /* Enable dll. */ reg::SetBits(EMC + EMC_CFG_DIG_DLL, 0x1); /* Request a timing update event */ TimingUpdate(dst_timing->emc_fbio_cfg7); /* Wait until CFG_DLL_EN is set. */ WaitForUpdate(EMC_CFG_DIG_DLL, (1 << 0), true, dst_timing->emc_fbio_cfg7); /* Wait for DLL_LOCK to be set */ WaitForUpdate(EMC_DIG_DLL_STATUS, (1 << 2), true, dst_timing->emc_fbio_cfg7); if (training_enabled) { /* Disable dll. */ reg::SetBits(EMC + EMC_DBG, 0x2); reg::ClearBits(EMC + EMC_CFG_DIG_DLL, 0x1); reg::ClearBits(EMC + EMC_DBG, 0x2); /* Wait until CFG_DLL_EN is cleared. */ WaitForUpdate(EMC_CFG_DIG_DLL, (1 << 0), false, dst_timing->emc_fbio_cfg7); } reg::Read(EMC + EMC_PMACRO_DIG_DLL_STATUS_0); } void DllDisable(u32 fbio_cfg7) { /* Disable dll. */ reg::ClearBits(EMC + EMC_CFG_DIG_DLL, 0x1); /* Request a timing update event */ TimingUpdate(fbio_cfg7); /* Wait until CFG_DLL_EN is cleared. */ WaitForUpdate(EMC_CFG_DIG_DLL, (1 << 0), false, fbio_cfg7); } void PllDisable(u32 dst_clk_src) { switch (reg::GetField(dst_clk_src, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_SRC))) { case PLLM_OUT0: case PLLM_UD: reg::ClearBits(CLKRST + CLK_RST_CONTROLLER_PLLMB_BASE, 0x40000000); break; case PLLMB_OUT0: case PLLMB_UD: reg::ClearBits(CLKRST + CLK_RST_CONTROLLER_PLLM_BASE, 0x40000000); break; default: reg::ClearBits(CLKRST + CLK_RST_CONTROLLER_PLLMB_BASE, 0x40000000); reg::ClearBits(CLKRST + CLK_RST_CONTROLLER_PLLM_BASE, 0x40000000); break; } } void DvfsPowerRampDown(EmcDvfsTimingTable *src_timing, EmcDvfsTimingTable *dst_timing, bool flip_backward, u32 vtt_vdda_channel) { auto *from_table = (flip_backward ? dst_timing : src_timing); auto *to_table = (flip_backward ? src_timing : dst_timing); uint32_t from_rate_khz = from_table->rate_khz; uint32_t from_period = 1000000000 / from_rate_khz; uint32_t to_rate_khz = to_table->rate_khz; uint32_t clk_div = 1000 * dst_timing->src_clock_div; uint32_t delay = util::DivideUp(clk_div, from_period); if (from_rate_khz >= 407997 || to_rate_khz <= 407996) { if (from_rate_khz >= 407997 && to_rate_khz <= 407996) { uint32_t pmacro_vttgen_ctrl_1 = reg::Read(EMC + EMC_PMACRO_VTTGEN_CTRL_1); if (dst_timing->vtt_vdda_dual_channel) { if (vtt_vdda_channel != 1) { return; } CcfifoWrite(EMC_PMACRO_VTTGEN_CTRL_1, (pmacro_vttgen_ctrl_1 & 0xFFFF03FF) | ((to_table->vtt_vdda_ctrl_4 & 0x3F) << 10), delay); CcfifoWrite(EMC_PMACRO_VTTGEN_CTRL_1, (pmacro_vttgen_ctrl_1 & 0xFFFF03FF) | ((to_table->vtt_vdda_ctrl_0 & 0x3F) << 10), delay * 2); } else { CcfifoWrite(EMC_PMACRO_VTTGEN_CTRL_1, (pmacro_vttgen_ctrl_1 & 0xFFFF03FF) | ((dst_timing->vtt_vdda_ctrl_0 & 0x3F) << 10), 0); } } } else { uint32_t pmacro_vttgen_ctrl_1 = reg::Read(EMC + EMC_PMACRO_VTTGEN_CTRL_1); if (dst_timing->vtt_vdda_dual_channel) { if (vtt_vdda_channel == 1) { CcfifoWrite(EMC_PMACRO_VTTGEN_CTRL_1, (pmacro_vttgen_ctrl_1 & 0xFFFF03FF) | ((dst_timing->vtt_vdda_ctrl_3 & 0x3F) << 10), delay); CcfifoWrite(EMC_PMACRO_VTTGEN_CTRL_1, (pmacro_vttgen_ctrl_1 & 0xFFFF03FF) | ((dst_timing->vtt_vdda_ctrl_0 & 0x3F) << 10), delay); } else if (vtt_vdda_channel == 0) { CcfifoWrite(EMC_PMACRO_VTTGEN_CTRL_1, (pmacro_vttgen_ctrl_1 & 0xFFFF03FF) | ((dst_timing->vtt_vdda_ctrl_1 & 0x3F) << 10), delay); CcfifoWrite(EMC_PMACRO_VTTGEN_CTRL_1, (pmacro_vttgen_ctrl_1 & 0xFFFF03FF) | ((dst_timing->vtt_vdda_ctrl_2 & 0x3F) << 10), delay); } } else { CcfifoWrite(EMC_PMACRO_VTTGEN_CTRL_1, (pmacro_vttgen_ctrl_1 & 0xFFFF03FF) | ((dst_timing->vtt_vdda_ctrl_0 & 0x3F) << 10), 0); } } } u32 DvfsPowerRampUp(u32 dst_clock_period, bool flip_backward, EmcDvfsTimingTable *src_timing, EmcDvfsTimingTable *dst_timing, u32 training) { uint32_t misc_cfg_1 = flip_backward ? src_timing->misc_cfg_1 : dst_timing->misc_cfg_1; uint32_t emc_pmacro_cmd_pad_tx_ctrl, emc_pmacro_brick_ctrl_rfu1, emc_fbio_cfg5; if (flip_backward) { emc_pmacro_cmd_pad_tx_ctrl = src_timing->burst_regs.emc_pmacro_cmd_pad_tx_ctrl; emc_pmacro_brick_ctrl_rfu1 = src_timing->burst_regs.emc_pmacro_brick_ctrl_rfu1; emc_fbio_cfg5 = src_timing->burst_regs.emc_fbio_cfg5; } else if (training & (CA_TRAINING | CA_VREF_TRAINING)) { emc_pmacro_cmd_pad_tx_ctrl = dst_timing->shadow_regs_ca_train.emc_pmacro_cmd_pad_tx_ctrl; emc_pmacro_brick_ctrl_rfu1 = dst_timing->shadow_regs_ca_train.emc_pmacro_brick_ctrl_rfu1; emc_fbio_cfg5 = dst_timing->shadow_regs_ca_train.emc_fbio_cfg5; } else if (training & (WRITE_TRAINING | WRITE_VREF_TRAINING | READ_TRAINING | READ_VREF_TRAINING)) { emc_pmacro_cmd_pad_tx_ctrl = dst_timing->shadow_regs_rdwr_train.emc_pmacro_cmd_pad_tx_ctrl; emc_pmacro_brick_ctrl_rfu1 = dst_timing->shadow_regs_rdwr_train.emc_pmacro_brick_ctrl_rfu1; emc_fbio_cfg5 = dst_timing->shadow_regs_rdwr_train.emc_fbio_cfg5; } else { emc_pmacro_cmd_pad_tx_ctrl = dst_timing->burst_regs.emc_pmacro_cmd_pad_tx_ctrl; emc_pmacro_brick_ctrl_rfu1 = dst_timing->burst_regs.emc_pmacro_brick_ctrl_rfu1; emc_fbio_cfg5 = dst_timing->burst_regs.emc_fbio_cfg5; } bool misc_flag = (misc_cfg_1 & 3) == 3; uint32_t timescale = 100000 << ((misc_cfg_1 >> 2) & 7); uint32_t delay = (timescale / dst_clock_period); if (dst_clock_period < 869 || misc_flag) { CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, emc_pmacro_brick_ctrl_rfu1 & 0xFE40FE40, delay + 1); CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, emc_pmacro_brick_ctrl_rfu1 & 0xFEEDFEED, delay + 1); CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, emc_pmacro_brick_ctrl_rfu1 & 0xFFFFFFFF, delay + 1); CcfifoWrite(EMC_FBIO_CFG5, emc_fbio_cfg5 & 0xFFFFFEFF, delay + 10); CcfifoWrite(EMC_PMACRO_CMD_PAD_TX_CTRL, emc_pmacro_cmd_pad_tx_ctrl & 0xFBFFFFFF, 5); return timescale + 10 * dst_clock_period + 3 * timescale; } else if (dst_clock_period > 1665) { CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, emc_pmacro_brick_ctrl_rfu1 | 0x00000600, 0); CcfifoWrite(EMC_FBIO_CFG5, emc_fbio_cfg5 & 0xFFFFFEFF, 12); CcfifoWrite(EMC_PMACRO_CMD_PAD_TX_CTRL, emc_pmacro_cmd_pad_tx_ctrl & 0xFBFFFFFF, 5); return 12 * dst_clock_period; } else { CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, emc_pmacro_brick_ctrl_rfu1 | 0x06000600, delay + 1); CcfifoWrite(EMC_FBIO_CFG5, emc_fbio_cfg5 & 0xFFFFFEFF, delay + 10); CcfifoWrite(EMC_PMACRO_CMD_PAD_TX_CTRL, emc_pmacro_cmd_pad_tx_ctrl & 0xFBFFFFFF, 5); return timescale + 10 * dst_clock_period; } } void FreqChange(EmcDvfsTimingTable *src_timing, EmcDvfsTimingTable *dst_timing, u32 training, u32 dst_clk_src) { /* Extract training values */ const bool train_ca = (training & CA_TRAINING); const bool train_ca_vref = (training & CA_VREF_TRAINING); //const bool train_quse = (training & QUSE_TRAINING); //const bool train_quse_vref = (training & QUSE_VREF_TRAINING); const bool train_wr = (training & WRITE_TRAINING); const bool train_wr_vref = (training & WRITE_VREF_TRAINING); const bool train_rd = (training & READ_TRAINING); const bool train_rd_vref = (training & READ_VREF_TRAINING); const bool train_second_rank = (training & TRAIN_SECOND_RANK); const bool train_bit_level = (training & BIT_LEVEL_TRAINING); /* Check if we should do training. */ const bool training_enabled = (training & (CA_TRAINING | CA_VREF_TRAINING | WRITE_TRAINING | WRITE_VREF_TRAINING | READ_TRAINING | READ_VREF_TRAINING)); uint32_t dst_emc_fbio_cfg7 = dst_timing->emc_fbio_cfg7; uint32_t dst_misc_cfg_0 = dst_timing->misc_cfg_0; uint32_t dst_misc_cfg_1 = dst_timing->misc_cfg_1; uint32_t dst_misc_cfg_2 = dst_timing->misc_cfg_2; uint32_t src_misc_cfg_0 = src_timing->misc_cfg_0; uint32_t src_misc_cfg_1 = src_timing->misc_cfg_1; uint32_t src_t_rp = src_timing->dram_timings.t_rp; uint32_t src_t_rfc = src_timing->dram_timings.t_rfc; uint32_t dst_t_pdex = dst_timing->dram_timings.t_pdex; uint32_t dst_t_fc_lpddr4 = dst_timing->dram_timings.t_fc_lpddr4; const bool ch0_enable = reg::GetField(dst_emc_fbio_cfg7, EMC_REG_BITS_MASK(FBIO_CFG7_CH0_ENABLE)) == EMC_FBIO_CFG7_CH0_ENABLE_ENABLE; const bool ch1_enable = reg::GetField(dst_emc_fbio_cfg7, EMC_REG_BITS_MASK(FBIO_CFG7_CH1_ENABLE)) == EMC_FBIO_CFG7_CH1_ENABLE_ENABLE; g_fsp_for_next_freq = !g_fsp_for_next_freq; const int dram_type = reg::GetValue(EMC + EMC_FBIO_CFG5, EMC_REG_BITS_MASK(FBIO_CFG5_DRAM_TYPE)); uint32_t src_emc_zcal_wait_cnt = src_timing->burst_regs.emc_zcal_wait_cnt; bool shared_zq_resistor = (src_emc_zcal_wait_cnt >> 31) & 1; bool opt_zcal_en_cc = (dst_timing->burst_regs.emc_zcal_interval && !src_timing->burst_regs.emc_zcal_interval) || (dram_type == DRAM_TYPE_LPDDR4); uint32_t dst_t_fc_lpddr4_hz = 1000 * dst_t_fc_lpddr4; bool is_lpddr2 = (dram_type == DRAM_TYPE_LPDDR2); bool is_lpddr3 = is_lpddr2 && ((dst_timing->burst_regs.emc_fbio_cfg5 >> 25) & 1); uint32_t opt_dll_mode = (dram_type == DRAM_TYPE_DDR4) ? GetDllState(dst_timing) : DLL_OFF; int dram_dev_num = ((reg::Read(MC + MC_EMEM_ADR_CFG) & 1) + 1); uint32_t tZQCAL_lpddr4 = dst_timing->tZQCAL_lpddr4; uint32_t zqcal_before_cc_cutoff = dst_timing->zqcal_before_cc_cutoff; uint32_t opt_cc_short_zcal = dst_timing->opt_cc_short_zcal; uint32_t opt_short_zcal = dst_timing->opt_short_zcal; uint32_t opt_do_sw_qrst = dst_timing->opt_do_sw_qrst; uint32_t save_restore_clkstop_pd = dst_timing->save_restore_clkstop_pd; // uint32_t opt_E90 = dst_timing->opt_E90; uint32_t cya_allow_ref_cc = dst_timing->cya_allow_ref_cc; uint32_t ref_b4_sref_en = dst_timing->ref_b4_sref_en; uint32_t cya_issue_pc_ref = dst_timing->cya_issue_pc_ref; uint32_t src_rate_khz = src_timing->rate_khz; uint32_t dst_rate_khz = dst_timing->rate_khz; uint32_t src_clock_period = 1000000000 / src_rate_khz; uint32_t dst_clock_period = 1000000000 / dst_rate_khz; uint32_t emc_auto_cal_config = reg::Read(EMC + EMC_AUTO_CAL_CONFIG); uint32_t adj_dst_t_fc_lpddr4 = (dst_clock_period <= zqcal_before_cc_cutoff) ? dst_t_fc_lpddr4_hz : 0; uint32_t emc_dbg_o = reg::Read(EMC + EMC_DBG); uint32_t emc_pin_o = reg::Read(EMC + EMC_PIN); uint32_t emc_cfg_pipe_clk_o = reg::Read(EMC + EMC_CFG_PIPE_CLK); uint32_t emc_dbg = emc_dbg_o; uint32_t emc_cfg = dst_timing->burst_regs.emc_cfg; uint32_t emc_sel_dpd_ctrl = dst_timing->emc_sel_dpd_ctrl; uint32_t next_push, next_dq_e_ivref, next_dqs_e_ivref; /* Step 1: * Pre DVFS SW sequence. */ /* Step 1.1: Disable DLL. */ uint32_t tmp = reg::Read(EMC + EMC_CFG_DIG_DLL); tmp &= ~(1 << 0); reg::Write(EMC + EMC_CFG_DIG_DLL, tmp); /* Calculate 14000 / dst_period. */ uint32_t div_14000_by_dst_period = std::max(util::DivideUp(14000, dst_clock_period), 10); /* Request a timing update. */ TimingUpdate(dst_emc_fbio_cfg7); /* Wait for DLL to be disabled. */ WaitForUpdate(EMC_CFG_DIG_DLL, (1 << 0), false, dst_emc_fbio_cfg7); /* Step 1.2: Disable AUTOCAL. */ emc_auto_cal_config = (dst_timing->emc_auto_cal_config & 0x7FFFF9FF) | 0x600; reg::Write(EMC + EMC_AUTO_CAL_CONFIG, emc_auto_cal_config); reg::Read(EMC + EMC_AUTO_CAL_CONFIG); /* Step 1.3: Disable other power features. */ emc_dbg = SetShadowBypass(ACTIVE, emc_dbg_o); reg::Write(EMC + EMC_DBG, emc_dbg); reg::Write(EMC + EMC_CFG, emc_cfg & 0x0FFFFFFF); reg::Write(EMC + EMC_SEL_DPD_CTRL, emc_sel_dpd_ctrl & 0xFFFFFEC3); reg::Write(EMC + EMC_DBG, emc_dbg_o); /* Skip this if dvfs_with_training is set. */ bool compensate_trimmer_applicable = false; uint32_t adel = 0; if (!training_enabled && dst_timing->periodic_training) { /* Wait for DRAM to get out of power down. */ WaitForUpdate(EMC_EMC_STATUS, dram_dev_num == TWO_RANK ? 0x30 : 0x10, false, dst_emc_fbio_cfg7); /* Wait for DRAM to get out of self refresh. */ WaitForUpdate(EMC_EMC_STATUS, 0x300, false, dst_emc_fbio_cfg7); if (dst_timing->periodic_training) { /* Reset all clock tree values. */ dst_timing->current_dram_clktree_c0d0u0 = dst_timing->trained_dram_clktree_c0d0u0; dst_timing->current_dram_clktree_c0d0u1 = dst_timing->trained_dram_clktree_c0d0u1; dst_timing->current_dram_clktree_c0d1u0 = dst_timing->trained_dram_clktree_c0d1u0; dst_timing->current_dram_clktree_c0d1u1 = dst_timing->trained_dram_clktree_c0d1u1; dst_timing->current_dram_clktree_c1d0u0 = dst_timing->trained_dram_clktree_c1d0u0; dst_timing->current_dram_clktree_c1d0u1 = dst_timing->trained_dram_clktree_c1d0u1; dst_timing->current_dram_clktree_c1d1u0 = dst_timing->trained_dram_clktree_c1d1u0; dst_timing->current_dram_clktree_c1d1u1 = dst_timing->trained_dram_clktree_c1d1u1; /* Do DVFS_SEQUENCE. */ adel = PeriodicCompensationHandler(DVFS_SEQUENCE, dram_dev_num, src_timing, dst_timing); /* Check if we should use compensate trimmer. */ compensate_trimmer_applicable = dst_timing->periodic_training && ((adel * 128 * (dst_rate_khz / 1000)) / 1000000) > dst_timing->tree_margin; } } reg::Write(EMC + EMC_INTSTATUS, (1 << 4)); emc_dbg = SetShadowBypass(ACTIVE, emc_dbg); reg::Write(EMC + EMC_DBG, emc_dbg); reg::Write(EMC + EMC_CFG, emc_cfg & 0x0FFFFFFF); reg::Write(EMC + EMC_SEL_DPD_CTRL, emc_sel_dpd_ctrl & 0xFFFFFEC3); reg::Write(EMC + EMC_CFG_PIPE_CLK, emc_cfg_pipe_clk_o | (1 << 0)); reg::Write(EMC + EMC_FDPD_CTRL_CMD_NO_RAMP, dst_timing->emc_fdpd_ctrl_cmd_no_ramp & ~(1 << 0)); /* Adjust pllm_misc1 as needed. */ if (dst_timing->pllm_misc1_0_pllm_clamp_ph90) { reg::ClearBits(CLKRST + CLK_RST_CONTROLLER_PLLM_MISC1, 0x80000000); } /* Check if we need to turn on VREF generator. */ if (((!(src_timing->burst_regs.emc_pmacro_data_pad_tx_ctrl & (1 << 0))) && ((dst_timing->burst_regs.emc_pmacro_data_pad_tx_ctrl & (1 << 0)))) || ((!(src_timing->burst_regs.emc_pmacro_data_pad_tx_ctrl & (1 << 10))) && ((dst_timing->burst_regs.emc_pmacro_data_pad_tx_ctrl & (1 << 10))))) { uint32_t pad_tx_ctrl = dst_timing->burst_regs.emc_pmacro_data_pad_tx_ctrl; uint32_t last_pad_tx_ctrl = src_timing->burst_regs.emc_pmacro_data_pad_tx_ctrl; next_dqs_e_ivref = pad_tx_ctrl & (1 << 10); next_dq_e_ivref = pad_tx_ctrl & (1 << 0); next_push = (last_pad_tx_ctrl & ~(1 << 0) & ~(1 << 10)) | next_dq_e_ivref | next_dqs_e_ivref; reg::Write(EMC + EMC_PMACRO_DATA_PAD_TX_CTRL, next_push); reg::Write(EMC + EMC_DBG, emc_dbg_o); util::WaitMicroSeconds(1); } else { reg::Write(EMC + EMC_DBG, emc_dbg_o); } /* Check if we need to fixup xm2comppadctrl */ if ((dst_misc_cfg_1 & 0x20) == 0) { reg::Write(EMC + EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_o)); uint32_t xm2comppadctrl = reg::Read(EMC + EMC_XM2COMPPADCTRL); reg::Write(EMC + EMC_XM2COMPPADCTRL, xm2comppadctrl | 0x08000000); util::WaitMicroSeconds(1); reg::Write(EMC + EMC_XM2COMPPADCTRL, xm2comppadctrl | 0x18000000); util::WaitMicroSeconds(1); reg::Write(EMC + EMC_XM2COMPPADCTRL, xm2comppadctrl | 0x38000000); util::WaitMicroSeconds(1); reg::Write(EMC + EMC_DBG, SetShadowBypass(ASSEMBLY, emc_dbg_o)); } /* Step 2: * Prelock the DLL. */ if (dst_timing->burst_regs.emc_cfg_dig_dll & (1 << 0)) { reg::Write(EMC + EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_o)); reg::ClearBits(EMC + EMC_PMACRO_DLL_CFG_1, 0x2000); reg::Read(EMC + EMC_PMACRO_DLL_CFG_1); reg::Write(EMC + EMC_DBG, SetShadowBypass(ASSEMBLY, emc_dbg_o)); reg::Read(EMC + EMC_DBG); DllPrelock(dst_timing, src_timing, training_enabled, dst_clk_src); } else { DllDisable(dst_emc_fbio_cfg7); } /* Step 3: * Prepare autocal for the clock change. */ /* Disable AUTOCAL. */ emc_auto_cal_config = (dst_timing->emc_auto_cal_config & 0x7FFFF9FF) | 0x600; reg::Write(EMC + EMC_AUTO_CAL_CONFIG, emc_auto_cal_config); reg::Write(EMC + EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_o)); reg::Write(EMC + EMC_AUTO_CAL_CONFIG2, dst_timing->emc_auto_cal_config2); if (ch0_enable || ch1_enable) { reg::Write(EMC0 + EMC_AUTO_CAL_CONFIG3, dst_timing->emc_auto_cal_config3); reg::Write(EMC0 + EMC_AUTO_CAL_CONFIG4, dst_timing->emc_auto_cal_config4); reg::Write(EMC0 + EMC_AUTO_CAL_CONFIG5, dst_timing->emc_auto_cal_config5); reg::Write(EMC0 + EMC_AUTO_CAL_CONFIG6, dst_timing->emc_auto_cal_config6); reg::Write(EMC0 + EMC_AUTO_CAL_CONFIG7, dst_timing->emc_auto_cal_config7); reg::Write(EMC0 + EMC_AUTO_CAL_CONFIG8, dst_timing->emc_auto_cal_config8); } reg::Write(EMC + EMC_DBG, emc_dbg_o); emc_auto_cal_config = (dst_timing->emc_auto_cal_config & 0x7FFFF9FE) | 0x601; reg::Write(EMC + EMC_AUTO_CAL_CONFIG, emc_auto_cal_config); /* Step 4: * Update EMC_CFG. */ reg::ClearBits(EMC + EMC_CFG, 0x10000000); reg::Write(EMC + EMC_CFG_2, dst_timing->emc_cfg_2); /* Step 5: * Prepare reference variables for ZQCAL regs. */ //print(SCREEN_LOG_LEVEL_DEBUG, "[MTC]: freq_change - step 5\n"); //mdelay(500); uint32_t emc_zcal_interval = src_timing->burst_regs.emc_zcal_interval & 0xFF000000; uint32_t dst_emc_zcal_wait_cnt = dst_timing->burst_regs.emc_zcal_wait_cnt; uint32_t zq_wait_long, zq_wait_short; if (dram_type == DRAM_TYPE_LPDDR4) { zq_wait_long = std::max(util::DivideUp(1000000, dst_clock_period), 1); zq_wait_short = std::max(util::DivideUp(30000, dst_clock_period), 8) + 1; } else if (is_lpddr2 || is_lpddr3) { zq_wait_long = std::max(util::DivideUp(360000, dst_clock_period), dst_timing->min_mrs_wait) + 4; zq_wait_short = 0; } else if (dram_type == DRAM_TYPE_DDR4) { zq_wait_long = std::max(util::DivideUp(320000, dst_clock_period), 256); zq_wait_short = 0; } else { zq_wait_long = 0; zq_wait_short = 0; } /* Step 6: * Training code. */ { uint32_t pintemp = reg::Read(EMC + EMC_PIN); if ((train_ca || train_ca_vref) && (dram_dev_num == TWO_RANK)) { reg::Write(EMC + EMC_PIN, pintemp | 0x7); } } /* Step 7: * Program FSP reference registers and send MRWs to new FSPWR. */ uint32_t mr13_flip_fspop, mr13_flip_fspwr; if (!g_fsp_for_next_freq) { mr13_flip_fspwr = (dst_timing->emc_mrw3 & 0xffffff3f) | 0x80; mr13_flip_fspop = (dst_timing->emc_mrw3 & 0xffffff3f) | 0x00; } else { mr13_flip_fspwr = (dst_timing->emc_mrw3 & 0xffffff3f) | 0x40; mr13_flip_fspop = (dst_timing->emc_mrw3 & 0xffffff3f) | 0xc0; } uint32_t mr13_catr_enable = mr13_flip_fspwr | 1; if (dram_dev_num == TWO_RANK) { if (train_ca || train_ca_vref) { mr13_flip_fspop = (mr13_flip_fspop & 0x3FFFFFFF) | (train_second_rank ? 0x80000000 : 0x40000000); } mr13_catr_enable = (mr13_catr_enable & 0x3FFFFFFF) | (train_second_rank ? 0x40000000 : 0x80000000); } if (dram_type == DRAM_TYPE_LPDDR4) { reg::Write(EMC + EMC_MRW3, mr13_flip_fspwr); reg::Write(EMC + EMC_MRW, dst_timing->emc_mrw); reg::Write(EMC + EMC_MRW2, dst_timing->emc_mrw2); } /* Step 8: * Program the shadow registers. */ /* Set burst registers. */ { uint32_t pmacro_vttgen_ctrl_1 = reg::Read(EMC + EMC_PMACRO_VTTGEN_CTRL_1); uint32_t xm2comppadctrl = reg::Read(EMC + EMC_XM2COMPPADCTRL); for (u32 i = 0; i < dst_timing->num_burst; ++i) { if (!BurstRegisters[i]) { continue; } const u32 reg_addr = BurstRegisters[i]; uint32_t wval; if (train_ca || train_ca_vref) { wval = dst_timing->shadow_regs_ca_train_arr[i]; } else if (train_wr || train_wr_vref || train_rd || train_rd_vref) { wval = dst_timing->shadow_regs_rdwr_train_arr[i]; } else { wval = dst_timing->burst_regs_arr[i]; } /* Adjust the value to write. */ switch (reg_addr) { case EMC_BASE + EMC_CFG: wval &= (dram_type == DRAM_TYPE_LPDDR4) ? 