/* * Copyright (c) 2018-2020 Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #ifndef FUSEE_SE_H #define FUSEE_SE_H #define SE_BASE 0x70012000 #define MAKE_SE_REG(n) MAKE_REG32(SE_BASE + n) #define KEYSLOT_SWITCH_LP0TZRAMKEY 0x2 #define KEYSLOT_SWITCH_SRKGENKEY 0x8 #define KEYSLOT_SWITCH_PACKAGE2KEY 0x8 #define KEYSLOT_SWITCH_TEMPKEY 0x9 #define KEYSLOT_SWITCH_SESSIONKEY 0xA #define KEYSLOT_SWITCH_RNGKEY 0xB #define KEYSLOT_SWITCH_MASTERKEY 0xC #define KEYSLOT_SWITCH_DEVICEKEY 0xD /* This keyslot was added in 4.0.0. */ #define KEYSLOT_SWITCH_4XNEWDEVICEKEYGENKEY 0xD #define KEYSLOT_SWITCH_4XNEWCONSOLEKEYGENKEY 0xE #define KEYSLOT_SWITCH_4XOLDDEVICEKEY 0xF /* This keyslot was added in 5.0.0. */ #define KEYSLOT_SWITCH_5XNEWDEVICEKEYGENKEY 0xA /* Mariko keyslots. */ #define KEYSLOT_SWITCH_MASTERKEY_MARIKO 0x7 #define KEYSLOT_AES_MAX 0x10 #define KEYSLOT_RSA_MAX 0x2 #define KEYSIZE_AES_MAX 0x20 #define KEYSIZE_RSA_MAX 0x100 #define ALG_SHIFT (12) #define ALG_DEC_SHIFT (8) #define ALG_NOP (0 << ALG_SHIFT) #define ALG_AES_ENC (1 << ALG_SHIFT) #define ALG_AES_DEC ((1 << ALG_DEC_SHIFT) | ALG_NOP) #define ALG_RNG (2 << ALG_SHIFT) #define ALG_SHA (3 << ALG_SHIFT) #define ALG_RSA (4 << ALG_SHIFT) #define DST_SHIFT (2) #define DST_MEMORY (0 << DST_SHIFT) #define DST_HASHREG (1 << DST_SHIFT) #define DST_KEYTAB (2 << DST_SHIFT) #define DST_SRK (3 << DST_SHIFT) #define DST_RSAREG (4 << DST_SHIFT) #define ENCMODE_SHIFT (24) #define DECMODE_SHIFT (16) #define ENCMODE_SHA256 (5 << ENCMODE_SHIFT) #define HASH_DISABLE (0x0) #define HASH_ENABLE (0x1) #define OP_ABORT 0 #define OP_START 1 #define OP_RESTART 2 #define OP_CTX_SAVE 3 #define OP_RESTART_IN 4 #define CTX_SAVE_SRC_SHIFT 29 #define CTX_SAVE_SRC_STICKY_BITS (0 << CTX_SAVE_SRC_SHIFT) #define CTX_SAVE_SRC_KEYTABLE_AES (2 << CTX_SAVE_SRC_SHIFT) #define CTX_SAVE_SRC_KEYTABLE_RSA (1 << CTX_SAVE_SRC_SHIFT) #define CTX_SAVE_SRC_MEM (4 << CTX_SAVE_SRC_SHIFT) #define CTX_SAVE_SRC_SRK (6 << CTX_SAVE_SRC_SHIFT) #define CTX_SAVE_KEY_LOW_BITS 0 #define CTX_SAVE_KEY_HIGH_BITS 1 #define CTX_SAVE_KEY_ORIGINAL_IV 2 #define CTX_SAVE_KEY_UPDATED_IV 3 #define CTX_SAVE_STICKY_BIT_INDEX_SHIFT 24 #define CTX_SAVE_KEY_INDEX_SHIFT 8 #define CTX_SAVE_RSA_KEY_INDEX_SHIFT 16 #define CTX_SAVE_RSA_KEY_BLOCK_INDEX_SHIFT 12 #define RSA_2048_BYTES 0x100 typedef struct { uint32_t SE_SE_SECURITY; uint32_t SE_TZRAM_SECURITY; uint32_t SE_OPERATION; uint32_t SE_INT_ENABLE; uint32_t SE_INT_STATUS; uint32_t SE_CONFIG; uint32_t SE_IN_LL_ADDR; uint32_t SE_IN_CUR_BYTE_ADDR; uint32_t SE_IN_CUR_LL_ID; uint32_t SE_OUT_LL_ADDR; uint32_t SE_OUT_CUR_BYTE_ADDR; uint32_t SE_OUT_CUR_LL_ID; uint32_t SE_HASH_RESULT[0x10]; uint32_t SE_CTX_SAVE_CONFIG; uint32_t _0x74[0x63]; uint32_t SE_SHA_CONFIG; uint32_t SE_SHA_MSG_LENGTH[0x4]; uint32_t SE_SHA_MSG_LEFT[0x4]; uint32_t _0x224[0x17]; uint32_t SE_CRYPTO_SECURITY_PERKEY; uint32_t SE_CRYPTO_KEYTABLE_ACCESS[0x10]; uint32_t _0x2C4[0x10]; uint32_t SE_CRYPTO_CONFIG; uint32_t SE_CRYPTO_LINEAR_CTR[0x4]; uint32_t SE_CRYPTO_LAST_BLOCK; uint32_t SE_CRYPTO_KEYTABLE_ADDR; uint32_t SE_CRYPTO_KEYTABLE_DATA; uint32_t _0x324[0x3]; uint32_t SE_CRYPTO_KEYTABLE_DST; uint32_t _0x334[0x3]; uint32_t SE_RNG_CONFIG; uint32_t SE_RNG_SRC_CONFIG; uint32_t SE_RNG_RESEED_INTERVAL; uint32_t _0x34C[0x2D]; uint32_t SE_RSA_CONFIG; uint32_t SE_RSA_KEY_SIZE; uint32_t