#include #include "utils.h" #include "interrupt.h" #include "se.h" #include "memory_map.h" #include "cache.h" #include "se.h" /* Macro for the SE registers. */ #define SECURITY_ENGINE ((volatile security_engine_t *)(mmio_get_device_address(MMIO_DEVID_SE))) void trigger_se_rsa_op(void *buf, size_t size); void trigger_se_blocking_op(unsigned int op, void *dst, size_t dst_size, const void *src, size_t src_size); /* Globals for driver. */ static unsigned int (*g_se_callback)(void); static unsigned int g_se_modulus_sizes[KEYSLOT_RSA_MAX]; static unsigned int g_se_exp_sizes[KEYSLOT_RSA_MAX]; /* Initialize a SE linked list. */ void ll_init(se_ll_t *ll, void *buffer, size_t size) { ll->num_entries = 0; /* 1 Entry. */ if (buffer != NULL) { ll->addr_info.address = (uint32_t) get_physical_address(buffer); ll->addr_info.size = (uint32_t) size; } else { ll->addr_info.address = 0; ll->addr_info.size = 0; } flush_dcache_range((uint8_t *)ll, (uint8_t *)ll + sizeof(*ll)); } void set_security_engine_callback(unsigned int (*callback)(void)) { if (callback == NULL || g_se_callback != NULL) { generic_panic(); } g_se_callback = callback; } /* Fires on Security Engine operation completion. */ void se_operation_completed(void) { SECURITY_ENGINE->INT_ENABLE_REG = 0; if (g_se_callback != NULL) { g_se_callback(); g_se_callback = NULL; } } void se_check_for_error(void) { if (SECURITY_ENGINE->INT_STATUS_REG & 0x10000 || SECURITY_ENGINE->FLAGS_REG & 3 || SECURITY_ENGINE->ERR_STATUS_REG) { generic_panic(); } } void se_trigger_interrupt(void) { intr_set_pending(INTERRUPT_ID_USER_SECURITY_ENGINE); } void se_verify_flags_cleared(void) { if (SECURITY_ENGINE->FLAGS_REG & 3) { generic_panic(); } } void se_clear_interrupts(void) { /* TODO */ } /* Set the flags for an AES keyslot. */ void set_aes_keyslot_flags(unsigned int keyslot, unsigned int flags) { if (keyslot >= KEYSLOT_AES_MAX) { generic_panic(); } /* Misc flags. */ if (flags & ~0x80) { SECURITY_ENGINE->AES_KEYSLOT_FLAGS[keyslot] = ~flags; } /* Disable keyslot reads. */ if (flags & 0x80) { SECURITY_ENGINE->AES_KEY_READ_DISABLE_REG &= ~(1 << keyslot); } } /* Set the flags for an RSA keyslot. */ void set_rsa_keyslot_flags(unsigned int keyslot, unsigned int flags) { if (keyslot >= KEYSLOT_RSA_MAX) { generic_panic(); } /* Misc flags. */ if (flags & ~0x80) { /* TODO: Why are flags assigned this way? */ SECURITY_ENGINE->RSA_KEYSLOT_FLAGS[keyslot] = (((flags >> 4) & 4) | (flags & 3)) ^ 7; } /* Disable keyslot reads. */ if (flags & 0x80) { SECURITY_ENGINE->RSA_KEY_READ_DISABLE_REG &= ~(1 << keyslot); } } void clear_aes_keyslot(unsigned int keyslot) { if (keyslot >= KEYSLOT_AES_MAX) { generic_panic(); } /* Zero out the whole keyslot and IV. */ for (unsigned int i = 0; i < 0x10; i++) { SECURITY_ENGINE->AES_KEYTABLE_ADDR = (keyslot << 4) | i; SECURITY_ENGINE->AES_KEYTABLE_DATA = 0; } } void clear_rsa_keyslot(unsigned int keyslot) { if (keyslot >= KEYSLOT_RSA_MAX) { generic_panic(); } /* Zero out the whole keyslot. */ for (unsigned int i = 0; i < 0x40; i++) { /* Select Keyslot