0x0FFFFFFF : 0xCFFFFFFF; break; case EMC_BASE + EMC_MRS_WAIT_CNT: if (opt_zcal_en_cc && is_lpddr2 && (opt_cc_short_zcal == 0) && (opt_short_zcal != 0)) { wval = (wval & 0xFFFFFC00) | (zq_wait_long & 0x3FF); } break; case EMC_BASE + EMC_ZCAL_WAIT_CNT: if ((opt_short_zcal != 0) && opt_zcal_en_cc && (opt_cc_short_zcal == 0) && (dram_type == DRAM_TYPE_DDR4)) { wval = (wval & 0xFFFFF800) | (zq_wait_long & 0x7FF); } break; case EMC_BASE + EMC_ZCAL_INTERVAL: if (opt_zcal_en_cc) { wval = 0; } break; case EMC_BASE + EMC_PMACRO_BRICK_CTRL_RFU1: wval &= 0xF800F800; break; case EMC_BASE + EMC_PMACRO_CMD_PAD_TX_CTRL: wval |= 0x04000000; break; case EMC_BASE + EMC_PMACRO_AUTOCAL_CFG_COMMON: wval |= 0x00010000; break; case EMC_BASE + EMC_TRAINING_CTRL: if (train_second_rank) { wval |= 0x4000; } break; case EMC_BASE + EMC_REFRESH: case EMC_BASE + EMC_TREFBW: wval >>= 0; break; case EMC_BASE + EMC_XM2COMPPADCTRL: if ((dst_misc_cfg_1 & 0x20) == 0) { wval = (wval & 0x00FFFFFF) | (xm2comppadctrl & 0xFF000000); } break; case EMC_BASE + EMC_DLL_CFG_1: wval = (wval & 0xFFFFDFFF) | (reg::Read(EMC + EMC_PMACRO_DLL_CFG_1) & 0x00002000); break; case EMC_BASE + EMC_PMACRO_VTTGEN_CTRL_1: wval = (wval & 0xFFFF03FF) | (pmacro_vttgen_ctrl_1 & 0xFC00); break; case EMC_BASE + EMC_MRW6: case EMC_BASE + EMC_MRW7: case EMC_BASE + EMC_MRW8: case EMC_BASE + EMC_MRW9: case EMC_BASE + EMC_MRW14: case EMC_BASE + EMC_MRW15: case EMC0_BASE + EMC_MRW10: case EMC0_BASE + EMC_MRW11: case EMC0_BASE + EMC_MRW12: case EMC0_BASE + EMC_MRW13: case EMC1_BASE + EMC_MRW10: case EMC1_BASE + EMC_MRW11: case EMC1_BASE + EMC_MRW12: case EMC1_BASE + EMC_MRW13: if (dram_type != DRAM_TYPE_LPDDR4) { continue; } break; } /* Write the value. */ reg::Write(reg_addr, wval); } } if (dram_type == DRAM_TYPE_LPDDR4) { /* Use the current timing when training. */ uint32_t mrw_req; if (training_enabled) mrw_req = (23 << 16) | (src_timing->run_clocks & (0xFF << 0)); else mrw_req = (23 << 16) | (dst_timing->run_clocks & (0xFF << 0)); reg::Write(EMC + EMC_MRW, mrw_req); } /* Per channel burst registers. */ if (dram_type == DRAM_TYPE_LPDDR4) { for (u32 i = 0; i < dst_timing->num_burst_per_ch; i++) { if (!PerChannelBurstRegisters[i]) { continue; } const u32 addr = PerChannelBurstRegisters[i]; const u32 base = addr & ~0xFFF; /* Filter out channels. */ if ((!ch0_enable && base == EMC0) || (!ch1_enable && base == EMC1)) { continue; } /* Write the value. */ reg::Write(addr, dst_timing->burst_perch_regs_arr[i]); } } /* Vref regs. */ for (u32 i = 0; i < dst_timing->vref_num; i++) { if (!PerChannelVrefRegisters[i]) { continue; } const u32 addr = PerChannelVrefRegisters[i]; const u32 base = addr & ~0xFFF; /* Filter out channels. */ if ((!ch0_enable && base == EMC0) || (!ch1_enable && base == EMC1)) { continue; } /* Write the value. */ reg::Write(addr, dst_timing->vref_perch_regs_arr[i]); } /* Training regs. */ if (training_enabled) { for (u32 i = 0; i < dst_timing->training_mod_num; i++) { if (!PerChannelTrainingModRegisters[i]) { continue; } const u32 addr = PerChannelTrainingModRegisters[i]; const u32 base = addr & ~0xFFF; /* Filter out channels. */ if ((!ch0_enable && base == EMC0) || (!ch1_enable && base == EMC1)) { continue; } /* Write the value. */ reg::Write(addr, dst_timing->training_mod_regs_arr[i]); } } /* Per channel trimmers. */ for (u32 i = 0; i < dst_timing->num_trim_per_ch; i++) { if (!PerChannelTrimRegisters[i]) { continue; } const u32 addr = PerChannelTrimRegisters[i]; const u32 base = addr & ~0xFFF; /* Filter out channels. */ if ((!ch0_enable && base == EMC0) || (!ch1_enable && base == EMC1)) { continue; } uint32_t wval = dst_timing->trim_perch_regs_arr[i]; if (compensate_trimmer_applicable) { switch (addr) { case EMC0_BASE + EMC_DATA_BRLSHFT_0: case EMC1_BASE + EMC_DATA_BRLSHFT_0: case EMC0_BASE + EMC_DATA_BRLSHFT_1: case EMC1_BASE + EMC_DATA_BRLSHFT_1: wval = ApplyPeriodicCompensationTrimmer(dst_timing, addr); break; } } /* Write the value. */ reg::Write(addr, wval); } /* Trimmers. */ for (u32 i = 0; i < dst_timing->num_trim; ++i) { if (!TrimRegisters[i]) { continue; } const u32 addr = TrimRegisters[i]; u32 wval = dst_timing->trim_regs_arr[i]; if (compensate_trimmer_applicable) { switch (addr) { case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_2: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_2: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_2: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_2: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_2: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_2: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_2: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_2: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_2: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_2: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_2: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_2: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_2: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_2: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_2: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_0: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_1: case EMC_BASE + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_2: wval = ApplyPeriodicCompensationTrimmer(dst_timing, addr); break; } } /* Write the value. */ reg::Write(addr, wval); } if (training_enabled) { if (train_wr && dst_timing->periodic_training) { PeriodicCompensationHandler(WRITE_TRAINING_SEQUENCE, dram_dev_num, src_timing, dst_timing); } } else { /* Write burst_mc_regs. */ for (u32 i = 0; i < dst_timing->num_mc_regs; i++) { reg::Write(BurstMcRegisters[i], dst_timing->burst_mc_regs_arr[i]); } /* Registers to be programmed on the faster clock. */ if (dst_timing->rate_khz < src_timing->rate_khz) { for (u32 i = 0; i < dst_timing->num_up_down; i++) { reg::Write(LaScaleRegisters[i], dst_timing->la_scale_regs_arr[i]); } } } if ((dst_misc_cfg_1 & 2) != 0 && (dst_misc_cfg_1 & 1) == 0) { reg::Write(EMC + EMC_PMACRO_BRICK_CTRL_RFU1, dst_timing->burst_regs.emc_pmacro_brick_ctrl_rfu1); reg::Write(EMC + EMC_PMACRO_CMD_PAD_TX_CTRL, dst_timing->burst_regs.emc_pmacro_cmd_pad_tx_ctrl); } reg::Write(EMC + EMC_CFG_PIPE_CLK, (1 << 0)); reg::Write(EMC + EMC_FDPD_CTRL_CMD_NO_RAMP, dst_timing->emc_fdpd_ctrl_cmd_no_ramp & ~(1 << 0)); /* Step 9: * LPDDR4 section A. */ uint32_t emc_dbg_write_active = emc_dbg_o; if (dram_type == DRAM_TYPE_LPDDR4) { reg::Write(EMC + EMC_ZCAL_INTERVAL, emc_zcal_interval); reg::Write(EMC + EMC_ZCAL_WAIT_CNT, (dst_emc_zcal_wait_cnt & 0xFFFFF800) | 1); reg::Write(EMC + EMC_DBG, emc_dbg_o | ((1 << 1) | (1 << 30))); reg::Write(EMC + EMC_ZCAL_INTERVAL, emc_zcal_interval); reg::Write(EMC + EMC_DBG, emc_dbg_o); if (training_enabled) { reg::Write(EMC + EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_o)); reg::Write(EMC + EMC_PMACRO_AUTOCAL_CFG_COMMON, dst_timing->burst_regs.emc_pmacro_autocal_cfg_common | (1 << 16)); if (train_ca || train_ca_vref) { reg::Write(EMC + EMC_FBIO_CFG5, src_timing->burst_regs.emc_fbio_cfg5 | (1 << 27)); } reg::Write(EMC + EMC_DBG, emc_dbg_o); if (dst_emc_fbio_cfg7 == 0x6) { CcfifoWrite(EMC_CFG_SYNC, 1, 0); } /* Change CFG_SWAP. */ CcfifoWrite(EMC_DBG, ((emc_dbg_o & 0xF3FFFFFF) | 0x4000000), 0); } CcfifoWrite(EMC_SELF_REF, 0x101, 0); if (!(train_ca || train_ca_vref) && dst_clock_period <= zqcal_before_cc_cutoff) { CcfifoWrite(EMC_MRW3, mr13_flip_fspwr ^ 0x40, 0); CcfifoWrite(EMC_MRW6, (src_timing->burst_regs.emc_mrw6 & 0x0000C0C0) | (dst_timing->burst_regs.emc_mrw6 & 0xFFFF3F3F), 0); CcfifoWrite(EMC_MRW14, (src_timing->burst_regs.emc_mrw14 & 0x00003838) | (dst_timing->burst_regs.emc_mrw14 & 0xFFFF0707), 0); if (dram_dev_num == TWO_RANK) { CcfifoWrite(EMC_MRW7, (src_timing->burst_regs.emc_mrw7 & 0x0000C0C0) | (dst_timing->burst_regs.emc_mrw7 & 0xFFFF3F3F), 0); CcfifoWrite(EMC_MRW15, (src_timing->burst_regs.emc_mrw15 & 0x00003838) | (dst_timing->burst_regs.emc_mrw15 & 0xFFFF0707), 0); } if (opt_zcal_en_cc) { if (dram_dev_num == ONE_RANK || shared_zq_resistor) { CcfifoWrite(EMC_ZQ_CAL, (2 << 30) | (1 << 0), 0); } else { CcfifoWrite(EMC_ZQ_CAL, (1 << 0), 0); } } } if (training_enabled) { emc_dbg_write_active = (emc_dbg_o & 0xF7FFFFFF) | 0x4000000 | (1 << 30); CcfifoWrite(EMC_DBG, emc_dbg_write_active, 0); } if (train_ca || train_ca_vref) { CcfifoWrite(EMC_PMACRO_DATA_RX_TERM_MODE, src_timing->burst_regs.emc_pmacro_data_rx_term_mode & 0xFFFFFCCC, 0); if (dram_dev_num == TWO_RANK && train_second_rank) { CcfifoWrite(EMC_MRW3, mr13_flip_fspop | 0x8, (1000 * src_t_rp) / src_clock_period); CcfifoWrite(EMC_MRW3, mr13_catr_enable | 0x8, 0); } else { CcfifoWrite(EMC_MRW3, mr13_catr_enable | 0x8, (1000 * src_t_rp) / src_clock_period); } CcfifoWrite(EMC_TR_CTRL_0, (dst_timing->emc_tr_ctrl_0 & 0x3F1000) | 0x100012A, 0); CcfifoWrite(EMC_INTSTATUS, 0, 1000000 / src_clock_period); } else { CcfifoWrite(EMC_MRW3, mr13_flip_fspop | 0x8, (1000 * src_t_rp) / src_clock_period); CcfifoWrite(EMC_INTSTATUS, 0, std::max(DivideUpFloat(dst_t_fc_lpddr4_hz, src_clock_period), std::max(DivideUpFloat(14000, src_clock_period), 10))); } uint32_t t = 30 + (cya_allow_ref_cc ? ((4000 * src_t_rfc + 1000 * src_t_rp) / src_clock_period) : 0); CcfifoWrite(EMC_PIN, emc_pin_o & 0xFFFFFFF8, t); } else { CcfifoWrite(EMC_SELF_REF, 0x1, 0); } uint32_t ref_delay_mult = 1; if (ref_b4_sref_en) ++ref_delay_mult; if (cya_allow_ref_cc) ++ref_delay_mult; if (cya_issue_pc_ref) ++ref_delay_mult; uint32_t ref_delay = 20 + ref_delay_mult * (((1000 * src_t_rfc) / src_clock_period) + ((1000 * src_t_rp) / src_clock_period)); /* Step 11: * Ramp down. */ CcfifoWrite(EMC_CFG_SYNC, 1, (dram_type == DRAM_TYPE_LPDDR4) ? 