/* * Copyright (c) 2018-2020 Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "../amsmitm_fs_utils.hpp" #include "fsmitm_romfs.hpp" namespace ams::mitm::fs { using namespace ams::fs; namespace romfs { namespace { constexpr u32 EmptyEntry = 0xFFFFFFFF; constexpr size_t FilePartitionOffset = 0x200; struct Header { s64 header_size; s64 dir_hash_table_ofs; s64 dir_hash_table_size; s64 dir_table_ofs; s64 dir_table_size; s64 file_hash_table_ofs; s64 file_hash_table_size; s64 file_table_ofs; s64 file_table_size; s64 file_partition_ofs; }; static_assert(util::is_pod
::value && sizeof(Header) == 0x50); struct DirectoryEntry { u32 parent; u32 sibling; u32 child; u32 file; u32 hash; u32 name_size; char name[]; }; static_assert(util::is_pod::value && sizeof(DirectoryEntry) == 0x18); struct FileEntry { u32 parent; u32 sibling; s64 offset; s64 size; u32 hash; u32 name_size; char name[]; }; static_assert(util::is_pod::value && sizeof(FileEntry) == 0x20); template class TableReader { NON_COPYABLE(TableReader); NON_MOVEABLE(TableReader); private: static constexpr size_t MaxCachedSize = (1_MB / 4); static constexpr size_t FallbackCacheSize = 1_KB; private: ams::fs::IStorage *storage; size_t offset; size_t size; size_t cache_idx; void *cache; u8 fallback_cache[FallbackCacheSize]; private: ALWAYS_INLINE void Read(size_t ofs, void *dst, size_t size) { R_ABORT_UNLESS(this->storage->Read(this->offset + ofs, dst, size)); } ALWAYS_INLINE void ReloadCacheImpl(size_t idx) { const size_t rel_ofs = idx * MaxCachedSize; AMS_ABORT_UNLESS(rel_ofs < this->size); const size_t new_cache_size = std::min(this->size - rel_ofs, MaxCachedSize); this->Read(rel_ofs, this->cache, new_cache_size); this->cache_idx = idx; } ALWAYS_INLINE void ReloadCache(size_t idx) { if (this->cache_idx != idx) { this->ReloadCacheImpl(idx); } } ALWAYS_INLINE size_t GetCacheIndex(u32 ofs) { return ofs / MaxCachedSize; } public: TableReader(ams::fs::IStorage *s, size_t ofs, size_t sz) : storage(s), offset(ofs), size(sz), cache_idx(0) { this->cache = std::malloc(std::min(sz, MaxCachedSize)); AMS_ABORT_UNLESS(this->cache != nullptr); this->ReloadCacheImpl(0); } ~TableReader() { std::free(this->cache); } const Entry *GetEntry(u32 entry_offset) { this->ReloadCache(this->GetCacheIndex(entry_offset)); const size_t ofs = entry_offset % MaxCachedSize; const Entry *entry = reinterpret_cast(reinterpret_cast(this->cache) + ofs); if (AMS_UNLIKELY(this->GetCacheIndex(entry_offset) != this->GetCacheIndex(entry_offset + sizeof(Entry) + entry->name_size + sizeof(u32)))) { this->Read(entry_offset, this->fallback_cache, std::min(this->size - entry_offset, FallbackCacheSize)); entry = reinterpret_cast(this->fallback_cache); } return entry; } }; template class TableWriter { NON_COPYABLE(TableWriter); NON_MOVEABLE(TableWriter); private: static constexpr size_t MaxCachedSize = (1_MB / 4); static constexpr size_t FallbackCacheSize = 1_KB; private: ::FsFile *file; size_t offset; size_t size; size_t cache_idx; void *cache; u8 fallback_cache[FallbackCacheSize]; size_t fallback_cache_entry_offset; size_t fallback_cache_entry_size; bool cache_dirty; bool fallback_cache_dirty; private: ALWAYS_INLINE void Read(size_t ofs, void *dst, size_t sz) { u64 read_size; R_ABORT_UNLESS(fsFileRead(this->file, this->offset + ofs, dst, sz, 0, &read_size)); AMS_ABORT_UNLESS(read_size == sz); } ALWAYS_INLINE void Write(size_t ofs, const void *src, size_t sz) { R_ABORT_UNLESS(fsFileWrite(this->file, this->offset + ofs, src, sz, FsWriteOption_None)); } ALWAYS_INLINE void Flush() { AMS_ABORT_UNLESS(!