Modulus[i] */ SECURITY_ENGINE->RSA_KEYTABLE_ADDR = (keyslot << 7) | i | 0x40; SECURITY_ENGINE->RSA_KEYTABLE_DATA = 0; } for (unsigned int i = 0; i < 0x40; i++) { /* Select Keyslot Expontent[i] */ SECURITY_ENGINE->RSA_KEYTABLE_ADDR = (keyslot << 7) | i; SECURITY_ENGINE->RSA_KEYTABLE_DATA = 0; } } void set_aes_keyslot(unsigned int keyslot, const void *key, size_t key_size) { if (keyslot >= KEYSLOT_AES_MAX || key_size > KEYSIZE_AES_MAX) { generic_panic(); } for (size_t i = 0; i < (key_size >> 2); i++) { SECURITY_ENGINE->AES_KEYTABLE_ADDR = (keyslot << 4) | i; SECURITY_ENGINE->AES_KEYTABLE_DATA = read32le(key, 4 * i); } } void set_rsa_keyslot(unsigned int keyslot, const void *modulus, size_t modulus_size, const void *exponent, size_t exp_size) { if (keyslot >= KEYSLOT_RSA_MAX || modulus_size > KEYSIZE_RSA_MAX || exp_size > KEYSIZE_RSA_MAX) { generic_panic(); } for (size_t i = 0; i < (modulus_size >> 2); i++) { SECURITY_ENGINE->RSA_KEYTABLE_ADDR = (keyslot << 7) | 0x40 | i; SECURITY_ENGINE->RSA_KEYTABLE_DATA = read32be(modulus, 4 * i); } for (size_t i = 0; i < (exp_size >> 2); i++) { SECURITY_ENGINE->RSA_KEYTABLE_ADDR = (keyslot << 7) | i; SECURITY_ENGINE->RSA_KEYTABLE_DATA = read32be(exponent, 4 * i); } g_se_modulus_sizes[keyslot] = modulus_size; g_se_exp_sizes[keyslot] = exp_size; } void set_aes_keyslot_iv(unsigned int keyslot, const void *iv, size_t iv_size) { if (keyslot >= KEYSLOT_AES_MAX || iv_size > 0x10) { generic_panic(); } for (size_t i = 0; i < (iv_size >> 2); i++) { SECURITY_ENGINE->AES_KEYTABLE_ADDR = (keyslot << 4) | 8 | i; SECURITY_ENGINE->AES_KEYTABLE_DATA = read32le(iv, 4 * i); } } void clear_aes_keyslot_iv(unsigned int keyslot) { if (keyslot >= KEYSLOT_AES_MAX) { generic_panic(); } for (size_t i = 0; i < (0x10 >> 2); i++) { SECURITY_ENGINE->AES_KEYTABLE_ADDR = (keyslot << 4) | 8; SECURITY_ENGINE->AES_KEYTABLE_DATA = 0; } } void set_se_ctr(const void *ctr) { for (unsigned int i = 0; i < 4; i++) { SECURITY_ENGINE->CRYPTO_CTR_REG[i] = read32le(ctr, i * 4); } } void decrypt_data_into_keyslot(unsigned int keyslot_dst, unsigned int keyslot_src, const void *wrapped_key, size_t wrapped_key_size) { if (keyslot_dst >= KEYSLOT_AES_MAX || keyslot_src >= KEYSIZE_AES_MAX || wrapped_key_size > KEYSIZE_AES_MAX) { generic_panic(); } SECURITY_ENGINE->CONFIG_REG = (ALG_AES_DEC | DST_KEYTAB); SECURITY_ENGINE->CRYPTO_REG = keyslot_src << 24; SECURITY_ENGINE->BLOCK_COUNT_REG = 0; SECURITY_ENGINE->CRYPTO_KEYTABLE_DST_REG = keyslot_dst << 8; flush_dcache_range(wrapped_key, (const uint8_t *)wrapped_key + wrapped_key_size); /* TODO: trigger_se_aes_op(OP_START, NULL, 0, wrapped_key, wrapped_key_size); */ } void se_aes_crypt_insecure_internal(unsigned int keyslot, uint32_t out_ll_paddr, uint32_t in_ll_paddr, size_t size, unsigned int crypt_config, bool encrypt, unsigned int (*callback)(void)) { if (keyslot >= KEYSLOT_AES_MAX) { generic_panic(); } if (size == 0) { return; } /* Setup Config register. */ if (encrypt) { SECURITY_ENGINE->CONFIG_REG = (ALG_AES_ENC | DST_MEMORY); } else { SECURITY_ENGINE->CONFIG_REG = (ALG_AES_DEC | DST_MEMORY); } /* Setup Crypto register. */ SECURITY_ENGINE->CRYPTO_REG = crypt_config | (keyslot << 24) | (encrypt << 8); /* Mark this encryption as insecure -- this makes the SE not a secure busmaster. */ SECURITY_ENGINE->CRYPTO_REG |= 0x80000000; /* Appropriate number of blocks. */ SECURITY_ENGINE->BLOCK_COUNT_REG = (size >> 4) - 1; /* Set the callback, for after the async operation. */ set_security_engine_callback(callback); /* Enable SE Interrupt firing for async op. */ SECURITY_ENGINE->INT_ENABLE_REG = 0x10; /* Setup Input/Output lists */ SECURITY_ENGINE->IN_LL_ADDR_REG = in_ll_paddr; SECURITY_ENGINE->OUT_LL_ADDR_REG = out_ll_paddr; /* Set registers for operation. */ SECURITY_ENGINE->ERR_STATUS_REG = SECURITY_ENGINE->ERR_STATUS_REG; SECURITY_ENGINE->INT_STATUS_REG = SECURITY_ENGINE->INT_STATUS_REG; SECURITY_ENGINE->OPERATION_REG = 1; /* Ensure writes go through. */ __asm__ __volatile__ ("dsb ish" : : : "memory"); } void se_aes_ctr_crypt_insecure(unsigned int keyslot, uint32_t out_ll_paddr, uint32_t in_ll_paddr, size_t size, const void *ctr, unsigned int (*callback)(void)) { /* Unknown what this write does, but official code writes it for CTR mode. */ SECURITY_ENGINE->_0x80C = 1; set_se_ctr(ctr); se_aes_crypt_insecure_internal(keyslot, out_ll_paddr, in_ll_paddr, size, 0x81E, true, callback); } void se_aes_cbc_encrypt_insecure(unsigned int keyslot, uint32_t out_ll_paddr, uint32_t in_ll_paddr, size_t size, const void *iv, unsigned int (*callback)(void)) { set_aes_keyslot_iv(keyslot, iv, 0x10); se_aes_crypt_insecure_internal(keyslot, out_ll_paddr, in_ll_paddr, size, 0x44, true, callback); } void se_aes_cbc_decrypt_insecure(unsigned int keyslot, uint32_t out_ll_paddr, uint32_t in_ll_paddr, size_t size, const void *iv, unsigned int (*callback)(void)) { set_aes_keyslot_iv(keyslot, iv, 0x10); se_aes_crypt_insecure_internal(keyslot, out_ll_paddr, in_ll_paddr, size, 0x66, false, callback); } void se_exp_mod(unsigned int keyslot, void *buf, size_t size, unsigned int (*callback)(void)) { uint8_t stack_buf[KEYSIZE_RSA_MAX]; if (keyslot >= KEYSLOT_RSA_MAX || size > KEYSIZE_RSA_MAX) { generic_panic(); } /* Endian swap the input. */ for (size_t i = size; i > 0; i--) { stack_buf[i] = *((uint8_t *)buf + size - i); } SECURITY_ENGINE->CONFIG_REG = (ALG_RSA | DST_RSAREG); SECURITY_ENGINE->RSA_CONFIG = keyslot << 24; SECURITY_ENGINE->RSA_KEY_SIZE_REG = (g_se_modulus_sizes[keyslot] >> 6) - 1; SECURITY_ENGINE->RSA_EXP_SIZE_REG = g_se_exp_sizes[keyslot] >> 2; set_security_engine_callback(callback); /* Enable SE Interrupt firing for async op. */ SECURITY_ENGINE->INT_ENABLE_REG = 0x10; flush_dcache_range(stack_buf, stack_buf + KEYSIZE_RSA_MAX); trigger_se_rsa_op(stack_buf, size); while (!