0 : ref_delay); bool do_ramp_up = (dst_misc_cfg_1 & 2) == 0 || (dst_misc_cfg_1 & 1) != 0; if (!do_ramp_up) { CcfifoWrite(EMC_FBIO_CFG5, reg::Read(EMC + EMC_FBIO_CFG5) & 0xF7FFFFFF, 12); } CcfifoWrite(EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_write_active & 0xBFFFFFFF), 0); if ((dst_misc_cfg_2 & 0x10) == 0) { DvfsPowerRampDown(src_timing, dst_timing, false, 0); } CcfifoWrite(EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_write_active | 0x40000000), 0); uint32_t ramp_down_wait = 0; if (do_ramp_up) { CcfifoWrite(EMC_PMACRO_CMD_PAD_TX_CTRL, src_timing->burst_regs.emc_pmacro_cmd_pad_tx_ctrl | (1 << 26), 0); CcfifoWrite(EMC_FBIO_CFG5, src_timing->burst_regs.emc_fbio_cfg5 | 0x100, 12); bool misc_flag = (dst_misc_cfg_1 & 3) == 3; uint32_t timescale = (100000 << ((dst_misc_cfg_1 >> 2) & 7)); uint32_t delay = (timescale / src_clock_period); if (src_rate_khz > 1150747 || misc_flag) { CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, src_timing->burst_regs.emc_pmacro_brick_ctrl_rfu1 & 0xFEEDFEED, delay + 1); CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, src_timing->burst_regs.emc_pmacro_brick_ctrl_rfu1 & 0xFE40FE40, delay + 1); CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, src_timing->burst_regs.emc_pmacro_brick_ctrl_rfu1 & 0xF800F800, delay + 1); ramp_down_wait = 3 * timescale + 12 * src_clock_period; } else { CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, src_timing->burst_regs.emc_pmacro_brick_ctrl_rfu1 & 0xF800F800, delay + 20); ramp_down_wait = timescale + 32 * src_clock_period; } if (src_rate_khz > 600240 || misc_flag) { CcfifoWrite(EMC_INTSTATUS, 0, delay + 1); ramp_down_wait += 2 * timescale; } } /* Step 12: * Trigger the clock change. */ CcfifoWrite(EMC_STALL_THEN_EXE_AFTER_CLKCHANGE, 1, 0); CcfifoWrite(EMC_INTSTATUS, 0, dst_timing->clkchange_delay); CcfifoWrite(EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_write_active & 0xBFFFFFFF), 0); if ((dst_misc_cfg_2 & 0x10) == 0) { DvfsPowerRampDown(src_timing, dst_timing, false, 1); } if (training_enabled) { CcfifoWrite(EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_write_active | 0x40000000), 0); } /* Step 13: * Ramp up. */ uint32_t ramp_up_wait = 0; if (do_ramp_up) { ramp_up_wait = DvfsPowerRampUp(dst_clock_period, false, src_timing, dst_timing, training); } if (ramp_up_wait < 1001000 && src_timing->ramp_wait != dst_timing->ramp_wait) { CcfifoWrite(EMC_INTSTATUS, 0, 1 + ((1001000 - ramp_up_wait) / dst_clock_period)); } if (do_ramp_up) { CcfifoWrite(EMC_DBG, emc_dbg_write_active, 0); } else { CcfifoWrite(EMC_FBIO_CFG5, reg::Read(EMC + EMC_FBIO_CFG5), 0); CcfifoWrite(EMC_DBG, emc_dbg_write_active, 12); } /* Step 14: * Bringup CKE pins. */ if (dram_type == DRAM_TYPE_LPDDR4) { uint32_t pin_val; if (train_ca || train_ca_vref) { pin_val = (dst_misc_cfg_0 & 1) ? ((emc_pin_o & 0xFFFCFFF8) | (((dst_misc_cfg_0 >> 1) & 3) << 16)) : emc_pin_o; pin_val &= 0xFFFFFFF8; if (dram_dev_num == TWO_RANK) { if (train_second_rank) { pin_val |= 5; } else { pin_val |= 6; } } } else { pin_val = (dst_misc_cfg_0 & 1) ? ((emc_pin_o & 0xFFFCFFFF) | (((dst_misc_cfg_0 >> 1) & 3) << 16)) : emc_pin_o; pin_val &= 0xFFFFFFF8; if (dram_dev_num == TWO_RANK) { pin_val |= 7; } else { pin_val |= 1; } } CcfifoWrite(EMC_PIN, pin_val, 0); } /* Step 15: * Calculate zqlatch wait time; has dependency on ramping times. */ uint32_t dst_t_pdex_hz = 1000 * dst_t_pdex; uint32_t zq_latch_dvfs_wait_time; if (dst_clock_period <= zqcal_before_cc_cutoff) { zq_latch_dvfs_wait_time = (ramp_up_wait + ramp_down_wait) / dst_clock_period; } else { zq_latch_dvfs_wait_time = util::DivideUp(dst_t_pdex_hz, dst_clock_period); } if (!(train_ca || train_ca_vref) && (dram_type == DRAM_TYPE_LPDDR4) && opt_zcal_en_cc) { int offset = (int)((tZQCAL_lpddr4 - adj_dst_t_fc_lpddr4) / dst_clock_period) - (int)zq_latch_dvfs_wait_time; int addl_wait = (int)util::DivideUp(dst_t_pdex_hz, dst_clock_period); if (dram_dev_num == TWO_RANK) { if (shared_zq_resistor) { if (dst_clock_period > zqcal_before_cc_cutoff) { CcfifoWrite(EMC_ZQ_CAL, (2 << 30) | (1 << 0), std::max(0, addl_wait)); } CcfifoWrite(EMC_ZQ_CAL, (2 << 30) | (1 << 1), std::max(0, offset + addl_wait)); CcfifoWrite(EMC_ZQ_CAL, (1 << 30) | (1 << 0), 0); if (!training_enabled) { CcfifoWrite(EMC_MRW3, (mr13_flip_fspop & 0xFFFFFFF7) | 0xC000000 | (dst_misc_cfg_2 & 8), 0); CcfifoWrite(EMC_SELF_REF, 0, 0); CcfifoWrite(EMC_REF, 0, 0); } CcfifoWrite(EMC_ZQ_CAL, (1 << 30) | (1 << 1), zq_wait_short + div_14000_by_dst_period + (tZQCAL_lpddr4 / dst_clock_period)); } else { if (dst_clock_period > zqcal_before_cc_cutoff) { CcfifoWrite(EMC_ZQ_CAL, (0 << 30) | (1 << 0), std::max(0, addl_wait)); } if (!training_enabled) { CcfifoWrite(EMC_MRW3, (mr13_flip_fspop & 0xFFFFFFF7) | 0xC000000 | (dst_misc_cfg_2 & 8), std::max(0, addl_wait)); CcfifoWrite(EMC_SELF_REF, 0, 0); CcfifoWrite(EMC_REF, 0, 0); } CcfifoWrite(EMC_ZQ_CAL, (0 << 30) | (1 << 1), div_14000_by_dst_period + std::max(0, offset)); } } else { if (dst_clock_period > zqcal_before_cc_cutoff) { CcfifoWrite(EMC_ZQ_CAL, (2 << 30) | (1 << 0), std::max(0, addl_wait)); } if (!training_enabled) { CcfifoWrite(EMC_MRW3, (mr13_flip_fspop & 0xFFFFFFF7) | 0xC000000 | (dst_misc_cfg_2 & 8), std::max(0, addl_wait)); CcfifoWrite(EMC_SELF_REF, 0, 0); CcfifoWrite(EMC_REF, 0x80000000, 0); } CcfifoWrite(EMC_ZQ_CAL, (2 << 30) | (1 << 1), div_14000_by_dst_period + std::max(0, offset)); } } /* WAR: delay for zqlatch */ CcfifoWrite(EMC_INTSTATUS, 0, 10); /* Step 16: * LPDDR4 Conditional Training Kickoff. */ if (training_enabled && dram_type == DRAM_TYPE_LPDDR4) { if (opt_do_sw_qrst) { CcfifoWrite(EMC_ISSUE_QRST, 1, 0); CcfifoWrite(EMC_ISSUE_QRST, 0, 2); } CcfifoWrite(EMC_INTSTATUS, 0, (1020000 / dst_clock_period)); { uint32_t train_cmd = 0; if (train_ca) { train_cmd |= (1 << 1); /* CA */ } if (train_ca_vref) { train_cmd |= (1 << 5); /* CA_VREF */ } if (train_wr) { train_cmd |= (1 << 3); /* WR */ } if (train_wr_vref) { train_cmd |= (1 << 6); /* WR_VREF */ } if (train_rd) { train_cmd |= (1 << 2); /* RD */ } if (train_rd_vref) { train_cmd |= (1 << 7); /* RD_VREF */ } train_cmd |= (1 << 31); /* GO */ CcfifoWrite(EMC_TRAINING_CMD, train_cmd, 0); } CcfifoWrite(EMC_SWITCH_BACK_CTRL, 1, 0); if (!(train_ca || train_ca_vref) || train_second_rank) { CcfifoWrite(EMC_MRW3, mr13_flip_fspop ^ 0xC0, 0); CcfifoWrite(EMC_INTSTATUS, 0, (1000000 / dst_clock_period)); } { uint32_t pin_val = (dst_misc_cfg_0 & 1) ? ((emc_pin_o & 0xFFFCFFFF) | (((dst_misc_cfg_0 >> 1) & 3) << 16)) : emc_pin_o; CcfifoWrite(EMC_PIN, pin_val & 0xFFFFFFF8, 0); } CcfifoWrite(EMC_CFG_SYNC, 1, 0); if ((src_misc_cfg_1 & 3) != 2) { CcfifoWrite(EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_write_active | 0x40000000), 0); CcfifoWrite(EMC_PMACRO_CMD_PAD_TX_CTRL, dst_timing->burst_regs.emc_pmacro_cmd_pad_tx_ctrl | (1 << 26), 0); CcfifoWrite(EMC_FBIO_CFG5, dst_timing->burst_regs.emc_fbio_cfg5 | 0x100, 12); bool misc_flag = (src_misc_cfg_1 & 3) == 3; uint32_t timescale = (100000 << ((src_misc_cfg_1 >> 2) & 7)); uint32_t delay = (timescale / dst_clock_period); if (dst_rate_khz > 1150747 || misc_flag) { CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, dst_timing->burst_regs.emc_pmacro_brick_ctrl_rfu1 & 0xFEEDFEED, delay + 1); CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, dst_timing->burst_regs.emc_pmacro_brick_ctrl_rfu1 & 0xFE40FE40, delay + 1); CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, dst_timing->burst_regs.emc_pmacro_brick_ctrl_rfu1 & 0xF800F800, delay + 1); } else { CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, dst_timing->burst_regs.emc_pmacro_brick_ctrl_rfu1 & 0xF800F800, delay + 20); } if (dst_rate_khz > 600240 || misc_flag) { CcfifoWrite(EMC_INTSTATUS, 0, delay + 1); } } else { CcfifoWrite(EMC_FBIO_CFG5, reg::Read(EMC + EMC_FBIO_CFG5) & 0xF7FFFFFF, 12); CcfifoWrite(EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_write_active | 0x40000000), 0); } CcfifoWrite(EMC_STALL_THEN_EXE_AFTER_CLKCHANGE, 1, 0); CcfifoWrite(EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_write_active & 0xBFFFFFFF), 0); if ((dst_misc_cfg_2 & 0x10) == 0) { DvfsPowerRampDown(src_timing, dst_timing, true, 1); } if ((src_misc_cfg_1 & 3) != 2) { DvfsPowerRampUp(src_clock_period, true, src_timing, dst_timing, training); if (ramp_up_wait < 1001000 && src_timing->ramp_wait != dst_timing->ramp_wait) { CcfifoWrite(EMC_INTSTATUS, 0, 1 + ((1001000 - ramp_up_wait) / dst_clock_period)); } CcfifoWrite(EMC_DBG, emc_dbg_write_active, 0); } else { if (ramp_up_wait < 1001000 && src_timing->ramp_wait != dst_timing->ramp_wait) { CcfifoWrite(EMC_INTSTATUS, 0, 1 + ((1001000 - ramp_up_wait) / dst_clock_period)); } CcfifoWrite(EMC_FBIO_CFG5, reg::Read(EMC + EMC_FBIO_CFG5), 0); CcfifoWrite(EMC_DBG, emc_dbg_write_active, 12); } { uint32_t pin_val = (src_misc_cfg_0 & 1) ? ((emc_pin_o & 0xFFFCFFFF) | (((src_misc_cfg_0 >> 1) & 3) << 16)) : emc_pin_o; pin_val &= 0xFFFFFFF8; pin_val |= (dram_dev_num == TWO_RANK) ? 7 : 1; CcfifoWrite(EMC_PIN, pin_val, 0); } if (train_ca || train_ca_vref) { CcfifoWrite(EMC_TR_CTRL_0, 0x2A, (200000 / src_clock_period)); CcfifoWrite(EMC_TR_CTRL_0, 0x20, (1000000 / src_clock_period)); CcfifoWrite(EMC_MRW3, mr13_catr_enable & 0xFFFFFFFE, 0); CcfifoWrite(EMC_INTSTATUS, 0, (1000000 / src_clock_period)); CcfifoWrite(EMC_PMACRO_DATA_RX_TERM_MODE, src_timing->burst_regs.emc_pmacro_data_rx_term_mode, 0); } CcfifoWrite(EMC_DBG, emc_dbg_o, 0); if (opt_zcal_en_cc) { if (shared_zq_resistor) { CcfifoWrite(EMC_ZQ_CAL, (2 << 30) | (1 << 0), 0); CcfifoWrite(EMC_ZQ_CAL, (2 << 30) | (1 << 1), 1 + util::DivideUp(1000000, src_clock_period)); if ((!