SE_RSA_EXP_SIZE; uint32_t SE_RSA_SECURITY_PERKEY; uint32_t SE_RSA_KEYTABLE_ACCESS[0x2]; uint32_t _0x418[0x2]; uint32_t SE_RSA_KEYTABLE_ADDR; uint32_t SE_RSA_KEYTABLE_DATA; uint32_t SE_RSA_OUTPUT[0x40]; uint32_t _0x528[0xB6]; uint32_t SE_STATUS; uint32_t SE_ERR_STATUS; uint32_t SE_MISC; uint32_t SE_SPARE; uint32_t SE_ENTROPY_DEBUG_COUNTER; uint32_t _0x814; uint32_t _0x818; uint32_t _0x81C; uint32_t _0x820[0x5F8]; } tegra_se_t; typedef struct { uint32_t address; uint32_t size; } se_addr_info_t; typedef struct { uint32_t num_entries; /* Set to total entries - 1 */ se_addr_info_t addr_info; /* This should really be an array...but for our use case it works. */ } se_ll_t; static inline volatile tegra_se_t *se_get_regs(void) { return (volatile tegra_se_t *)SE_BASE; } void se_check_error_status_reg(void); void se_check_for_error(void); void se_trigger_interrupt(void); void se_validate_stored_vector(void); void se_generate_stored_vector(void); void se_verify_flags_cleared(void); void set_aes_keyslot_flags(unsigned int keyslot, unsigned int flags); void set_rsa_keyslot_flags(unsigned int keyslot, unsigned int flags); void clear_aes_keyslot(unsigned int keyslot); void clear_rsa_keyslot(unsigned int keyslot); void set_aes_keyslot(unsigned int keyslot, const void *key, size_t key_size); void decrypt_data_into_keyslot(unsigned int keyslot_dst, unsigned int keyslot_src, const void *wrapped_key, size_t wrapped_key_size); void set_rsa_keyslot(unsigned int keyslot, const void *modulus, size_t modulus_size, const void *exponent, size_t exp_size); void set_aes_keyslot_iv(unsigned int keyslot, const void *iv, size_t iv_size); void set_se_ctr(const void *ctr); /* Secure AES API */ void se_compute_aes_128_cmac(unsigned int keyslot, void *cmac, size_t cmac_size, const void *data, size_t data_size); void se_compute_aes_256_cmac(unsigned int keyslot, void *cmac, size_t cmac_size, const void *data, size_t data_size); void se_aes_128_ecb_encrypt_block(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size); void se_aes_256_ecb_encrypt_block(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size); void se_aes_ctr_crypt(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size, const void *ctr, size_t ctr_size); void se_aes_ecb_decrypt_block(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size); void se_aes_256_cbc_encrypt(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size, const void *iv); void se_aes_128_cbc_decrypt(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size); /* Hash API */ void se_calculate_sha256(void *dst, const void *src, size_t src_size); /* RSA API */ void se_get_exp_mod_output(void *buf, size_t size); void se_synchronous_exp_mod(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size); bool se_rsa2048_pss_verify(const void *signature, size_t signature_size, const void *modulus, size_t modulus_size, const void *data, size_t data_size); /* RNG API */ void se_initialize_rng(unsigned int keyslot); void se_generate_random(unsigned int keyslot, void *dst, size_t size); /* SE context save API. */ void se_generate_srk(unsigned int srkgen_keyslot); void se_set_in_context_save_mode(bool is_context_save_mode); void se_generate_random_key(unsigned int dst_keyslot, unsigned int rng_keyslot); void se_save_context(unsigned int srk_keyslot, unsigned int rng_keyslot, void *dst); #endif