(SECURITY_ENGINE->INT_STATUS_REG & 2)) { /* Wait a while */ } } void se_synchronous_exp_mod(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size) { uint8_t stack_buf[KEYSIZE_RSA_MAX]; if (keyslot >= KEYSLOT_RSA_MAX || src_size > KEYSIZE_RSA_MAX || dst_size > KEYSIZE_RSA_MAX) { generic_panic(); } /* Endian swap the input. */ for (size_t i = src_size; i > 0; i--) { stack_buf[i] = *((uint8_t *)src + src_size - i); } SECURITY_ENGINE->CONFIG_REG = (ALG_RSA | DST_RSAREG); SECURITY_ENGINE->RSA_CONFIG = keyslot << 24; SECURITY_ENGINE->RSA_KEY_SIZE_REG = (g_se_modulus_sizes[keyslot] >> 6) - 1; SECURITY_ENGINE->RSA_EXP_SIZE_REG = g_se_exp_sizes[keyslot] >> 2; flush_dcache_range(stack_buf, stack_buf + KEYSIZE_RSA_MAX); trigger_se_blocking_op(1, NULL, 0, stack_buf, src_size); se_get_exp_mod_output(dst, dst_size); } void se_get_exp_mod_output(void *buf, size_t size) { size_t num_dwords = (size >> 2); if (num_dwords < 1) { return; } uint32_t *p_out = ((uint32_t *)buf) + num_dwords - 1; uint32_t offset = 0; /* Copy endian swapped output. */ while (num_dwords) { *p_out = read32be(SECURITY_ENGINE->RSA_OUTPUT, offset); offset += 4; p_out--; num_dwords--; } } void trigger_se_rsa_op(void *buf, size_t size) { se_ll_t in_ll; ll_init(&in_ll, (void *)buf, size); /* Set the input LL. */ SECURITY_ENGINE->IN_LL_ADDR_REG = get_physical_address(&in_ll); /* Set registers for operation. */ SECURITY_ENGINE->ERR_STATUS_REG = SECURITY_ENGINE->ERR_STATUS_REG; SECURITY_ENGINE->INT_STATUS_REG = SECURITY_ENGINE->INT_STATUS_REG; SECURITY_ENGINE->OPERATION_REG = 1; /* Ensure writes go through. */ __asm__ __volatile__ ("dsb ish" : : : "memory"); } void trigger_se_blocking_op(unsigned int op, void *dst, size_t dst_size, const void *src, size_t src_size) { se_ll_t in_ll; se_ll_t out_ll; ll_init(&in_ll, (void *)src, src_size); ll_init(&out_ll, dst, dst_size); /* Set the LLs. */ SECURITY_ENGINE->IN_LL_ADDR_REG = get_physical_address(&in_ll); SECURITY_ENGINE->OUT_LL_ADDR_REG = get_physical_address(&out_ll); /* Set registers for operation. */ SECURITY_ENGINE->ERR_STATUS_REG = SECURITY_ENGINE->ERR_STATUS_REG; SECURITY_ENGINE->INT_STATUS_REG = SECURITY_ENGINE->INT_STATUS_REG; SECURITY_ENGINE->OPERATION_REG = op; while (!(SECURITY_ENGINE->INT_STATUS_REG & 0x10)) { /* Wait a while */ } se_check_for_error(); } /* Secure AES Functionality. */ void se_perform_aes_block_operation(void *dst, size_t dst_size, const void *src, size_t src_size) { uint8_t block[0x10] = {0}; if (src_size > sizeof(block) || dst_size > sizeof(block)) { generic_panic(); } /* Load src data into block. */ memcpy(block, src, src_size); flush_dcache_range(block, block + sizeof(block)); /* Trigger AES operation. */ SECURITY_ENGINE->BLOCK_COUNT_REG = 0; trigger_se_blocking_op(1, block, sizeof(block), block, sizeof(block)); /* Copy output data into dst. */ flush_dcache_range(block, block + sizeof(block)); memcpy(dst, block, dst_size); } void se_aes_ctr_crypt(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size, const void *ctr, size_t ctr_size) { if (keyslot >= KEYSLOT_AES_MAX || ctr_size != 0x10) { generic_panic(); } unsigned int num_blocks = src_size >> 4; /* Unknown what this write does, but official code writes it for CTR mode. */ SECURITY_ENGINE->_0x80C = 1; SECURITY_ENGINE->CONFIG_REG = (ALG_AES_ENC | DST_MEMORY); SECURITY_ENGINE->CRYPTO_REG = (keyslot << 