(this->cache_dirty && this->fallback_cache_dirty)); if (this->cache_dirty) { const size_t ofs = this->cache_idx * MaxCachedSize; this->Write(ofs, this->cache, std::min(this->size - ofs, MaxCachedSize)); this->cache_dirty = false; } if (this->fallback_cache_dirty) { this->Write(this->fallback_cache_entry_offset, this->fallback_cache, this->fallback_cache_entry_size); this->fallback_cache_dirty = false; } } ALWAYS_INLINE size_t GetCacheIndex(u32 ofs) { return ofs / MaxCachedSize; } ALWAYS_INLINE void RefreshCacheImpl() { const size_t cur_cache = this->cache_idx * MaxCachedSize; this->Read(cur_cache, this->cache, std::min(this->size - cur_cache, MaxCachedSize)); } ALWAYS_INLINE void RefreshCache(u32 entry_offset) { if (size_t idx = this->GetCacheIndex(entry_offset); idx != this->cache_idx || this->fallback_cache_dirty) { this->Flush(); this->cache_idx = idx; this->RefreshCacheImpl(); } } public: TableWriter(::FsFile *f, size_t ofs, size_t sz) : file(f), offset(ofs), size(sz), cache_idx(0), fallback_cache_entry_offset(), fallback_cache_entry_size(), cache_dirty(), fallback_cache_dirty() { const size_t cache_size = std::min(sz, MaxCachedSize); this->cache = std::malloc(cache_size); AMS_ABORT_UNLESS(this->cache != nullptr); std::memset(this->cache, 0, cache_size); std::memset(this->fallback_cache, 0, sizeof(this->fallback_cache)); for (size_t cur = 0; cur < this->size; cur += MaxCachedSize) { this->Write(cur, this->cache, std::min(this->size - cur, MaxCachedSize)); } } ~TableWriter() { this->Flush(); std::free(this->cache); } Entry *GetEntry(u32 entry_offset, u32 name_len) { this->RefreshCache(entry_offset); const size_t ofs = entry_offset % MaxCachedSize; Entry *entry = reinterpret_cast(reinterpret_cast(this->cache) + ofs); if (ofs + sizeof(Entry) + util::AlignUp(name_len, sizeof(u32)) > MaxCachedSize) { this->Flush(); this->fallback_cache_entry_offset = entry_offset; this->fallback_cache_entry_size = sizeof(Entry) + util::AlignUp(name_len, sizeof(u32)); this->Read(this->fallback_cache_entry_offset, this->fallback_cache, this->fallback_cache_entry_size); entry = reinterpret_cast(this->fallback_cache); this->fallback_cache_dirty = true; } else { this->cache_dirty = true; } return entry; } }; using DirectoryTableWriter = TableWriter; using FileTableWriter = TableWriter; constexpr inline u32 CalculatePathHash(u32 parent, const char *_path, u32 start, size_t path_len) { const unsigned char *path = reinterpret_cast(_path); u32 hash = parent ^ 123456789; for (size_t i = 0; i < path_len; i++) { hash = (hash >> 5) | (hash << 27); hash ^= path[start + i]; } return hash; } constexpr inline size_t GetHashTableSize(size_t num_entries) { if (num_entries < 3) { return 3; } else if (num_entries < 19) { return num_entries | 1; } else { size_t count = num_entries; while ((count % 2 == 0) || (count % 3 == 0) || (count % 5 == 0) || (count % 7 == 0) || (count % 11 == 0) || (count % 13 == 0) || (count % 17 == 0)) { count++; } return count; } } os::Mutex g_fs_romfs_path_lock(false); char g_fs_romfs_path_buffer[fs::EntryNameLengthMax + 1]; NOINLINE void OpenFileSystemRomfsDirectory(FsDir *out, ncm::ProgramId program_id, BuildDirectoryContext *parent, fs::OpenDirectoryMode mode, FsFileSystem *fs) { std::scoped_lock lk(g_fs_romfs_path_lock); parent->GetPath(g_fs_romfs_path_buffer); R_ABORT_UNLESS(mitm::fs::OpenAtmosphereRomfsDirectory(out, program_id, g_fs_romfs_path_buffer, mode, fs)); } } Builder::Builder(ncm::ProgramId