/* * Copyright (c) 2018-2019 Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include "car.h" #include "fuse.h" #include "masterkey.h" #include "pmc.h" #include "timers.h" static bool g_has_checked_for_rcm_bug_patch = false; static bool g_has_rcm_bug_patch = false; /* Prototypes for internal commands. */ void fuse_enable_power(void); void fuse_disable_power(void); void fuse_wait_idle(void); /* Initialize the fuse driver */ void fuse_init(void) { /* Make all fuse registers visible, disable the private key and disable programming. */ clkrst_enable_fuse_regs(true); fuse_disable_private_key(); fuse_disable_programming(); /* TODO: Should we allow this to be done later? */ if (!g_has_checked_for_rcm_bug_patch) { (void)(fuse_has_rcm_bug_patch()); } } /* Disable access to the private key and set the TZ sticky bit. */ void fuse_disable_private_key(void) { FUSE_REGS->FUSE_PRIVATEKEYDISABLE = 0x10; } /* Disables all fuse programming. */ void fuse_disable_programming(void) { FUSE_REGS->FUSE_DISABLEREGPROGRAM = 1; } /* Enable power to the fuse hardware array. */ void fuse_enable_power(void) { APBDEV_PMC_FUSE_CTRL &= ~(0x200); /* Clear PMC_FUSE_CTRL_PS18_LATCH_CLEAR. */ mdelay(1); APBDEV_PMC_FUSE_CTRL |= 0x100; /* Set PMC_FUSE_CTRL_PS18_LATCH_SET. */ mdelay(1); } /* Disable power to the fuse hardware array. */ void fuse_disable_power(void) { APBDEV_PMC_FUSE_CTRL &= ~(0x100); /* Clear PMC_FUSE_CTRL_PS18_LATCH_SET. */ mdelay(1); APBDEV_PMC_FUSE_CTRL |= 0x200; /* Set PMC_FUSE_CTRL_PS18_LATCH_CLEAR. */ mdelay(1); } /* Wait for the fuse driver to go idle. */ void fuse_wait_idle(void) { uint32_t ctrl_val = 0; /* Wait for STATE_IDLE */ while ((ctrl_val & (0xF0000)) != 0x40000) ctrl_val = FUSE_REGS->FUSE_FUSECTRL; } /* Read a fuse from the hardware array. */ uint32_t fuse_hw_read(uint32_t addr) { /* Wait for idle state. */ fuse_wait_idle(); /* Program the target address. */ FUSE_REGS->FUSE_FUSEADDR = addr; /* Enable read operation in control register. */ uint32_t ctrl_val = FUSE_REGS->FUSE_FUSECTRL; ctrl_val &= ~0x3; ctrl_val |= 0x1; /* Set READ command. */ FUSE_REGS->FUSE_FUSECTRL = ctrl_val; /* Wait for idle state. */ fuse_wait_idle(); return FUSE_REGS->FUSE_FUSERDATA; } /* Write a fuse in the hardware array. */ void fuse_hw_write(uint32_t value, uint32_t addr) { /* Wait for idle state. */ fuse_wait_idle(); /* Program the target address and value. */ FUSE_REGS->FUSE_FUSEADDR = addr; FUSE_REGS->FUSE_FUSEWDATA = value; /* Enable write operation in control register. */ uint32_t ctrl_val = FUSE_REGS->FUSE_FUSECTRL; ctrl_val &= ~0x3; ctrl_val |= 0x2; /* Set WRITE command. */ FUSE_REGS->FUSE_FUSECTRL = ctrl_val; /* Wait for idle state. */ fuse_wait_idle(); } /* Sense the fuse hardware array into the shadow cache. */ void fuse_hw_sense(void) { /* Wait for idle state. */ fuse_wait_idle(); /* Enable sense operation in control register */ uint32_t ctrl_val = FUSE_REGS->FUSE_FUSECTRL; ctrl_val &= ~0x3; ctrl_val |= 0x3; /* Set SENSE_CTRL command */ FUSE_REGS->FUSE_FUSECTRL = ctrl_val; /* Wait for idle state. */ fuse_wait_idle(); } /* Read