/* * Copyright (c) 2018-2020 Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #pragma once #include #include #if defined(ATMOSPHERE_BOARD_NINTENDO_NX) #include #else #error "Unknown board for KMemoryLayout" #endif namespace ams::kern { constexpr size_t KernelAslrAlignment = 2_MB; constexpr size_t KernelVirtualAddressSpaceWidth = size_t(1ul) << 39ul; constexpr size_t KernelPhysicalAddressSpaceWidth = size_t(1ul) << 48ul; constexpr size_t KernelVirtualAddressSpaceBase = 0ul - KernelVirtualAddressSpaceWidth; constexpr size_t KernelVirtualAddressSpaceEnd = KernelVirtualAddressSpaceBase + (KernelVirtualAddressSpaceWidth - KernelAslrAlignment); constexpr size_t KernelVirtualAddressSpaceLast = KernelVirtualAddressSpaceEnd - 1ul; constexpr size_t KernelVirtualAddressSpaceSize = KernelVirtualAddressSpaceEnd - KernelVirtualAddressSpaceBase; constexpr size_t KernelPhysicalAddressSpaceBase = 0ul; constexpr size_t KernelPhysicalAddressSpaceEnd = KernelPhysicalAddressSpaceBase + KernelPhysicalAddressSpaceWidth; constexpr size_t KernelPhysicalAddressSpaceLast = KernelPhysicalAddressSpaceEnd - 1ul; constexpr size_t KernelPhysicalAddressSpaceSize = KernelPhysicalAddressSpaceEnd - KernelPhysicalAddressSpaceBase; enum KMemoryRegionType : u32 { KMemoryRegionAttr_CarveoutProtected = 0x04000000, KMemoryRegionAttr_DidKernelMap = 0x08000000, KMemoryRegionAttr_ShouldKernelMap = 0x10000000, KMemoryRegionAttr_UserReadOnly = 0x20000000, KMemoryRegionAttr_NoUserMap = 0x40000000, KMemoryRegionAttr_LinearMapped = 0x80000000, KMemoryRegionType_None = 0, KMemoryRegionType_Kernel = 1, KMemoryRegionType_Dram = 2, KMemoryRegionType_CoreLocal = 4, KMemoryRegionType_VirtualKernelPtHeap = 0x2A, KMemoryRegionType_VirtualKernelTraceBuffer = 0x4A, KMemoryRegionType_VirtualKernelInitPt = 0x19A, KMemoryRegionType_VirtualDramMetadataPool = 0x29A, KMemoryRegionType_VirtualDramManagedPool = 0x31A, KMemoryRegionType_VirtualDramApplicationPool = 0x271A, KMemoryRegionType_VirtualDramAppletPool = 0x1B1A, KMemoryRegionType_VirtualDramSystemPool = 0x2B1A, KMemoryRegionType_VirtualDramSystemNonSecurePool = 0x331A, KMemoryRegionType_Uart = 0x1D, KMemoryRegionType_InterruptDistributor = 0x4D | KMemoryRegionAttr_NoUserMap, KMemoryRegionType_InterruptCpuInterface = 0x2D | KMemoryRegionAttr_NoUserMap, KMemoryRegionType_MemoryController = 0x55, KMemoryRegionType_MemoryController0 = 0x95, KMemoryRegionType_MemoryController1 = 0x65, KMemoryRegionType_PowerManagementController = 0x1A5, KMemoryRegionType_KernelAutoMap = KMemoryRegionType_Kernel | KMemoryRegionAttr_ShouldKernelMap, KMemoryRegionType_KernelTemp = 0x31, KMemoryRegionType_KernelCode = 0x19, KMemoryRegionType_KernelStack = 0x29, KMemoryRegionType_KernelMisc = 0x49, KMemoryRegionType_KernelSlab = 0x89, KMemoryRegionType_KernelMiscMainStack = 0xB49, KMemoryRegionType_KernelMiscMappedDevice = 0xD49, KMemoryRegionType_KernelMiscIdleStack = 0x1349, KMemoryRegionType_KernelMiscUnknownDebug = 0x1549, KMemoryRegionType_KernelMiscExceptionStack = 0x2349, KMemoryRegionType_DramLinearMapped = KMemoryRegionType_Dram | KMemoryRegionAttr_LinearMapped, KMemoryRegionType_DramReservedEarly = 0x16 | KMemoryRegionAttr_NoUserMap, KMemoryRegionType_DramPoolPartition = 0x26 | KMemoryRegionAttr_NoUserMap | KMemoryRegionAttr_LinearMapped, KMemoryRegionType_DramMetadataPool = 0x166 | KMemoryRegionAttr_NoUserMap | KMemoryRegionAttr_LinearMapped | KMemoryRegionAttr_CarveoutProtected, KMemoryRegionType_DramNonKernel = 0x1A6 | KMemoryRegionAttr_NoUserMap | KMemoryRegionAttr_LinearMapped, KMemoryRegionType_DramApplicationPool = 0x7A6 | KMemoryRegionAttr_NoUserMap | KMemoryRegionAttr_LinearMapped, KMemoryRegionType_DramAppletPool = 0xBA6 | KMemoryRegionAttr_NoUserMap | KMemoryRegionAttr_LinearMapped, KMemoryRegionType_DramSystemNonSecurePool = 0xDA6 | KMemoryRegionAttr_NoUserMap | KMemoryRegionAttr_LinearMapped, KMemoryRegionType_DramSystemPool = 0x13A6 | KMemoryRegionAttr_NoUserMap | KMemoryRegionAttr_LinearMapped | KMemoryRegionAttr_CarveoutProtected, KMemoryRegionType_DramKernel = 0xE | KMemoryRegionAttr_NoUserMap | KMemoryRegionAttr_CarveoutProtected, KMemoryRegionType_DramKernelCode = 0xCE | KMemoryRegionAttr_NoUserMap | KMemoryRegionAttr_CarveoutProtected, KMemoryRegionType_DramKernelSlab = 0x14E | KMemoryRegionAttr_NoUserMap | KMemoryRegionAttr_CarveoutProtected, KMemoryRegionType_DramKernelPtHeap = 0x24E | KMemoryRegionAttr_NoUserMap | KMemoryRegionAttr_CarveoutProtected | KMemoryRegionAttr_LinearMapped, KMemoryRegionType_DramKernelInitPt = 0x44E | KMemoryRegionAttr_NoUserMap | KMemoryRegionAttr_CarveoutProtected | KMemoryRegionAttr_LinearMapped, /* These regions aren't normally mapped in retail kernel. */ KMemoryRegionType_KernelTraceBuffer = 0xA6 | KMemoryRegionAttr_UserReadOnly | KMemoryRegionAttr_LinearMapped, KMemoryRegionType_OnMemoryBootImage = 0x156, KMemoryRegionType_DTB = 0x256, }; constexpr ALWAYS_INLINE KMemoryRegionType GetTypeForVirtualLinearMapping(u32 type_id) { if (type_id == (type_id | KMemoryRegionType_KernelTraceBuffer)) { return KMemoryRegionType_VirtualKernelTraceBuffer; } else if (type_id == (type_id | KMemoryRegionType_DramKernelPtHeap)) { return KMemoryRegionType_VirtualKernelPtHeap; } else { return KMemoryRegionType_Dram; } } class KMemoryRegion : public util::IntrusiveRedBlackTreeBaseNode { NON_COPYABLE(KMemoryRegion); NON_MOVEABLE(KMemoryRegion); private: uintptr_t address; uintptr_t pair_address; size_t region_size; u32 attributes; u32 type_id; public: static constexpr ALWAYS_INLINE int Compare(const KMemoryRegion &lhs, const KMemoryRegion &rhs) { if (lhs.GetAddress() < rhs.GetAddress()) { return -1; } else if (lhs.GetAddress() <= rhs.GetLastAddress()) { return 0; } else { return 1; } } public: constexpr ALWAYS_INLINE KMemoryRegion() : address(0), pair_address(0), region_size(0), attributes(0), type_id(0) { /* ... */ } constexpr ALWAYS_INLINE KMemoryRegion(uintptr_t a, size_t rs, uintptr_t p, u32 r, u32 t) : address(a), pair_address(p), region_size(rs), attributes(r), type_id(t) { /* ... */ } constexpr ALWAYS_INLINE KMemoryRegion(uintptr_t a, size_t rs, u32 r, u32 t) : KMemoryRegion(a, rs, std::numeric_limits::max(), r, t) { /* ... */ } constexpr ALWAYS_INLINE uintptr_t GetAddress() const { return this->address; } constexpr ALWAYS_INLINE uintptr_t GetPairAddress() const { return this->pair_address; } constexpr ALWAYS_INLINE size_t GetSize() const { return this->region_size; } constexpr ALWAYS_INLINE uintptr_t GetEndAddress() const { return this->GetAddress() + this->GetSize(); } constexpr ALWAYS_INLINE