(train_ca || train_ca_vref) || train_second_rank) && dram_dev_num == TWO_RANK) { CcfifoWrite(EMC_ZQ_CAL, (1 << 30) | (1 << 0), 0); CcfifoWrite(EMC_ZQ_CAL, (1 << 30) | (1 << 1), 1 + util::DivideUp(1000000, src_clock_period)); } } else { CcfifoWrite(EMC_ZQ_CAL, (dram_dev_num == ONE_RANK ? (2 << 30) : (0 << 30)) | (1 << 0), 0); CcfifoWrite(EMC_ZQ_CAL, (dram_dev_num == ONE_RANK ? (2 << 30) : (0 << 30)) | (1 << 1), 1 + util::DivideUp(1000000, src_clock_period)); } } if (!(train_ca || train_ca_vref)) { CcfifoWrite(EMC_MRW3, ((mr13_flip_fspop & 0xF3FFFFF7) | (dst_misc_cfg_2 & 8)) ^ 0x0C0000C0, 0); } CcfifoWrite(EMC_SELF_REF, 0x0, 0); } /* Step 17: * exit self refresh. */ if (dram_type != DRAM_TYPE_LPDDR4) { CcfifoWrite(EMC_SELF_REF, 0, 0); } /* Step 18: * Send MRWs to LPDDR3/DDR3. */ if (is_lpddr2) { CcfifoWrite(EMC_MRW2, dst_timing->emc_mrw2, 0); CcfifoWrite(EMC_MRW, dst_timing->emc_mrw, 0); if (is_lpddr3) { CcfifoWrite(EMC_MRW4, dst_timing->emc_mrw4, 0); } } else if (dram_type == DRAM_TYPE_DDR4) { if (opt_dll_mode) { CcfifoWrite(EMC_EMRS, dst_timing->emc_emrs & ~(1 << 26), 0); } CcfifoWrite(EMC_EMRS2, dst_timing->emc_emrs2 & ~(1 << 26), 0); CcfifoWrite(EMC_MRS, dst_timing->emc_mrs | (1 << 26), 0); } /* Step 19: * ZQCAL for LPDDR3/DDR3 */ if (opt_zcal_en_cc) { if (is_lpddr2) { uint32_t zq_op = opt_cc_short_zcal ? dst_timing->zq_op_cc_short_zcal : dst_timing->zq_op_cc_long_zcal; uint32_t zcal_wait_time_ps = opt_cc_short_zcal ? dst_timing->zcal_wait_time_ps_cc_short_zcal : dst_timing->zcal_wait_time_ps_cc_long_zcal; uint32_t zcal_wait_time_clocks = util::DivideUp(zcal_wait_time_ps, dst_clock_period); CcfifoWrite(EMC_MRS_WAIT_CNT2, (zcal_wait_time_clocks & 0x3FF) | ((zcal_wait_time_clocks & 0x7FF) << 16), 0); CcfifoWrite(EMC_MRW, (zq_op | 0x880C0000) - 0x20000, 0); if (dram_dev_num == TWO_RANK) { CcfifoWrite(EMC_MRW, zq_op | 0x480A0000, 0); } } else if (dram_type == DRAM_TYPE_DDR4) { CcfifoWrite(EMC_ZQ_CAL, (2 << 30) | (1 << 0) | (opt_cc_short_zcal ? 0 : (1 << 4)), 0); if (dram_dev_num == TWO_RANK) { CcfifoWrite(EMC_ZQ_CAL, (1 << 30) | (1 << 0) | (opt_cc_short_zcal ? 0 : (1 << 4)), 0); } } } /* Step 20: * Issue ref and optional QRST. */ if (training_enabled || dram_type != DRAM_TYPE_LPDDR4) { CcfifoWrite(EMC_REF, dram_dev_num == ONE_RANK ? 0x80000000 : 0x00000000, 0); } if (opt_do_sw_qrst) { CcfifoWrite(EMC_ISSUE_QRST, 1, 0); CcfifoWrite(EMC_ISSUE_QRST, 0, 2); } /* Step 21: * Restore ZCAL and ZCAL interval. */ if (save_restore_clkstop_pd || opt_zcal_en_cc || (training_enabled && dram_type == DRAM_TYPE_LPDDR4)) { CcfifoWrite(EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_o), 0); if (opt_zcal_en_cc) { if (training_enabled) { CcfifoWrite(EMC_ZCAL_INTERVAL, (dst_misc_cfg_2 & 2) ? 0 : src_timing->burst_regs.emc_zcal_interval, 0); } else if (dram_type != DRAM_TYPE_LPDDR4) { CcfifoWrite(EMC_ZCAL_INTERVAL, (dst_misc_cfg_2 & 2) ? 0 : dst_timing->burst_regs.emc_zcal_interval, 0); } } if (save_restore_clkstop_pd || (training_enabled && dram_type == DRAM_TYPE_LPDDR4)) { CcfifoWrite(EMC_CFG, dst_timing->burst_regs.emc_cfg & ~(1 << 28), 0); } if (training_enabled && dram_type == DRAM_TYPE_LPDDR4) { CcfifoWrite(EMC_SEL_DPD_CTRL, src_timing->emc_sel_dpd_ctrl, 0); } CcfifoWrite(EMC_DBG, emc_dbg_o, 0); } /* Step 22: * Restore EMC_CFG_PIPE_CLK. */ CcfifoWrite(EMC_CFG_PIPE_CLK, emc_cfg_pipe_clk_o, 0); CcfifoWrite(EMC_INTSTATUS, 0, dst_timing->pipe_clk_delay); /* Step 23: * Do clock change. */ if (training_enabled) { uint32_t clk_source_emc; if (ch0_enable || ch1_enable) { clk_source_emc = reg::Read(CLKRST + CLK_RST_CONTROLLER_CLK_SOURCE_EMC); reg::Write(CLKRST + CLK_RST_CONTROLLER_CLK_SOURCE_EMC_SAFE, clk_source_emc); } else { clk_source_emc = 0; } ChangeDllSrc(src_timing, clk_source_emc); } { uint32_t dig_dll = (reg::Read(EMC + EMC_CFG_DIG_DLL) & 0xFFFFFFE4) | 8; if ((dst_misc_cfg_2 & 1) == 0) { dig_dll = (dig_dll & 0xFFFFFF3F) | 0x80; } reg::Write(EMC + EMC_CFG_DIG_DLL, dig_dll); reg::Read(EMC + EMC_CFG_DIG_DLL); } reg::Read(MC + MC_EMEM_ADR_CFG); reg::Read(EMC + EMC_INTSTATUS); if (ch0_enable || ch1_enable) { reg::Write(CLKRST + CLK_RST_CONTROLLER_CLK_SOURCE_EMC, dst_clk_src); reg::Read(CLKRST + CLK_RST_CONTROLLER_CLK_SOURCE_EMC); } if (WaitForUpdate(EMC_INTSTATUS, (1 << 4), true, dst_emc_fbio_cfg7)) { return; } /* Step 24: * Save training results. */ if (training_enabled) { uint32_t tmp_emem_numdev = reg::Read(MC + MC_EMEM_ADR_CFG) & 1; uint32_t emc_dbg_tmp = reg::Read(EMC + EMC_DBG); reg::Write(EMC + EMC_DBG, emc_dbg_tmp | 1); /* Set READ_MUX to ASSEMBLY. */ uint32_t tmp_dram_dev_num = 1 + tmp_emem_numdev; /* Save CA results. */ if (train_ca) { dst_timing->trim_perch_regs.emc0_cmd_brlshft_0 = reg::Read(EMC0 + EMC_CMD_BRLSHFT_0); dst_timing->trim_perch_regs.emc1_cmd_brlshft_1 = reg::Read(EMC1 + EMC_CMD_BRLSHFT_1); dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank0_4 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_4); dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank0_5 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_5); if (train_bit_level) { dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd0_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD0_0); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd0_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD0_1); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd0_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD0_2); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd1_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD1_0); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd1_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD1_1); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd1_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD1_2); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd2_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD2_0); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd2_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD2_1); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd2_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD2_2); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd3_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD3_0); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd3_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD3_1); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd3_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD3_2); } } /* Save CA_VREF results. */ if (train_ca_vref) { uint32_t emc0_training_opt_ca_vref = reg::Read(EMC0 + EMC_TRAINING_OPT_CA_VREF); uint32_t emc1_training_opt_ca_vref = reg::Read(EMC1 + EMC_TRAINING_OPT_CA_VREF); uint32_t rank_mask = tmp_dram_dev_num == TWO_RANK ? 0x480C0000 : 0xC80C0000; dst_timing->burst_perch_regs.emc0_mrw10 = (emc0_training_opt_ca_vref & 0xFFFF) | 0x880C0000; dst_timing->burst_perch_regs.emc1_mrw10 = (emc1_training_opt_ca_vref & 0xFFFF) | 0x880C0000; dst_timing->burst_perch_regs.emc0_mrw11 = (rank_mask & 0xFFFFFF00) | ((emc0_training_opt_ca_vref >> 16) & 0xFFFF); dst_timing->burst_perch_regs.emc1_mrw11 = (rank_mask & 0xFFFFFF00) | ((emc1_training_opt_ca_vref >> 16) & 0xFFFF); } /* Save RD results. */ if (train_rd) { dst_timing->trim_regs.emc_pmacro_ib_ddll_long_dqs_rank0_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_0); dst_timing->trim_regs.emc_pmacro_ib_ddll_long_dqs_rank0_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_1); dst_timing->trim_regs.emc_pmacro_ib_ddll_long_dqs_rank0_2 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_2); dst_timing->trim_regs.emc_pmacro_ib_ddll_long_dqs_rank0_3 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_3); if (tmp_dram_dev_num == TWO_RANK) { dst_timing->trim_regs.emc_pmacro_ib_ddll_long_dqs_rank1_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_0); dst_timing->trim_regs.emc_pmacro_ib_ddll_long_dqs_rank1_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_1); dst_timing->trim_regs.emc_pmacro_ib_ddll_long_dqs_rank1_2 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_2); dst_timing->trim_regs.emc_pmacro_ib_ddll_long_dqs_rank1_3 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_3); } if (train_bit_level) { dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte0_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE0_0); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte0_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE0_1); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte0_2 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE0_2); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte1_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE1_0); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte1_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE1_1); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte1_2 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE1_2); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte2_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE2_0); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte2_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE2_1); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte2_2 