pr_id) : program_id(pr_id), num_dirs(0), num_files(0), dir_table_size(0), file_table_size(0), dir_hash_table_size(0), file_hash_table_size(0), file_partition_size(0) { auto res = this->directories.emplace(std::make_unique(BuildDirectoryContext::RootTag{})); AMS_ABORT_UNLESS(res.second); this->root = res.first->get(); this->num_dirs = 1; this->dir_table_size = 0x18; } void Builder::AddDirectory(BuildDirectoryContext **out, BuildDirectoryContext *parent_ctx, std::unique_ptr child_ctx) { /* Set parent context member. */ child_ctx->parent = parent_ctx; /* Check if the directory already exists. */ auto existing = this->directories.find(child_ctx); if (existing != this->directories.end()) { *out = existing->get(); return; } /* Add a new directory. */ this->num_dirs++; this->dir_table_size += sizeof(DirectoryEntry) + util::AlignUp(child_ctx->path_len, 4); *out = child_ctx.get(); this->directories.emplace(std::move(child_ctx)); } void Builder::AddFile(BuildDirectoryContext *parent_ctx, std::unique_ptr file_ctx) { /* Set parent context member. */ file_ctx->parent = parent_ctx; /* Check if the file already exists. */ if (this->files.find(file_ctx) != this->files.end()) { return; } /* Add a new file. */ this->num_files++; this->file_table_size += sizeof(FileEntry) + util::AlignUp(file_ctx->path_len, 4); this->files.emplace(std::move(file_ctx)); } void Builder::VisitDirectory(FsFileSystem *fs, BuildDirectoryContext *parent) { FsDir dir; /* Get number of child directories. */ s64 num_child_dirs = 0; { OpenFileSystemRomfsDirectory(&dir, this->program_id, parent, OpenDirectoryMode_Directory, fs); ON_SCOPE_EXIT { fsDirClose(&dir); }; R_ABORT_UNLESS(fsDirGetEntryCount(&dir, &num_child_dirs)); } AMS_ABORT_UNLESS(num_child_dirs >= 0); { BuildDirectoryContext **child_dirs = reinterpret_cast(std::malloc(sizeof(BuildDirectoryContext *) * num_child_dirs)); ON_SCOPE_EXIT { std::free(child_dirs); }; AMS_ABORT_UNLESS(child_dirs != nullptr); s64 cur_child_dir_ind = 0; { OpenFileSystemRomfsDirectory(&dir, this->program_id, parent, OpenDirectoryMode_All, fs); ON_SCOPE_EXIT { fsDirClose(&dir); }; s64 read_entries = 0; while (true) { R_ABORT_UNLESS(fsDirRead(&dir, &read_entries, 1, &this->dir_entry)); if (read_entries != 1) { break; } AMS_ABORT_UNLESS(this->dir_entry.type == FsDirEntryType_Dir || this->dir_entry.type == FsDirEntryType_File); if (this->dir_entry.type == FsDirEntryType_Dir) { BuildDirectoryContext *real_child = nullptr; this->AddDirectory(&real_child, parent, std::make_unique(this->dir_entry.name, strlen(this->dir_entry.name))); AMS_ABORT_UNLESS(real_child != nullptr); child_dirs[cur_child_dir_ind++] = real_child; AMS_ABORT_UNLESS(cur_child_dir_ind <= num_child_dirs); } else /* if (this->dir_entry.type == FsDirEntryType_File) */ { this->AddFile(parent, std::make_unique(this->dir_entry.name, strlen(this->dir_entry.name), this->dir_entry.file_size, 0, this->cur_source_type)); } } } AMS_ABORT_UNLESS(num_child_dirs == cur_child_dir_ind); for (s64 i = 0; i < num_child_dirs; i++) { this->VisitDirectory(fs, child_dirs[i]); } } } class DirectoryTableReader : public TableReader { public: DirectoryTableReader(ams::fs::IStorage *s, size_t ofs, size_t sz) : TableReader(s, ofs, sz) { /* ... */ } }; class FileTableReader : public TableReader { public: FileTableReader(ams::fs::IStorage *s, size_t ofs, size_t sz) : TableReader(s, ofs, sz) { /* ... */ } }; void Builder::VisitDirectory(BuildDirectoryContext *parent, u32 parent_offset, DirectoryTableReader &dir_table, FileTableReader &file_table) { const DirectoryEntry *parent_entry = dir_table.GetEntry(parent_offset); u32 cur_file_offset = parent_entry->file; while (cur_file_offset != EmptyEntry) { const FileEntry *cur_file = file_table.GetEntry(cur_file_offset); this->AddFile(parent, std::make_unique(cur_file->name, cur_file->name_size, cur_file->size, cur_file->offset, this->cur_source_type)); cur_file_offset = cur_file->sibling; } u32 cur_child_offset = parent_entry->child; while (cur_child_offset != EmptyEntry) { BuildDirectoryContext *real_child = nullptr; u32 next_child_offset = 0; { const DirectoryEntry *cur_child = dir_table.GetEntry(cur_child_offset); this->AddDirectory(&real_child, parent, std::make_unique(cur_child->name, cur_child->name_size)); AMS_ABORT_UNLESS(real_child != nullptr); next_child_offset = cur_child->sibling; __asm__ __volatile__("" ::: "memory"); } this->VisitDirectory(real_child, cur_child_offset, dir_table, file_table); cur_child_offset = next_child_offset; } } void Builder::AddSdFiles() { /* Open Sd Card filesystem. */ FsFileSystem sd_filesystem; R_ABORT_UNLESS(fsOpenSdCardFileSystem(&sd_filesystem)); ON_SCOPE_EXIT { fsFsClose(&sd_filesystem); }; /* If there is no romfs folder on the SD, don't bother continuing. */ { FsDir dir; if (R_FAILED(mitm::fs::OpenAtmosphereRomfsDirectory(&dir, this->program_id, this->root->path.get(), OpenDirectoryMode_Directory, &sd_filesystem))) { return; } fsDirClose(&dir); } this->cur_source_type = DataSourceType::LooseSdFile; this->VisitDirectory(&sd_filesystem, this->root); } void Builder::AddStorageFiles(ams::fs::IStorage *storage, DataSourceType source_type) { Header header; R_ABORT_UNLESS(storage->Read(0, &header, sizeof(Header))); AMS_ABORT_UNLESS(header.header_size == sizeof(Header)); /* Read tables. */ DirectoryTableReader dir_table(storage, header.dir_table_ofs, header.dir_table_size); FileTableReader file_table(storage, header.file_table_ofs, header.file_table_size); this->cur_source_type = source_type; this->VisitDirectory(this->root, 0x0, dir_table, file_table); } void Builder::Build(std::vector *out_infos) { /* Clear output. */ out_infos->clear(); /* Open an SD card filesystem. */ FsFileSystem sd_filesystem; R_ABORT_UNLESS(fsOpenSdCardFileSystem(&sd_filesystem)); ON_SCOPE_EXIT { fsFsClose(&sd_filesystem); }; /* Calculate hash table sizes. */ const size_t num_dir_hash_table_entries = GetHashTableSize(this->num_dirs); const size_t num_file_hash_table_entries = GetHashTableSize(this->num_files); this->dir_hash_table_size = sizeof(u32) * num_dir_hash_table_entries; this->file_hash_table_size = sizeof(u32) * num_file_hash_table_entries; /* Allocate metadata, make pointers. */ Header *header = reinterpret_cast
(std::malloc(sizeof(Header))); std::memset(header, 0x00, sizeof(*header)); /* Open metadata file. */ const size_t metadata_size = this->dir_hash_table_size + this->dir_table_size + this->file_hash_table_size + this->file_table_size; FsFile metadata_file; R_ABORT_UNLESS(mitm::fs::CreateAndOpenAtmosphereSdFile(&metadata_file, this->program_id, "romfs_metadata.bin", metadata_size)); /* Ensure later hash tables will have correct defaults. */ static_assert(EmptyEntry == 0xFFFFFFFF); /* Emplace metadata source info. */ out_infos->emplace_back(0, sizeof(*header), DataSourceType::Memory, header); /* Process Files. */ { u32 entry_offset = 0; BuildFileContext *cur_file = nullptr; BuildFileContext *prev_file = nullptr; for (const auto &it : this->files) { cur_file = it.get(); /* By default, pad to 0x10 alignment. */ this->file_partition_size = util::AlignUp(this->file_partition_size, 0x10); /* Check if extra padding is present in original source, preserve it to make our life easier. */ const bool is_storage_or_file = cur_file->source_type == DataSourceType::Storage || cur_file->source_type == DataSourceType::File; if (prev_file != nullptr && prev_file->source_type == cur_file->source_type && is_storage_or_file) { const s64 expected = this->file_partition_size - prev_file->offset + prev_file->orig_offset; if (expected != cur_file->orig_offset) { AMS_ABORT_UNLESS(expected <= cur_file->orig_offset); this->file_partition_size += cur_file->orig_offset - expected; } } /* Calculate offsets. */ cur_file->offset = this->file_partition_size; this->file_partition_size += cur_file->size; cur_file->entry_offset = entry_offset; entry_offset += sizeof(FileEntry) + util::AlignUp(cur_file->path_len, 4); /* Save current file as prev for next iteration. */ prev_file = cur_file; } /* Assign deferred parent/sibling ownership. */ for (auto it = this->files.rbegin(); it != this->files.rend(); it++) { cur_file = it->get(); cur_file->sibling = cur_file->parent->file; cur_file->parent->file = cur_file; } } /* Process Directories. */ { u32 entry_offset = 0; BuildDirectoryContext *cur_dir = nullptr; for (const auto &it : this->directories) { cur_dir = it.get(); cur_dir->entry_offset = entry_offset; entry_offset += sizeof(DirectoryEntry) + util::AlignUp(cur_dir->path_len, 4); } /* Assign deferred parent/sibling ownership. */ for (auto it = this->directories.rbegin(); it != this->directories.rend(); it++) { cur_dir = it->get(); if (cur_dir == this->root) { continue; } cur_dir->sibling = cur_dir->parent->child; cur_dir->parent->child = cur_dir; } } /* Populate file tables. */ { /* Allocate the hash table. */ void *fht_buf = std::malloc(this->file_hash_table_size); AMS_ABORT_UNLESS(fht_buf != nullptr); u32 *file_hash_table = reinterpret_cast(fht_buf); std::memset(file_hash_table, 0xFF, this->file_hash_table_size); ON_SCOPE_EXIT { R_ABORT_UNLESS(fsFileWrite(&metadata_file, this->dir_hash_table_size + this->dir_table_size, file_hash_table, this->file_hash_table_size, FsWriteOption_None)); std::free(fht_buf); }; /* Write the file table. */ { FileTableWriter file_table(&metadata_file, this->dir_hash_table_size + this->dir_table_size + this->file_hash_table_size, this->file_table_size); for (const auto &it : this->files) { BuildFileContext *cur_file = it.get(); FileEntry *cur_entry = file_table.GetEntry(cur_file->entry_offset, cur_file->path_len); /* Set entry fields. */ cur_entry->parent = cur_file->parent->entry_offset; cur_entry->sibling = (cur_file->sibling == nullptr) ? EmptyEntry : cur_file->sibling->entry_offset; cur_entry->offset = cur_file->offset; cur_entry->size = cur_file->size; /* Insert into hash table. */ const u32 name_size = cur_file->path_len; const size_t hash_ind = CalculatePathHash(cur_entry->parent, cur_file->path.get(), 0, name_size) % num_file_hash_table_entries; cur_entry->hash = file_hash_table[hash_ind]; file_hash_table[hash_ind] = cur_file->entry_offset; /* Set name. */ cur_entry->name_size = name_size; if (name_size) { std::memcpy(cur_entry->name, cur_file->path.get(), name_size); for (size_t i = name_size; i < util::AlignUp(name_size, 4); i++) { cur_entry->name[i] = 0; } } /* Emplace a source. */ switch (cur_file->source_type) { case DataSourceType::Storage: case DataSourceType::File: { /* Try to compact if possible. */ auto &back = out_infos->back(); if (back.source_type == cur_file->source_type) { back.size = cur_file->offset + FilePartitionOffset + cur_file->size - back.virtual_offset; } else { out_infos->emplace_back(cur_file->offset + FilePartitionOffset, cur_file->size, cur_file->source_type, cur_file->orig_offset + FilePartitionOffset); } } break; case DataSourceType::LooseSdFile: { char *new_path = new char[cur_file->GetPathLength() + 1]; cur_file->GetPath(new_path); out_infos->emplace_back(cur_file->offset + FilePartitionOffset, cur_file->size, cur_file->source_type, new_path); } break; AMS_UNREACHABLE_DEFAULT_CASE(); } } } } /* Populate directory tables. */ { /* Allocate the hash table. */ void *dht_buf = std::malloc(this->dir_hash_table_size); AMS_ABORT_UNLESS(dht_buf != nullptr); u32 *dir_hash_table = reinterpret_cast(dht_buf); std::memset(dir_hash_table, 0xFF, this->dir_hash_table_size); ON_SCOPE_EXIT { R_ABORT_UNLESS(fsFileWrite(&metadata_file, 0, dir_hash_table, this->dir_hash_table_size, FsWriteOption_None)); std::free(dht_buf); }; /* Write the file table. */ { DirectoryTableWriter dir_table(&metadata_file, this->dir_hash_table_size, this->dir_table_size); for (const auto &it : this->directories) { BuildDirectoryContext *cur_dir = it.get(); DirectoryEntry *cur_entry = dir_table.GetEntry(cur_dir->entry_offset, cur_dir->path_len); /* Set entry fields. */ cur_entry->parent = cur_dir == this->root ? 0 : cur_dir->parent->entry_offset; cur_entry->sibling = (cur_dir->sibling == nullptr) ? EmptyEntry : cur_dir->sibling->entry_offset; cur_entry->child = (cur_dir->child == nullptr) ? EmptyEntry : cur_dir->child->entry_offset; cur_entry->file = (cur_dir->file == nullptr) ? EmptyEntry : cur_dir->file->entry_offset; /* Insert into hash table. */ const u32 name_size = cur_dir->path_len; const size_t hash_ind = CalculatePathHash(cur_entry->parent, cur_dir->path.get(), 0, name_size) % num_dir_hash_table_entries; cur_entry->hash = dir_hash_table[hash_ind]; dir_hash_table[hash_ind] = cur_dir->entry_offset; /* Set name. */ cur_entry->name_size = name_size; if (name_size) { std::memcpy(cur_entry->name, cur_dir->path.get(), name_size); for (size_t i = name_size; i < util::AlignUp(name_size, 4); i++) { cur_entry->name[i] = 0; } } } } } /* Delete maps. */ this->root = nullptr; this->directories.clear(); this->files.clear(); /* Set header fields. */ header->header_size = sizeof(*header); header->file_hash_table_size = this->file_hash_table_size; header->file_table_size = this->file_table_size; header->dir_hash_table_size = this->dir_hash_table_size; header->dir_table_size = this->dir_table_size; header->file_partition_ofs = FilePartitionOffset; header->dir_hash_table_ofs = util::AlignUp(FilePartitionOffset + this->file_partition_size, 4); header->dir_table_ofs = header->dir_hash_table_ofs + header->dir_hash_table_size; header->file_hash_table_ofs = header->dir_table_ofs + header->dir_table_size; header->file_table_ofs = header->file_hash_table_ofs + header->file_hash_table_size; /* Save metadata to the SD card, to save on memory space. */ { R_ABORT_UNLESS(fsFileFlush(&metadata_file)); out_infos->emplace_back(header->dir_hash_table_ofs, metadata_size, DataSourceType::Metadata, new RemoteFile(metadata_file)); } } } }