uintptr_t GetLastAddress() const { return this->GetEndAddress() - 1; } constexpr ALWAYS_INLINE u32 GetAttributes() const { return this->attributes; } constexpr ALWAYS_INLINE u32 GetType() const { return this->type_id; } constexpr ALWAYS_INLINE void SetType(u32 type) { MESOSPHERE_INIT_ABORT_UNLESS(this->CanDerive(type)); this->type_id = type; } constexpr ALWAYS_INLINE bool Contains(uintptr_t address) const { return this->GetAddress() <= address && address <= this->GetLastAddress(); } constexpr ALWAYS_INLINE bool IsDerivedFrom(u32 type) const { return (this->GetType() | type) == this->GetType(); } constexpr ALWAYS_INLINE bool HasTypeAttribute(KMemoryRegionType attr) const { return (this->GetType() | attr) == this->GetType(); } constexpr ALWAYS_INLINE bool CanDerive(u32 type) const { return (this->GetType() | type) == type; } constexpr ALWAYS_INLINE void SetPairAddress(uintptr_t a) { this->pair_address = a; } constexpr ALWAYS_INLINE void SetTypeAttribute(KMemoryRegionType attr) { this->type_id |= attr; } }; static_assert(std::is_trivially_destructible::value); class KMemoryRegionTree { public: struct DerivedRegionExtents { const KMemoryRegion *first_region; const KMemoryRegion *last_region; constexpr DerivedRegionExtents() : first_region(nullptr), last_region(nullptr) { /* ... */ } constexpr ALWAYS_INLINE uintptr_t GetAddress() const { return this->first_region->GetAddress(); } constexpr ALWAYS_INLINE uintptr_t GetEndAddress() const { return this->last_region->GetEndAddress(); } constexpr ALWAYS_INLINE size_t GetSize() const { return this->GetEndAddress() - this->GetAddress(); } constexpr ALWAYS_INLINE uintptr_t GetLastAddress() const { return this->GetEndAddress() - 1; } }; private: using TreeType = util::IntrusiveRedBlackTreeBaseTraits::TreeType; public: using value_type = TreeType::value_type; using size_type = TreeType::size_type; using difference_type = TreeType::difference_type; using pointer = TreeType::pointer; using const_pointer = TreeType::const_pointer; using reference = TreeType::reference; using const_reference = TreeType::const_reference; using iterator = TreeType::iterator; using const_iterator = TreeType::const_iterator; private: TreeType tree; public: constexpr ALWAYS_INLINE KMemoryRegionTree() : tree() { /* ... */ } public: iterator FindContainingRegion(uintptr_t address) { return this->find(KMemoryRegion(address, 1, 0, 0)); } iterator FindFirstRegionByTypeAttr(u32 type_id, u32 attr = 0) { for (auto it = this->begin(); it != this->end(); it++) { if (it->GetType() == type_id && it->GetAttributes() == attr) { return it; } } MESOSPHERE_INIT_ABORT(); } iterator FindFirstRegionByType(u32 type_id) { for (auto it = this->begin(); it != this->end(); it++) { if (it->GetType() == type_id) { return it; } } MESOSPHERE_INIT_ABORT(); } iterator TryFindFirstRegionByType(u32 type_id) { for (auto it = this->begin(); it != this->end(); it++) { if (it->GetType() == type_id) { return it; } } return this->end(); } iterator FindFirstDerivedRegion(u32 type_id) { for (auto it = this->begin(); it != this->end(); it++) { if (it->IsDerivedFrom(type_id)) { return it; } } MESOSPHERE_INIT_ABORT(); } iterator TryFindFirstDerivedRegion(u32 type_id) { for (auto it = this->begin(); it != this->end(); it++) { if (it->IsDerivedFrom(type_id)) { return it; } } return this->end(); } DerivedRegionExtents GetDerivedRegionExtents(u32 type_id) const { DerivedRegionExtents extents; MESOSPHERE_INIT_ABORT_UNLESS(extents.first_region == nullptr); MESOSPHERE_INIT_ABORT_UNLESS(extents.last_region == nullptr); for (auto it = this->cbegin(); it != this->cend(); it++) { if (it->IsDerivedFrom(type_id)) { if (extents.first_region == nullptr) { extents.first_region = std::addressof(*it); } extents.last_region = std::addressof(*it); } } MESOSPHERE_INIT_ABORT_UNLESS(extents.first_region != nullptr); MESOSPHERE_INIT_ABORT_UNLESS(extents.last_region != nullptr); return extents; } public: NOINLINE bool Insert(uintptr_t address, size_t size, u32 type_id, u32 new_attr = 0, u32 old_attr = 0); NOINLINE KVirtualAddress GetRandomAlignedRegion(size_t size, size_t alignment, u32 type_id); ALWAYS_INLINE KVirtualAddress GetRandomAlignedRegionWithGuard(size_t size, size_t alignment, u32 type_id, size_t guard_size) { return this->GetRandomAlignedRegion(size + 2 * guard_size, alignment, type_id) + guard_size; } public: /* Iterator accessors. */ iterator begin() { return this->tree.begin(); } const_iterator begin() const { return this->tree.begin(); } iterator end() { return this->tree.end(); } const_iterator end() const { return this->tree.end(); } const_iterator cbegin() const { return this->begin(); } const_iterator cend() const { return this->end(); } iterator iterator_to(reference ref) { return this->tree.iterator_to(ref); } const_iterator iterator_to(const_reference ref) const { return this->tree.iterator_to(ref); } /* Content management. */ bool empty() const { return this->tree.empty(); } reference back() { return this->tree.back(); } const_reference back() const { return this->tree.back(); } reference front() { return this->tree.front(); } const_reference front() const { return this->tree.front(); } /* GCC over-eagerly inlines this operation. */ NOINLINE iterator insert(reference ref) { return this->tree.insert(ref); } NOINLINE iterator erase(iterator it) { return this->tree.erase(it); } iterator find(const_reference ref) const { return this->tree.find(ref); } iterator nfind(const_reference ref) const { return this->tree.nfind(ref); } }; class KMemoryRegionAllocator { NON_COPYABLE(KMemoryRegionAllocator); NON_MOVEABLE(KMemoryRegionAllocator); public: static constexpr size_t MaxMemoryRegions = 1000; friend class KMemoryLayout; private: KMemoryRegion region_heap[MaxMemoryRegions]; size_t num_regions; private: constexpr ALWAYS_INLINE KMemoryRegionAllocator() : region_heap(), num_regions() { /* ... */ } public: ALWAYS_INLINE KMemoryRegion *Allocate() { /* Ensure we stay within the bounds of our heap. */ MESOSPHERE_INIT_ABORT_UNLESS(this->num_regions < MaxMemoryRegions); return &this->region_heap[this->num_regions++]; } template ALWAYS_INLINE KMemoryRegion *Create(Args&&... args) { KMemoryRegion *region = this->Allocate(); new (region) KMemoryRegion(std::forward(args)...); return region; } }; class KMemoryLayout { private: static /* constinit */ inline uintptr_t s_linear_phys_to_virt_diff; static /* constinit */ inline uintptr_t s_linear_virt_to_phys_diff; static /* constinit */ inline KMemoryRegionAllocator s_region_allocator; static /* constinit */ inline