24) | 0x91E; set_se_ctr(ctr); /* Handle any aligned blocks. */ size_t aligned_size = (size_t)num_blocks << 4; if (aligned_size) { SECURITY_ENGINE->BLOCK_COUNT_REG = num_blocks - 1; trigger_se_blocking_op(1, dst, dst_size, src, aligned_size); } /* Handle final, unaligned block. */ if (aligned_size < dst_size && aligned_size < src_size) { size_t last_block_size = dst_size - aligned_size; if (src_size < dst_size) { last_block_size = src_size - aligned_size; } se_perform_aes_block_operation(dst + aligned_size, last_block_size, (uint8_t *)src + aligned_size, src_size - aligned_size); } } void se_aes_ecb_encrypt_block(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size, unsigned int config_high) { if (keyslot >= KEYSLOT_AES_MAX || dst_size != 0x10 || src_size != 0x10) { generic_panic(); } /* Set configuration high (256-bit vs 128-bit) based on parameter. */ SECURITY_ENGINE->CONFIG_REG = (ALG_AES_ENC | DST_MEMORY) | (config_high << 16); SECURITY_ENGINE->CRYPTO_REG = keyslot << 24; se_perform_aes_block_operation(dst, 0x10, src, 0x10); } void se_aes_128_ecb_encrypt_block(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size) { se_aes_ecb_encrypt_block(keyslot, dst, dst_size, src, src_size, 0); } void se_aes_256_ecb_encrypt_block(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size) { se_aes_ecb_encrypt_block(keyslot, dst, dst_size, src, src_size, 0x202); } void se_aes_ecb_decrypt_block(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size) { if (keyslot >= KEYSLOT_AES_MAX || dst_size != 0x10 || src_size != 0x10) { generic_panic(); } SECURITY_ENGINE->CONFIG_REG = (ALG_AES_DEC | DST_MEMORY); SECURITY_ENGINE->CRYPTO_REG = keyslot << 24; se_perform_aes_block_operation(dst, 0x10, src, 0x10); } void shift_left_xor_rb(uint8_t *key) { uint8_t prev_high_bit = 0; for (unsigned int i = 0; i < 0x10; i++) { uint8_t cur_byte = key[0xF - i]; key[0xF - i] = (cur_byte << 1) | (prev_high_bit); prev_high_bit = cur_byte >> 7; } if (prev_high_bit) { key[0xF] ^= 0x87; } } void se_compute_aes_cmac(unsigned int keyslot, void *cmac, size_t cmac_size, const void *data, size_t data_size, unsigned int config_high) { if (keyslot >= KEYSLOT_AES_MAX) { generic_panic(); } /* Generate the derived key, to be XOR'd with final output block. */ uint8_t derived_key[0x10]; memset(derived_key, 0, sizeof(derived_key)); se_aes_128_ecb_encrypt_block(keyslot, derived_key, sizeof(derived_key), derived_key, sizeof(derived_key)); shift_left_xor_rb(derived_key); if (data_size & 0xF) { shift_left_xor_rb(derived_key); } SECURITY_ENGINE->CONFIG_REG = (ALG_AES_ENC | DST_HASHREG) | (config_high << 16); SECURITY_ENGINE->CRYPTO_REG = (keyslot << 24) | (0x145); clear_aes_keyslot_iv(keyslot); unsigned int num_blocks = (data_size + 0xF) >> 4; /* Handle aligned blocks. */ if (num_blocks > 1) { SECURITY_ENGINE->BLOCK_COUNT_REG = num_blocks - 2; trigger_se_blocking_op(1, NULL, 0, data, data_size); SECURITY_ENGINE->CRYPTO_REG |= 0x80; } /* Create final block. */ uint8_t last_block[0x10]; memset(last_block, 0, sizeof(last_block)); if (data_size & 0xF) { memcpy(last_block, data + (data_size & ~0xF), data_size & 0xF); last_block[data_size & 0xF] = 0x80; /* Last block = data || 100...0 */ } else if (data_size >= 0x10) { memcpy(last_block, data + data_size - 0x10, 0x10); } for (unsigned int i = 0; i < 0x10; i++) { last_block[i] ^= derived_key[i]; } /* Perform last operation. */ flush_dcache_range(last_block, last_block + sizeof(last_block)); trigger_se_blocking_op(1, NULL, 0, last_block, sizeof(last_block)); /* Copy output CMAC. */ for (unsigned int i = 0; i < (cmac_size >> 2); i++) { ((uint32_t *)cmac)[i] = read32le(SECURITY_ENGINE->HASH_RESULT_REG, i << 2); } } void se_compute_aes_128_cmac(unsigned int keyslot, void *cmac, size_t cmac_size, const void *data, size_t data_size) { se_compute_aes_cmac(keyslot, cmac, cmac_size, data, data_size, 0); } void se_compute_aes_256_cmac(unsigned int keyslot, void *cmac, size_t cmac_size, const void *data, size_t data_size) { se_compute_aes_cmac(keyslot, cmac, cmac_size, data, data_size, 0x202); } /* SHA256 Implementation. */ void se_calculate_sha256(void *dst, const void *src, size_t src_size) { /* Setup config for SHA256, size = BITS(src_size) */ SECURITY_ENGINE->CONFIG_REG = (ENCMODE_SHA256 | ALG_SHA | DST_HASHREG); SECURITY_ENGINE->SHA_CONFIG_REG = 1; SECURITY_ENGINE->SHA_MSG_LENGTH_REG = (unsigned int)(src_size << 3); SECURITY_ENGINE->_0x20C = 0; SECURITY_ENGINE->_0x210 = 0; SECURITY_ENGINE->SHA_MSG_LEFT_REG = 0; SECURITY_ENGINE->_0x218 = (unsigned int)(src_size << 3); SECURITY_ENGINE->_0x21C = 0; SECURITY_ENGINE->_0x220 = 0; SECURITY_ENGINE->_0x224 = 0; /* Trigger the operation. */ trigger_se_blocking_op(1, NULL, 0, src, src_size); /* Copy output hash. */ for (unsigned int i = 0; i < (0x20 >> 2); i++) { ((uint32_t *)dst)[i] = read32be(SECURITY_ENGINE->HASH_RESULT_REG, i << 2); } } /* RNG API */ void se_initialize_rng(unsigned int keyslot) { if (keyslot >= KEYSLOT_AES_MAX) { generic_panic(); } /* To initialize the RNG, we'll perform an RNG operation into an output buffer. */ /* This will be discarded, when done. */ uint8_t output_buf[0x10]; SECURITY_ENGINE->RNG_SRC_CONFIG_REG = 3; /* Entropy enable + Entropy lock enable */ SECURITY_ENGINE->RNG_RESEED_INTERVAL_REG = 70001; SECURITY_ENGINE->CONFIG_REG = (ALG_RNG | DST_MEMORY); SECURITY_ENGINE->CRYPTO_REG = (keyslot << 24) | 0x108; SECURITY_ENGINE->RNG_CONFIG_REG = 5; SECURITY_ENGINE->BLOCK_COUNT_REG = 0; trigger_se_blocking_op(1, output_buf, 0x10, NULL, 0); } void se_generate_random(unsigned int keyslot, void *dst, size_t size) { if (keyslot >= KEYSLOT_AES_MAX) { generic_panic(); } uint32_t num_blocks = size >> 4; size_t aligned_size = num_blocks << 4; SECURITY_ENGINE->CONFIG_REG = (ALG_RNG | DST_MEMORY); SECURITY_ENGINE->CRYPTO_REG = (keyslot << 24) | 0x108; SECURITY_ENGINE->RNG_CONFIG_REG = 4; if (num_blocks >= 1) { SECURITY_ENGINE->BLOCK_COUNT_REG = num_blocks - 1; trigger_se_blocking_op(1, dst, aligned_size, NULL, 0); } if (size > aligned_size) { se_perform_aes_block_operation(dst + aligned_size, size - aligned_size, NULL, 0); } }