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE2_2); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte3_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE3_0); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte3_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE3_1); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte3_2 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE3_2); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte4_0 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE4_0); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte4_1 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE4_1); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte4_2 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE4_2); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte5_0 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE5_0); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte5_1 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE5_1); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte5_2 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE5_2); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte6_0 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE6_0); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte6_1 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE6_1); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte6_2 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE6_2); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte7_0 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE7_0); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte7_1 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE7_1); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte7_2 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE7_2); if (tmp_dram_dev_num == TWO_RANK) { dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte0_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE0_0); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte0_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE0_1); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte0_2 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE0_2); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte1_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE1_0); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte1_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE1_1); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte1_2 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE1_2); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte2_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE2_0); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte2_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE2_1); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte2_2 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE2_2); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte3_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE3_0); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte3_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE3_1); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte3_2 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE3_2); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte4_0 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE4_0); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte4_1 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE4_1); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte4_2 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE4_2); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte5_0 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE5_0); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte5_1 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE5_1); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte5_2 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE5_2); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte6_0 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE6_0); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte6_1 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE6_1); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte6_2 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE6_2); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte7_0 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE7_0); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte7_1 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE7_1); dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte7_2 = reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE7_2); } } /* Save RD_VREF results. */ if (train_rd_vref) { uint32_t emc_pmacro_ib_vref_dq_0 = reg::Read(EMC0 + EMC_PMACRO_IB_VREF_DQ_0); uint32_t emc_pmacro_ib_vref_dq_1 = reg::Read(EMC0 + EMC_PMACRO_IB_VREF_DQ_1); #define GET_SAVE_RESTORE_MOD_REG(n) ((dst_timing->save_restore_mod_regs[n] & 0x80000000) ? (~dst_timing->save_restore_mod_regs[n]) : (dst_timing->save_restore_mod_regs[n])) uint8_t ib_vref_dq_byte0_icr = ((emc_pmacro_ib_vref_dq_0 >> 0) & 0x7F) + (GET_SAVE_RESTORE_MOD_REG(0) & 0x7F); uint8_t ib_vref_dq_byte1_icr = ((emc_pmacro_ib_vref_dq_0 >> 8) & 0x7F) + (GET_SAVE_RESTORE_MOD_REG(1) & 0x7F); uint8_t ib_vref_dq_byte2_icr = ((emc_pmacro_ib_vref_dq_0 >> 16) & 0x7F) + (GET_SAVE_RESTORE_MOD_REG(2) & 0x7F); uint8_t ib_vref_dq_byte3_icr = ((emc_pmacro_ib_vref_dq_0 >> 24) & 0x7F) + (GET_SAVE_RESTORE_MOD_REG(3) & 0x7F); uint8_t ib_vref_dq_byte4_icr = ((emc_pmacro_ib_vref_dq_1 >> 0) & 0x7F) + (GET_SAVE_RESTORE_MOD_REG(4) & 0x7F); uint8_t ib_vref_dq_byte5_icr = ((emc_pmacro_ib_vref_dq_1 >> 8) & 0x7F) + (GET_SAVE_RESTORE_MOD_REG(5) & 0x7F); uint8_t ib_vref_dq_byte6_icr = ((emc_pmacro_ib_vref_dq_1 >> 16) & 0x7F) + (GET_SAVE_RESTORE_MOD_REG(6) & 0x7F); uint8_t ib_vref_dq_byte7_icr = ((emc_pmacro_ib_vref_dq_1 >> 24) & 0x7F) + (GET_SAVE_RESTORE_MOD_REG(7) & 0x7F); dst_timing->trim_regs.emc_pmacro_ib_vref_dq_0 = ((ib_vref_dq_byte0_icr & 0x7F) | (ib_vref_dq_byte1_icr & 0x7F) << 8) | ((ib_vref_dq_byte2_icr & 0x7F) << 16) | ((ib_vref_dq_byte3_icr & 0x7F) << 24); dst_timing->trim_regs.emc_pmacro_ib_vref_dq_1 = ((ib_vref_dq_byte4_icr & 0x7F) | (ib_vref_dq_byte5_icr & 0x7F) << 8) | ((ib_vref_dq_byte6_icr & 0x7F) << 16) | ((ib_vref_dq_byte7_icr & 0x7F) << 24); #undef GET_SAVE_RESTORE_MOD_REG } } /* Save WR results. */ if (train_wr) { dst_timing->trim_perch_regs.emc0_data_brlshft_0 = reg::Read(EMC0 + EMC_DATA_BRLSHFT_0); dst_timing->trim_perch_regs.emc1_data_brlshft_0 = reg::Read(EMC1 + EMC_DATA_BRLSHFT_0); if (tmp_dram_dev_num == TWO_RANK) { dst_timing->trim_perch_regs.emc0_data_brlshft_1 = reg::Read(EMC0 + EMC_DATA_BRLSHFT_1); dst_timing->trim_perch_regs.emc1_data_brlshft_1 = reg::Read(EMC1 + EMC_DATA_BRLSHFT_1); } dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank0_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0); dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank0_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1); dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank0_2 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2); dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank0_3 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3); if (tmp_dram_dev_num == TWO_RANK) { dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank1_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0); dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank1_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1); dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank1_2 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2); dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank1_3 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3); } if (train_bit_level) { dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte0_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_0); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte0_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_1); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte0_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_2); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte1_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_0); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte1_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_1); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte1_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_2); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte2_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_0); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte2_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_1); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte2_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_2); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte3_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_0); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte3_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_1); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte3_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_2); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte4_0 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_0); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte4_1 