the SKU info register from the shadow cache. */ uint32_t fuse_get_sku_info(void) { return FUSE_CHIP_REGS->FUSE_SKU_INFO; } /* Read the bootrom patch version from a register in the shadow cache. */ uint32_t fuse_get_bootrom_patch_version(void) { return FUSE_CHIP_REGS->FUSE_SOC_SPEEDO_1_CALIB; } /* Read a spare bit register from the shadow cache */ uint32_t fuse_get_spare_bit(uint32_t idx) { if (idx < 32) { return FUSE_CHIP_REGS->FUSE_SPARE_BIT[idx]; } else { return 0; } } /* Read a reserved ODM register from the shadow cache. */ uint32_t fuse_get_reserved_odm(uint32_t idx) { if (idx < 8) { return FUSE_CHIP_REGS->FUSE_RESERVED_ODM[idx]; } else { return 0; } } /* Get the DRAM ID using values in the shadow cache. */ uint32_t fuse_get_dram_id(void) { return ((fuse_get_reserved_odm(4) >> 3) & 0x7); } /* Derive the Device ID using values in the shadow cache. */ uint64_t fuse_get_device_id(void) { uint64_t device_id = 0; uint64_t y_coord = FUSE_CHIP_REGS->FUSE_OPT_Y_COORDINATE & 0x1FF; uint64_t x_coord = FUSE_CHIP_REGS->FUSE_OPT_X_COORDINATE & 0x1FF; uint64_t wafer_id = FUSE_CHIP_REGS->FUSE_OPT_WAFER_ID & 0x3F; uint32_t lot_code = FUSE_CHIP_REGS->FUSE_OPT_LOT_CODE_0; uint64_t fab_code = FUSE_CHIP_REGS->FUSE_OPT_FAB_CODE & 0x3F; uint64_t derived_lot_code = 0; for (unsigned int i = 0; i < 5; i++) { derived_lot_code = (derived_lot_code * 0x24) + ((lot_code >> (24 - 6*i)) & 0x3F); } derived_lot_code &= 0x03FFFFFF; device_id |= y_coord << 0; device_id |= x_coord << 9; device_id |= wafer_id << 18; device_id |= derived_lot_code << 24; device_id |= fab_code << 50; return device_id; } /* Derive the Hardware Type using values in the shadow cache. */ uint32_t fuse_get_hardware_type(uint32_t target_firmware) { uint32_t fuse_reserved_odm4 = fuse_get_reserved_odm(4); uint32_t hardware_type = (((fuse_reserved_odm4 >> 7) & 2) | ((fuse_reserved_odm4 >> 2) & 1)); /* Firmware from versions 1.0.0 to 3.0.2. */ if (target_firmware < ATMOSPHERE_TARGET_FIRMWARE_400) { volatile tegra_fuse_chip_t *fuse_chip = fuse_chip_get_regs(); if (hardware_type >= 1) { return (hardware_type > 2) ? 3 : hardware_type - 1; } else if ((fuse_chip->FUSE_SPARE_BIT[9] & 1) == 0) { return 0; } else { return 3; } } else if (target_firmware < ATMOSPHERE_TARGET_FIRMWARE_700) { /* Firmware versions from 4.0.0 to 6.2.0. */ static const uint32_t types[] = {0,1,4,3}; hardware_type |= ((fuse_reserved_odm4 >> 14) & 0x3C); hardware_type--; return (hardware_type > 3) ? 4 : types[hardware_type]; } else { /* Firmware versions from 7.0.0 onwards. */ /* Always return 0 in retail. */ return 0; } } /* Derive the Retail Type using values in the shadow cache. */ uint32_t fuse_get_retail_type(void) { /* Retail Type = IS_RETAIL | UNIT_TYPE. */ uint32_t fuse_reserved_odm4 = fuse_get_reserved_odm(4); uint32_t retail_type = (((fuse_reserved_odm4 >> 7) & 4) | (fuse_reserved_odm4 & 3)); if (retail_type == 4) { /* Standard retail unit, IS_RETAIL | 0. */ return 1; } else if (retail_type == 3) { /* Standard dev unit, 0 | DEV_UNIT. */ return 0; } return 2; /* IS_RETAIL | DEV_UNIT */ } /* Derive