KMemoryRegionTree s_virtual_tree; static /* constinit */ inline KMemoryRegionTree s_physical_tree; static /* constinit */ inline KMemoryRegionTree s_virtual_linear_tree; static /* constinit */ inline KMemoryRegionTree s_physical_linear_tree; private: static ALWAYS_INLINE auto GetVirtualLinearExtents(const KMemoryRegionTree::DerivedRegionExtents physical) { return KMemoryRegion(GetInteger(GetLinearVirtualAddress(physical.GetAddress())), physical.GetSize(), 0, KMemoryRegionType_None); } public: static ALWAYS_INLINE KMemoryRegionAllocator &GetMemoryRegionAllocator() { return s_region_allocator; } static ALWAYS_INLINE KMemoryRegionTree &GetVirtualMemoryRegionTree() { return s_virtual_tree; } static ALWAYS_INLINE KMemoryRegionTree &GetPhysicalMemoryRegionTree() { return s_physical_tree; } static ALWAYS_INLINE KMemoryRegionTree &GetVirtualLinearMemoryRegionTree() { return s_virtual_linear_tree; } static ALWAYS_INLINE KMemoryRegionTree &GetPhysicalLinearMemoryRegionTree() { return s_physical_linear_tree; } static ALWAYS_INLINE KMemoryRegionTree::iterator GetEnd(KVirtualAddress) { return GetVirtualLinearMemoryRegionTree().end(); } static ALWAYS_INLINE KMemoryRegionTree::iterator GetEnd(KPhysicalAddress) { return GetPhysicalMemoryRegionTree().end(); } static NOINLINE KMemoryRegionTree::iterator FindContainingRegion(KVirtualAddress address) { return GetVirtualMemoryRegionTree().FindContainingRegion(GetInteger(address)); } static NOINLINE KMemoryRegionTree::iterator FindContainingRegion(KPhysicalAddress address) { return GetPhysicalMemoryRegionTree().FindContainingRegion(GetInteger(address)); } static ALWAYS_INLINE KVirtualAddress GetLinearVirtualAddress(KPhysicalAddress address) { return GetInteger(address) + s_linear_phys_to_virt_diff; } static ALWAYS_INLINE KPhysicalAddress GetLinearPhysicalAddress(KVirtualAddress address) { return GetInteger(address) + s_linear_virt_to_phys_diff; } static NOINLINE KVirtualAddress GetMainStackTopAddress(s32 core_id) { return GetVirtualMemoryRegionTree().FindFirstRegionByTypeAttr(KMemoryRegionType_KernelMiscMainStack, static_cast(core_id))->GetEndAddress(); } static NOINLINE KVirtualAddress GetIdleStackTopAddress(s32 core_id) { return GetVirtualMemoryRegionTree().FindFirstRegionByTypeAttr(KMemoryRegionType_KernelMiscIdleStack, static_cast(core_id))->GetEndAddress(); } static NOINLINE KVirtualAddress GetExceptionStackTopAddress(s32 core_id) { return GetVirtualMemoryRegionTree().FindFirstRegionByTypeAttr(KMemoryRegionType_KernelMiscExceptionStack, static_cast(core_id))->GetEndAddress(); } static NOINLINE KVirtualAddress GetSlabRegionAddress() { return GetVirtualMemoryRegionTree().FindFirstRegionByType(KMemoryRegionType_KernelSlab)->GetAddress(); } static NOINLINE KVirtualAddress GetCoreLocalRegionAddress() { return GetVirtualMemoryRegionTree().FindFirstRegionByType(KMemoryRegionType_CoreLocal)->GetAddress(); } static NOINLINE KVirtualAddress GetInterruptDistributorAddress() { return GetPhysicalMemoryRegionTree().FindFirstDerivedRegion(KMemoryRegionType_InterruptDistributor)->GetPairAddress(); } static NOINLINE KVirtualAddress GetInterruptCpuInterfaceAddress() { return GetPhysicalMemoryRegionTree().FindFirstDerivedRegion(KMemoryRegionType_InterruptCpuInterface)->GetPairAddress(); } static