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_1); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte4_2 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_2); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte5_0 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_0); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte5_1 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_1); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte5_2 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_2); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte6_0 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_0); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte6_1 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_1); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte6_2 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_2); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte7_0 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_0); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte7_1 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_1); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte7_2 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_2); if (tmp_dram_dev_num == TWO_RANK) { dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte0_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_0); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte0_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_1); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte0_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_2); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte1_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_0); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte1_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_1); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte1_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_2); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte2_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_0); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte2_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_1); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte2_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_2); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte3_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_0); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte3_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_1); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte3_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_2); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte4_0 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_0); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte4_1 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_1); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte4_2 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_2); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte5_0 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_0); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte5_1 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_1); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte5_2 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_2); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte6_0 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_0); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte6_1 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_1); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte6_2 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_2); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte7_0 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_0); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte7_1 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_1); dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte7_2 = reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_2); } } /* Save WR_VREF results. */ if (train_wr_vref) { uint32_t emc0_training_opt_dq_ob_vref = reg::Read(EMC0 + EMC_TRAINING_OPT_DQ_OB_VREF); uint32_t emc1_training_opt_dq_ob_vref = reg::Read(EMC1 + EMC_TRAINING_OPT_DQ_OB_VREF); #define GET_SAVE_RESTORE_MOD_REG(n) ((dst_timing->save_restore_mod_regs[n] & 0x80000000) ? (~dst_timing->save_restore_mod_regs[n]) : (dst_timing->save_restore_mod_regs[n])) uint8_t mod_reg_8 = GET_SAVE_RESTORE_MOD_REG( 8); uint8_t mod_reg_9 = GET_SAVE_RESTORE_MOD_REG( 9); uint8_t mod_reg_10 = GET_SAVE_RESTORE_MOD_REG(10); uint8_t mod_reg_11 = GET_SAVE_RESTORE_MOD_REG(11); #undef GET_SAVE_RESTORE_MOD_REG uint32_t rank_mask = tmp_dram_dev_num == TWO_RANK ? 0x480E0000 : 0xC80E0000; uint8_t emc0_mrw12_byte0 = (mod_reg_8 + ((emc0_training_opt_dq_ob_vref >> 0) & 0xFF)); uint8_t emc0_mrw12_byte1 = (mod_reg_9 + ((emc0_training_opt_dq_ob_vref >> 8) & 0xFF)); uint8_t emc0_mrw13_byte0 = (mod_reg_8 + ((emc0_training_opt_dq_ob_vref >> 16) & 0xFF)); uint8_t emc0_mrw13_byte1 = (mod_reg_9 + ((emc0_training_opt_dq_ob_vref >> 24) & 0xFF)); uint8_t emc1_mrw12_byte0 = (mod_reg_10 + ((emc1_training_opt_dq_ob_vref >> 0) & 0xFF)); uint8_t emc1_mrw12_byte1 = (mod_reg_11 + ((emc1_training_opt_dq_ob_vref >> 8) & 0xFF)); uint8_t emc1_mrw13_byte0 = (mod_reg_10 + ((emc1_training_opt_dq_ob_vref >> 16) & 0xFF)); uint8_t emc1_mrw13_byte1 = (mod_reg_11 + ((emc1_training_opt_dq_ob_vref >> 24) & 0xFF)); dst_timing->burst_perch_regs.emc0_mrw12 = (emc0_mrw12_byte0 << 0) | (emc0_mrw12_byte1 << 8) | 0x880E0000; dst_timing->burst_perch_regs.emc1_mrw12 = (emc1_mrw12_byte0 << 0) | (emc1_mrw12_byte1 << 8) | 0x880E0000; dst_timing->burst_perch_regs.emc1_mrw13 = (emc1_mrw13_byte0 << 0) | (emc1_mrw13_byte1 << 8) | rank_mask; dst_timing->burst_perch_regs.emc0_mrw13 = (emc0_mrw13_byte0 << 0) | (emc0_mrw13_byte1 << 8) | rank_mask; } } reg::Write(EMC + EMC_DBG, emc_dbg_tmp); } /* Step 25: * Program MC updown registers. */ if (dst_timing->rate_khz > src_timing->rate_khz && !training_enabled) { for (u32 i = 0; i < dst_timing->num_up_down; i++) { reg::Write(LaScaleRegisters[i], dst_timing->la_scale_regs_arr[i]); } /* Request a timing update. */ TimingUpdate(dst_emc_fbio_cfg7); } /* Step 26: * Restore ZCAL registers. */ if (dram_type == DRAM_TYPE_LPDDR4 && !training_enabled) { reg::Write(EMC + EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_o)); reg::Write(EMC + EMC_ZCAL_WAIT_CNT, dst_timing->burst_regs.emc_zcal_wait_cnt); reg::Write(EMC + EMC_ZCAL_INTERVAL, (dst_misc_cfg_2 & 2) ? 0 : dst_timing->burst_regs.emc_zcal_interval); reg::Write(EMC + EMC_DBG, emc_dbg_o); } if (dram_type != DRAM_TYPE_LPDDR4 && opt_cc_short_zcal && opt_zcal_en_cc && !opt_short_zcal) { util::WaitMicroSeconds(2); if (is_lpddr2) { reg::Write(EMC + EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_o)); reg::Write(EMC + EMC_MRS_WAIT_CNT, dst_timing->burst_regs.emc_mrs_wait_cnt); reg::Write(EMC + EMC_DBG, emc_dbg_o); } else if (dram_type == DRAM_TYPE_DDR4) { reg::Write(EMC + EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_o)); reg::Write(EMC + EMC_ZCAL_WAIT_CNT, dst_timing->burst_regs.emc_zcal_wait_cnt); reg::Write(EMC + EMC_DBG, emc_dbg_o); } } if (training_enabled) { if (!src_timing->pllm_misc1_0_pllm_clamp_ph90) { reg::SetBits(CLKRST + CLK_RST_CONTROLLER_PLLM_MISC1, 0x80000000); } } else { if (!dst_timing->pllm_misc1_0_pllm_clamp_ph90) { reg::SetBits(CLKRST + CLK_RST_CONTROLLER_PLLM_MISC1, 0x80000000); } } /* Step 27: * Restore EMC_CFG, FDPD registers. */ reg::Write(EMC + EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_o)); reg::Write(EMC + EMC_CFG, dst_timing->burst_regs.emc_cfg); reg::Write(EMC + EMC_DBG, emc_dbg_o); reg::Write(EMC + EMC_FDPD_CTRL_CMD_NO_RAMP, dst_timing->emc_fdpd_ctrl_cmd_no_ramp); reg::Write(EMC + EMC_SEL_DPD_CTRL, dst_timing->emc_sel_dpd_ctrl); /* Step 28: * Training recover. */ if (training_enabled && dram_type == DRAM_TYPE_LPDDR4) { reg::Write(EMC + EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_o)); reg::Write(EMC + EMC_CFG, dst_timing->burst_regs.emc_cfg); reg::Write(EMC + EMC_SEL_DPD_CTRL, dst_timing->emc_sel_dpd_ctrl); reg::Write(EMC + EMC_ZCAL_WAIT_CNT, src_timing->burst_regs.emc_zcal_wait_cnt); reg::Write(EMC + EMC_ZCAL_INTERVAL, (dst_misc_cfg_2 & 2) ? 0 : dst_timing->burst_regs.emc_zcal_interval); reg::Write(EMC + EMC_AUTO_CAL_CONFIG2, dst_timing->emc_auto_cal_config2); if (ch0_enable || ch1_enable) { reg::Write(EMC0 + EMC_AUTO_CAL_CONFIG3, dst_timing->emc_auto_cal_config3); reg::Write(EMC0 + EMC_AUTO_CAL_CONFIG4, dst_timing->emc_auto_cal_config4); reg::Write(EMC0 + EMC_AUTO_CAL_CONFIG5, dst_timing->emc_auto_cal_config5); reg::Write(EMC0 + EMC_AUTO_CAL_CONFIG6, dst_timing->emc_auto_cal_config6); reg::Write(EMC0 + EMC_AUTO_CAL_CONFIG7, dst_timing->emc_auto_cal_config7); reg::Write(EMC0 + EMC_AUTO_CAL_CONFIG8, dst_timing->emc_auto_cal_config8); } reg::Write(EMC + EMC_DBG, emc_dbg_o); reg::Write(EMC + EMC_TR_DVFS, dst_timing->burst_regs.emc_tr_dvfs & ~(1 << 0)); } /* Step 29: * Power fix WAR. */ reg::Write(EMC + EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_o)); reg::Write(EMC + EMC_PMACRO_AUTOCAL_CFG_COMMON, dst_timing->burst_regs.emc_pmacro_autocal_cfg_common); reg::Write(EMC + EMC_DBG, emc_dbg_o); reg::Write(EMC + EMC_PMACRO_CFG_PM_GLOBAL_0, 0xFF0000); reg::Write(EMC + EMC_PMACRO_TRAINING_CTRL_0, 0x8); reg::Write(EMC + EMC_PMACRO_TRAINING_CTRL_1, 0x8); reg::Write(EMC + EMC_PMACRO_CFG_PM_GLOBAL_0, 0); reg::Write(EMC + EMC_DBG, SetShadowBypass(ACTIVE, emc_dbg_o)); /* Fixup xm2comppadctrl */ if ((dst_misc_cfg_1 & 0x20) == 0) { uint32_t xm2comppadctrl = reg::Read(EMC + EMC_XM2COMPPADCTRL); reg::Write(EMC + EMC_XM2COMPPADCTRL, xm2comppadctrl & 0x1CFFFFFF); util::WaitMicroSeconds(1); reg::Write(EMC + EMC_XM2COMPPADCTRL, xm2comppadctrl & 0x0CFFFFFF); util::WaitMicroSeconds(1); reg::Write(EMC + EMC_XM2COMPPADCTRL, xm2comppadctrl & 0x04FFFFFF); util::WaitMicroSeconds(1); } reg::SetBits(EMC + EMC_PMACRO_DLL_CFG_1, 0x2000); reg::Read(EMC + EMC_PMACRO_DLL_CFG_1); util::WaitMicroSeconds(2); /* Select EMC DLL clock source. */ { reg::SetBits(CLKRST + CLK_RST_CONTROLLER_CLK_SOURCE_EMC_DLL, 0xC00); reg::Read(CLKRST + CLK_RST_CONTROLLER_CLK_SOURCE_EMC_DLL); } reg::Write(EMC + EMC_DBG, SetShadowBypass(ASSEMBLY, emc_dbg_o)); reg::Read(EMC + EMC_DBG); /* Step 30: * Re-enable autocal. */ if (!training_enabled) { if (dst_timing->burst_regs.emc_cfg_dig_dll & 1) { uint32_t dig_dll = (reg::Read(EMC + EMC_CFG_DIG_DLL) & 0xFFFFFFE4) | 9; if ((dst_misc_cfg_2 & 1) == 0) { dig_dll = (dig_dll & 0xFFFFFF3F) | 0x80; } reg::Write(EMC + EMC_CFG_DIG_DLL, dig_dll); /* Request a timing update. */ TimingUpdate(dst_emc_fbio_cfg7); } } if (!