the 16-byte Hardware Info using values in the shadow cache, and copy to output buffer. */ void fuse_get_hardware_info(void *dst) { uint32_t hw_info[0x4]; uint32_t ops_reserved = FUSE_CHIP_REGS->FUSE_OPT_OPS_RESERVED & 0x3F; uint32_t y_coord = FUSE_CHIP_REGS->FUSE_OPT_Y_COORDINATE & 0x1FF; uint32_t x_coord = FUSE_CHIP_REGS->FUSE_OPT_X_COORDINATE & 0x1FF; uint32_t wafer_id = FUSE_CHIP_REGS->FUSE_OPT_WAFER_ID & 0x3F; uint32_t lot_code_0 = FUSE_CHIP_REGS->FUSE_OPT_LOT_CODE_0; uint32_t lot_code_1 = FUSE_CHIP_REGS->FUSE_OPT_LOT_CODE_1 & 0x0FFFFFFF; uint32_t fab_code = FUSE_CHIP_REGS->FUSE_OPT_FAB_CODE & 0x3F; uint32_t vendor_code = FUSE_CHIP_REGS->FUSE_OPT_VENDOR_CODE & 0xF; /* Hardware Info = OPS_RESERVED || Y_COORD || X_COORD || WAFER_ID || LOT_CODE || FAB_CODE || VENDOR_ID */ hw_info[0] = (uint32_t)((lot_code_1 << 30) | (wafer_id << 24) | (x_coord << 15) | (y_coord << 6) | (ops_reserved)); hw_info[1] = (uint32_t)((lot_code_0 << 26) | (lot_code_1 >> 2)); hw_info[2] = (uint32_t)((fab_code << 26) | (lot_code_0 >> 6)); hw_info[3] = (uint32_t)(vendor_code); memcpy(dst, hw_info, 0x10); } /* Get the Key Generation value. */ uint32_t fuse_get_5x_key_generation(void) { if ((fuse_get_reserved_odm(4) & 0x800) && (fuse_get_reserved_odm(0) == 0x8E61ECAE) && (fuse_get_reserved_odm(1) == 0xF2BA3BB2)) { return (fuse_get_reserved_odm(2) & 0x1F); } else { return 0; } } /* Returns the fuse version expected for the firmware. */ uint32_t fuse_get_expected_fuse_version(uint32_t target_firmware) { static const uint8_t expected_versions[ATMOSPHERE_TARGET_FIRMWARE_COUNT+1] = { [ATMOSPHERE_TARGET_FIRMWARE_100] = 1, [ATMOSPHERE_TARGET_FIRMWARE_200] = 2, [ATMOSPHERE_TARGET_FIRMWARE_300] = 3, /* [ATMOSPHERE_TARGET_FIRMWARE_302] = 4, */ [ATMOSPHERE_TARGET_FIRMWARE_400] = 5, [ATMOSPHERE_TARGET_FIRMWARE_500] = 6, [ATMOSPHERE_TARGET_FIRMWARE_600] = 7, [ATMOSPHERE_TARGET_FIRMWARE_620] = 8, [ATMOSPHERE_TARGET_FIRMWARE_700] = 9, [ATMOSPHERE_TARGET_FIRMWARE_800] = 9, [ATMOSPHERE_TARGET_FIRMWARE_810] = 10, [ATMOSPHERE_TARGET_FIRMWARE_900] = 11, [ATMOSPHERE_TARGET_FIRMWARE_910] = 12, }; if (target_firmware > ATMOSPHERE_TARGET_FIRMWARE_COUNT) { generic_panic(); } return expected_versions[target_firmware]; } /* Check for RCM bug patches. */ bool fuse_has_rcm_bug_patch(void) { /* Only check for RCM bug patch once, and cache our result. */ if (!g_has_checked_for_rcm_bug_patch) { /* Some patched units use XUSB in RCM. */ if (FUSE_CHIP_REGS->FUSE_RESERVED_SW & 0x80) { g_has_rcm_bug_patch = true; } /* Other units have a proper ipatch instead. */ { uint32_t word_count = FUSE_CHIP_REGS->FUSE_FIRST_BOOTROM_PATCH_SIZE & 0x7f; uint32_t word_addr = 191; while (word_count) { uint32_t word0 = fuse_hw_read(word_addr); uint32_t ipatch_count = (word0 >> 16) & 0xf; for (uint32_t i = 0; i < ipatch_count; i++) { uint32_t word = fuse_hw_read(word_addr - (i + 1)); uint32_t addr = (word >> 16) * 2; if (addr == 0x769a) { g_has_rcm_bug_patch = true; } } word_addr -= word_count; word_count = word0 >> 25; } } } g_has_checked_for_rcm_bug_patch = true; return g_has_rcm_bug_patch; }