NOINLINE KVirtualAddress GetUartAddress() { return GetPhysicalMemoryRegionTree().FindFirstDerivedRegion(KMemoryRegionType_Uart)->GetPairAddress(); } static NOINLINE KMemoryRegion &GetMemoryControllerRegion() { return *GetPhysicalMemoryRegionTree().FindFirstDerivedRegion(KMemoryRegionType_MemoryController); } static NOINLINE KMemoryRegion &GetMetadataPoolRegion() { return *GetVirtualMemoryRegionTree().FindFirstRegionByType(KMemoryRegionType_VirtualDramMetadataPool); } static NOINLINE KMemoryRegion &GetPageTableHeapRegion() { return *GetVirtualMemoryRegionTree().FindFirstRegionByType(KMemoryRegionType_VirtualKernelPtHeap); } static NOINLINE KMemoryRegion &GetKernelStackRegion() { return *GetVirtualMemoryRegionTree().FindFirstRegionByType(KMemoryRegionType_KernelStack); } static NOINLINE KMemoryRegion &GetTempRegion() { return *GetVirtualMemoryRegionTree().FindFirstRegionByType(KMemoryRegionType_KernelTemp); } static NOINLINE KMemoryRegion &GetKernelTraceBufferRegion() { return *GetVirtualLinearMemoryRegionTree().FindFirstRegionByType(KMemoryRegionType_VirtualKernelTraceBuffer); } static NOINLINE KMemoryRegion &GetVirtualLinearRegion(KVirtualAddress address) { return *GetVirtualLinearMemoryRegionTree().FindContainingRegion(GetInteger(address)); } static NOINLINE const KMemoryRegion *TryGetKernelTraceBufferRegion() { auto &tree = GetPhysicalMemoryRegionTree(); if (KMemoryRegionTree::const_iterator it = tree.TryFindFirstDerivedRegion(KMemoryRegionType_KernelTraceBuffer); it != tree.end()) { return std::addressof(*it); } else { return nullptr; } } static NOINLINE const KMemoryRegion *TryGetOnMemoryBootImageRegion() { auto &tree = GetPhysicalMemoryRegionTree(); if (KMemoryRegionTree::const_iterator it = tree.TryFindFirstDerivedRegion(KMemoryRegionType_OnMemoryBootImage); it != tree.end()) { return std::addressof(*it); } else { return nullptr; } } static NOINLINE const KMemoryRegion *TryGetDTBRegion() { auto &tree = GetPhysicalMemoryRegionTree(); if (KMemoryRegionTree::const_iterator it = tree.TryFindFirstDerivedRegion(KMemoryRegionType_DTB); it != tree.end()) { return std::addressof(*it); } else { return nullptr; } } static NOINLINE bool IsHeapPhysicalAddress(const KMemoryRegion **out, KPhysicalAddress address, const KMemoryRegion *hint = nullptr) { auto &tree = GetPhysicalLinearMemoryRegionTree(); KMemoryRegionTree::const_iterator it = tree.end(); if (hint != nullptr) { it = tree.iterator_to(*hint); } if (it == tree.end() || !it->Contains(GetInteger(address))) { it = tree.FindContainingRegion(GetInteger(address)); } if (it != tree.end() && it->IsDerivedFrom(KMemoryRegionType_DramNonKernel)) { if (out) { *out = std::addressof(*it); } return true; } return false; } static NOINLINE bool IsHeapPhysicalAddress(const KMemoryRegion **out, KPhysicalAddress address, size_t size, const KMemoryRegion *hint = nullptr) { auto &tree = GetPhysicalLinearMemoryRegionTree(); KMemoryRegionTree::const_iterator it = tree.end(); if (hint != nullptr) { it = tree.iterator_to(*hint); } if (it == tree.end() || !it->Contains(GetInteger(address))) { it = tree.FindContainingRegion(GetInteger(address)); } if (it != tree.end() && it->IsDerivedFrom(KMemoryRegionType_DramNonKernel)) { const uintptr_t last_address = GetInteger(address) + size - 1; do { if (last_address <= it->GetLastAddress()) { if (out) { *out = std::addressof(*it); } return true; } it++; } while (it != tree.end() && it->IsDerivedFrom(KMemoryRegionType_DramNonKernel)); } return false; } static NOINLINE bool IsLinearMappedPhysicalAddress(const KMemoryRegion **out, KPhysicalAddress address, const KMemoryRegion *hint = nullptr) { auto &tree = GetPhysicalLinearMemoryRegionTree(); KMemoryRegionTree::const_iterator it = tree.end(); if (hint != nullptr) { it = tree.iterator_to(*hint); } if (it == tree.end() || !it->Contains(GetInteger(address))) { it = tree.FindContainingRegion(GetInteger(address)); } if (it != tree.end() && it->IsDerivedFrom(KMemoryRegionAttr_LinearMapped)) { if (out) { *out = std::addressof(*it); } return true; } return false; } static NOINLINE bool IsLinearMappedPhysicalAddress(const KMemoryRegion **out, KPhysicalAddress address, size_t size, const KMemoryRegion *hint = nullptr) { auto &tree = GetPhysicalLinearMemoryRegionTree(); KMemoryRegionTree::const_iterator it = tree.end(); if (hint != nullptr) { it = tree.iterator_to(*hint); } if (it == tree.end() || !it->Contains(GetInteger(address))) { it = tree.FindContainingRegion(GetInteger(address)); } if (it != tree.end() && it->IsDerivedFrom(KMemoryRegionAttr_LinearMapped)) { const uintptr_t last_address = GetInteger(address) + size - 1; do { if (last_address <= it->GetLastAddress()) { if (out) { *out = std::addressof(*it); } return true; } it++; } while (it != tree.end() && it->IsDerivedFrom(KMemoryRegionAttr_LinearMapped)); } return false; } static NOINLINE bool IsHeapVirtualAddress(const KMemoryRegion **out, KVirtualAddress address, const KMemoryRegion *hint = nullptr) { auto &tree = GetVirtualLinearMemoryRegionTree(); KMemoryRegionTree::const_iterator it = tree.end(); if (hint != nullptr) { it = tree.iterator_to(*hint); } if (it == tree.end() || !it->Contains(GetInteger(address))) { it = tree.FindContainingRegion(GetInteger(address)); } if (it != tree.end() && it->IsDerivedFrom(KMemoryRegionType_VirtualDramManagedPool)) { if (out) { *out = std::addressof(*it); } return true; } return false; } static NOINLINE bool IsHeapVirtualAddress(const KMemoryRegion **out, KVirtualAddress address, size_t size, const KMemoryRegion *hint = nullptr) { auto &tree = GetVirtualLinearMemoryRegionTree(); KMemoryRegionTree::const_iterator it = tree.end(); if (hint != nullptr) { it = tree.iterator_to(*hint); } if (it == tree.end() || !it->Contains(GetInteger(address))) { it = tree.FindContainingRegion(GetInteger(address)); } if (it != tree.end() && it->IsDerivedFrom(KMemoryRegionType_VirtualDramManagedPool)) { const uintptr_t last_address = GetInteger(address) + size - 1; do { if (last_address <= it->GetLastAddress()) { if (out) { *out = std::addressof(*it); } return true; } it++; } while (it != tree.end() && it->IsDerivedFrom(KMemoryRegionType_VirtualDramManagedPool)); } return false; } static NOINLINE std::tuple GetTotalAndKernelMemorySizes() { size_t total_size = 0, kernel_size = 0; for (auto it = GetPhysicalMemoryRegionTree().cbegin(); it != GetPhysicalMemoryRegionTree().cend(); it++) { if (it->IsDerivedFrom(KMemoryRegionType_Dram)) { total_size += it->GetSize(); if (!it->IsDerivedFrom(KMemoryRegionType_DramNonKernel)) { kernel_size += it->GetSize(); } } } return std::make_tuple(total_size, kernel_size); } static void InitializeLinearMemoryRegionTrees(KPhysicalAddress aligned_linear_phys_start, KVirtualAddress linear_virtual_start); static NOINLINE auto GetKernelRegionExtents() { return GetVirtualMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_Kernel); } static NOINLINE auto GetKernelCodeRegionExtents() { return GetVirtualMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_KernelCode); } static NOINLINE auto GetKernelStackRegionExtents() { return GetVirtualMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_KernelStack); } static NOINLINE auto GetKernelMiscRegionExtents() { return GetVirtualMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_KernelMisc); } static NOINLINE auto GetKernelSlabRegionExtents() { return GetVirtualMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_KernelSlab); } static NOINLINE const KMemoryRegion &GetCoreLocalRegion() { return *GetVirtualMemoryRegionTree().FindFirstRegionByType(KMemoryRegionType_CoreLocal); } static NOINLINE auto GetLinearRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionAttr_LinearMapped); } static NOINLINE auto GetLinearRegionExtents() { return GetVirtualLinearExtents(GetLinearRegionPhysicalExtents()); } static NOINLINE auto GetMainMemoryPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_Dram); } static NOINLINE auto GetCarveoutRegionExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionAttr_CarveoutProtected); } static NOINLINE auto GetKernelRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramKernel); } static NOINLINE auto GetKernelCodeRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramKernelCode); } static NOINLINE auto GetKernelSlabRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramKernelSlab); } static NOINLINE auto GetKernelPageTableHeapRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramKernelPtHeap); } static NOINLINE auto GetKernelInitPageTableRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramKernelInitPt); } static NOINLINE auto GetKernelPoolPartitionRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramPoolPartition); } static NOINLINE auto GetKernelMetadataPoolRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramMetadataPool); } static NOINLINE auto GetKernelSystemPoolRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramSystemPool); } static NOINLINE auto GetKernelSystemNonSecurePoolRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramSystemNonSecurePool); } static NOINLINE auto GetKernelAppletPoolRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramAppletPool); } static NOINLINE auto GetKernelApplicationPoolRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_DramApplicationPool); } static NOINLINE auto GetKernelTraceBufferRegionPhysicalExtents() { return GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_KernelTraceBuffer); } }; namespace init { /* These should be generic, regardless of board. */ void SetupCoreLocalRegionMemoryRegions(KInitialPageTable &page_table, KInitialPageAllocator &page_allocator); void SetupPoolPartitionMemoryRegions(); /* These may be implemented in a board-specific manner. */ void SetupDevicePhysicalMemoryRegions(); void SetupDramPhysicalMemoryRegions(); } }