(training_enabled && dram_type == DRAM_TYPE_LPDDR4)) { reg::Write(EMC + EMC_AUTO_CAL_CONFIG, training_enabled ? src_timing->emc_auto_cal_config : dst_timing->emc_auto_cal_config); } if (training_enabled) { g_fsp_for_next_freq = !g_fsp_for_next_freq; } if (src_timing->periodic_training) { /* Reset all clock tree values. */ src_timing->current_dram_clktree_c0d0u0 = src_timing->trained_dram_clktree_c0d0u0; src_timing->current_dram_clktree_c0d0u1 = src_timing->trained_dram_clktree_c0d0u1; src_timing->current_dram_clktree_c0d1u0 = src_timing->trained_dram_clktree_c0d1u0; src_timing->current_dram_clktree_c0d1u1 = src_timing->trained_dram_clktree_c0d1u1; src_timing->current_dram_clktree_c1d0u0 = src_timing->trained_dram_clktree_c1d0u0; src_timing->current_dram_clktree_c1d0u1 = src_timing->trained_dram_clktree_c1d0u1; src_timing->current_dram_clktree_c1d1u0 = src_timing->trained_dram_clktree_c1d1u0; src_timing->current_dram_clktree_c1d1u1 = src_timing->trained_dram_clktree_c1d1u1; } /* Disable pll. */ PllDisable(dst_clk_src); } void CleanupActiveShadowCopy(EmcDvfsTimingTable *src_timing, EmcDvfsTimingTable *dst_timing) { /* Change CFG_SWAP to ASSEMBLY_ONLY */ uint32_t emc_dbg = reg::Read(EMC + EMC_DBG); emc_dbg = ((emc_dbg & 0xF3FFFFFF) | 0x8000000); reg::Write(EMC + EMC_DBG, emc_dbg); /* Wait for update. */ TimingUpdate(src_timing->emc_fbio_cfg7); /* Change CFG_SWAP to ACTIVE_ONLY */ emc_dbg = reg::Read(EMC + EMC_DBG); emc_dbg &= 0xF3FFFFFF; reg::Write(EMC + EMC_DBG, emc_dbg); /* Set PMACRO_DLL_CFG_1, preserving MDDLL_SEL_CLK_SRC */ reg::Write(EMC + EMC_PMACRO_DLL_CFG_1, (reg::Read(EMC + EMC_PMACRO_DLL_CFG_1) & 0x00002000) | (src_timing->burst_regs.emc_pmacro_dll_cfg_1 & 0xFFFFDFFF)); /* Update CFG_DIG_DLL */ uint32_t emc_cfg_dig_dll = reg::Read(EMC + EMC_CFG_DIG_DLL); emc_cfg_dig_dll = (dst_timing->misc_cfg_2 & 1) ? (emc_cfg_dig_dll & 0xFFFFFFFE) : ((emc_cfg_dig_dll & 0xFFFFFF3E) | 0x80); reg::Write(EMC + EMC_CFG_DIG_DLL, emc_cfg_dig_dll); /* Wait for update. */ TimingUpdate(src_timing->emc_fbio_cfg7); /* Disable or enable DLL */ emc_cfg_dig_dll = reg::Read(EMC + EMC_CFG_DIG_DLL); if (src_timing->burst_regs.emc_cfg_dig_dll & 1) { emc_cfg_dig_dll |= 0x01; } else { emc_cfg_dig_dll &= 0xFFFFFFFE; } if ((dst_timing->misc_cfg_2 & 1) == 0) { emc_cfg_dig_dll = ((emc_cfg_dig_dll & 0xFFFFFF3F) | 0x80); } reg::Write(EMC + EMC_CFG_DIG_DLL, emc_cfg_dig_dll); /* Wait for update. */ TimingUpdate(src_timing->emc_fbio_cfg7); /* Wait for DLL_LOCK to be set */ WaitForUpdate(EMC_DIG_DLL_STATUS, (1 << 2), true, src_timing->emc_fbio_cfg7); /* Wait for update. */ TimingUpdate(src_timing->emc_fbio_cfg7); /* Set AUTO_CAL_CONFIG. */ uint32_t emc_auto_cal_config = reg::Read(EMC + EMC_AUTO_CAL_CONFIG); emc_auto_cal_config = (dst_timing->misc_cfg_2 & 4) ? (emc_auto_cal_config & 0xDFFFF9FF) : ((emc_auto_cal_config & 0x5FFFF9FF) | 0x80000000); reg::Write(EMC + EMC_AUTO_CAL_CONFIG, emc_auto_cal_config | 0x20000000); } void TrainFreq(EmcDvfsTimingTable *src_timing, EmcDvfsTimingTable *dst_timing, u32 next_clk_src) { /* Get dram dev num. */ const u32 dram_dev_num = (reg::Read(MC + MC_EMEM_ADR_CFG) & 1) + 1; /* Write RAM patterns, if first training. */ if (!g_did_first_training) { const auto * const pattern = GetEmcRamTrainingPattern(); for (u32 i = 0; i < 0x100; ++i) { reg::Write(EMC + EMC_TRAINING_PATRAM_DQ, pattern[dst_timing->training_pattern].dq[i]); reg::Write(EMC + EMC_TRAINING_PATRAM_DMI, pattern[dst_timing->training_pattern].dmi[i]); reg::Write(EMC + EMC_TRAINING_PATRAM_CTRL, 0x80000000 | i); } g_did_first_training = true; } reg::Write(EMC + EMC_TRAINING_QUSE_CTRL_MISC, (dst_timing->burst_regs.emc_training_read_ctrl_misc & 0xFFFF0000) | 0x00001000); /* Do training, if we need to. */ const u32 needed_training = dst_timing->needs_training; if (needed_training && !dst_timing->trained) { /* Determine what training to do. */ u32 training_params[4]; u32 num_params = 0; if (needed_training & (CA_TRAINING | CA_VREF_TRAINING)) { training_params[num_params++] = (needed_training & (CA_TRAINING | CA_VREF_TRAINING | BIT_LEVEL_TRAINING)); if (dram_dev_num == TWO_RANK) { training_params[num_params++] = (needed_training & (CA_TRAINING | CA_VREF_TRAINING | TRAIN_SECOND_RANK | BIT_LEVEL_TRAINING)); } } if (needed_training & (WRITE_TRAINING | WRITE_VREF_TRAINING | READ_TRAINING | READ_VREF_TRAINING)) { training_params[num_params++] = (needed_training & (WRITE_TRAINING | WRITE_VREF_TRAINING | READ_TRAINING | READ_VREF_TRAINING | BIT_LEVEL_TRAINING)); } /* Apply all training. */ for (u32 i = 0; i < num_params; ++i) { FreqChange(src_timing, dst_timing, training_params[i], next_clk_src); CleanupActiveShadowCopy(src_timing, dst_timing); } /* Set tables as trained. */ dst_timing->trained = 1; } } void Dvfs(EmcDvfsTimingTable *dst_timing, EmcDvfsTimingTable *src_timing, bool train) { /* Get the clock sources/rates. */ u32 clk_src_emc_from = src_timing->clk_src_emc; u32 clk_src_emc_to = dst_timing->clk_src_emc; u32 rate_from = src_timing->rate_khz; u32 rate_to = dst_timing->rate_khz; /* Get channel enables. */ const bool ch0_enable = reg::GetField(dst_timing->emc_fbio_cfg7, EMC_REG_BITS_MASK(FBIO_CFG7_CH0_ENABLE)) == EMC_FBIO_CFG7_CH0_ENABLE_ENABLE; const bool ch1_enable = reg::GetField(dst_timing->emc_fbio_cfg7, EMC_REG_BITS_MASK(FBIO_CFG7_CH1_ENABLE)) == EMC_FBIO_CFG7_CH1_ENABLE_ENABLE; /* Reprogram pll. */ const u32 prev_2x_clk_src = reg::GetField(clk_src_emc_from, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_SRC)); const u32 next_2x_clk_src = reg::GetField(clk_src_emc_to, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_SRC)); if (next_2x_clk_src != PLLP_OUT0 && next_2x_clk_src != PLLP_UD) { if (ch0_enable || ch1_enable) { if (PllReprogram(rate_to, clk_src_emc_to, rate_from, clk_src_emc_from)) { if (prev_2x_clk_src == PLLMB_UD || prev_2x_clk_src == PLLMB_OUT0) { g_next_pll = 0; } else if (prev_2x_clk_src == PLLM_UD || prev_2x_clk_src == PLLM_OUT0) { g_next_pll = !g_next_pll; } clk_src_emc_to = ProgramPllm(rate_to, clk_src_emc_to, clk_src_emc_to, g_next_pll, dst_timing); } else { if (next_2x_clk_src == PLLM_UD || next_2x_clk_src == PLLMB_UD) { if (g_next_pll) { reg::SetField(clk_src_emc_to, CLK_RST_REG_BITS_VALUE(CLK_SOURCE_EMC_EMC_2X_CLK_SRC, PLLMB_UD)); } } else if (next_2x_clk_src == PLLM_OUT0 || next_2x_clk_src == PLLMB_OUT0) { if (g_next_pll) { reg::SetField(clk_src_emc_to, CLK_RST_REG_BITS_VALUE(CLK_SOURCE_EMC_EMC_2X_CLK_SRC, PLLMB_OUT0)); } } } } } if (train) { TrainFreq(src_timing, dst_timing, clk_src_emc_to); if (ch0_enable || ch1_enable) { if (PllReprogram(dst_timing->rate_khz, dst_timing->clk_src_emc, src_timing->rate_khz, src_timing->clk_src_emc)) { g_next_pll = !g_next_pll; } } } else { FreqChange(src_timing, dst_timing, 0, clk_src_emc_to); } } } void DoMemoryTrainingMariko(bool *out_did_training, int index, void *mtc_tables_buffer) { /* Get timing tables. */ auto *timing = GetEmcDvfsTimingTables(index, mtc_tables_buffer); auto *src_timing = timing + 0; auto *dst_timing = timing + 1; /* Check timing tables. */ if (src_timing->rate_khz != 204000 || dst_timing->rate_khz != 1600000) { ShowFatalError("EmcDvfsTimingTables seem corrupted %" PRIu32 " %" PRIu32 "?\n", src_timing->rate_khz, dst_timing->rate_khz); } /* Check that we should do training. */ if (src_timing->clk_src_emc != reg::Read(CLKRST + CLK_RST_CONTROLLER_CLK_SOURCE_EMC)) { /* Our clock source isn't what's expected, so presumably training has already been done? */ /* Either way, the safe bet is to skip it. */ *out_did_training = false; return; } /* Train 1600MHz. */ Dvfs(dst_timing, src_timing, true); /* Switch to 1600MHz. */ Dvfs(dst_timing, src_timing, false); /* Set ourselves as having done training */ *out_did_training = true; } void RestoreMemoryClockRateMariko(void *mtc_tables_buffer) { /* Get timing tables. */ auto *timing_tables = reinterpret_cast(mtc_tables_buffer); auto *src_timing = timing_tables + 0; auto *dst_timing = timing_tables + 1; /* Check timing tables. */ if (src_timing->rate_khz != 204000 || dst_timing->rate_khz != 1600000) { ShowFatalError("EmcDvfsTimingTables seem corrupted %" PRIu32 " %" PRIu32 "?\n", src_timing->rate_khz, dst_timing->rate_khz); } /* Switch to 204MHz */ Dvfs(src_timing, dst_timing, false); } }