/* * Copyright (c) Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "ldr_auto_close.hpp" #include "ldr_capabilities.hpp" #include "ldr_content_management.hpp" #include "ldr_development_manager.hpp" #include "ldr_launch_record.hpp" #include "ldr_meta.hpp" #include "ldr_patcher.hpp" #include "ldr_process_creation.hpp" #include "ldr_ro_manager.hpp" namespace ams::ldr { namespace { /* Convenience defines. */ constexpr size_t SystemResourceSizeMax = 0x1FE00000; /* Types. */ enum NsoIndex { Nso_Rtld = 0, Nso_Main = 1, Nso_SubSdk0 = 2, Nso_SubSdk1 = 3, Nso_SubSdk2 = 4, Nso_SubSdk3 = 5, Nso_SubSdk4 = 6, Nso_SubSdk5 = 7, Nso_SubSdk6 = 8, Nso_SubSdk7 = 9, Nso_SubSdk8 = 10, Nso_SubSdk9 = 11, Nso_Sdk = 12, Nso_Count, }; constexpr inline const char *NsoPaths[Nso_Count] = { ENCODE_ATMOSPHERE_CODE_PATH("/rtld"), ENCODE_ATMOSPHERE_CODE_PATH("/main"), ENCODE_ATMOSPHERE_CODE_PATH("/subsdk0"), ENCODE_ATMOSPHERE_CODE_PATH("/subsdk1"), ENCODE_ATMOSPHERE_CODE_PATH("/subsdk2"), ENCODE_ATMOSPHERE_CODE_PATH("/subsdk3"), ENCODE_ATMOSPHERE_CODE_PATH("/subsdk4"), ENCODE_ATMOSPHERE_CODE_PATH("/subsdk5"), ENCODE_ATMOSPHERE_CODE_PATH("/subsdk6"), ENCODE_ATMOSPHERE_CODE_PATH("/subsdk7"), ENCODE_ATMOSPHERE_CODE_PATH("/subsdk8"), ENCODE_ATMOSPHERE_CODE_PATH("/subsdk9"), ENCODE_ATMOSPHERE_CODE_PATH("/sdk"), }; constexpr const char *GetNsoPath(size_t idx) { AMS_ABORT_UNLESS(idx < Nso_Count); return NsoPaths[idx]; } struct ProcessInfo { os::NativeHandle process_handle; uintptr_t args_address; size_t args_size; uintptr_t nso_address[Nso_Count]; size_t nso_size[Nso_Count]; }; /* Global NSO header cache. */ bool g_has_nso[Nso_Count]; NsoHeader g_nso_headers[Nso_Count]; /* Anti-downgrade. */ #include "ldr_anti_downgrade_tables.inc" Result ValidateProgramVersion(ncm::ProgramId program_id, u32 version) { /* No version verification is done before 8.1.0. */ R_SUCCEED_IF(hos::GetVersion() < hos::Version_8_1_0); /* No verification is done if development. */ R_SUCCEED_IF(IsDevelopmentForAntiDowngradeCheck()); /* Do version-dependent validation, if compiled to do so. */ #ifdef LDR_VALIDATE_PROCESS_VERSION const MinimumProgramVersion *entries = nullptr; size_t num_entries = 0; const auto hos_version = hos::GetVersion(); if (hos_version >= hos::Version_11_0_0) { entries = g_MinimumProgramVersions1100; num_entries = g_MinimumProgramVersionsCount1100; } else if (hos_version >= hos::Version_10_1_0) { entries = g_MinimumProgramVersions1010; num_entries = g_MinimumProgramVersionsCount1010; } else if (hos_version >= hos::Version_10_0_0) { entries = g_MinimumProgramVersions1000; num_entries = g_MinimumProgramVersionsCount1000; } else if (hos_version >= hos::Version_9_1_0) { entries = g_MinimumProgramVersions910; num_entries = g_MinimumProgramVersionsCount910; } else if (hos_version >= hos::Version_9_0_0) { entries = g_MinimumProgramVersions900; num_entries = g_MinimumProgramVersionsCount900; } else if (hos_version >= hos::Version_8_1_0) { entries = g_MinimumProgramVersions810; num_entries = g_MinimumProgramVersionsCount810; } for (size_t i = 0; i < num_entries; i++) { if (entries[i].program_id == program_id) { R_UNLESS(entries[i].version <= version, ldr::ResultInvalidVersion()); } } #else AMS_UNUSED(program_id, version); #endif return ResultSuccess(); } /* Helpers. */ Result GetProgramInfoFromMeta(ProgramInfo *out, const Meta *meta) { /* Copy basic info. */ out->main_thread_priority = meta->npdm->main_thread_priority; out->default_cpu_id = meta->npdm->default_cpu_id; out->main_thread_stack_size = meta->npdm->main_thread_stack_size; out->program_id = meta->aci->program_id; /* Copy access controls. */ size_t offset = 0; #define COPY_ACCESS_CONTROL(source, which) \ ({ \ const size_t size = meta->source->which##_size; \ R_UNLESS(offset + size <= sizeof(out->ac_buffer), ldr::ResultInternalError()); \ out->source##_##which##_size = size; \ std::memcpy(out->ac_buffer + offset, meta->source##_##which, size); \ offset += size; \ }) /* Copy all access controls to buffer. */ COPY_ACCESS_CONTROL(acid, sac); COPY_ACCESS_CONTROL(aci, sac); COPY_ACCESS_CONTROL(acid, fac); COPY_ACCESS_CONTROL(aci, fah); #undef COPY_ACCESS_CONTROL /* Copy flags. */ out->flags = MakeProgramInfoFlag(static_cast(meta->aci_kac), meta->aci->kac_size / sizeof(util::BitPack32)); return ResultSuccess(); } bool IsApplet(const Meta *meta) { return (MakeProgramInfoFlag(static_cast(meta->aci_kac), meta->aci->kac_size / sizeof(util::BitPack32)) & ProgramInfoFlag_ApplicationTypeMask) == ProgramInfoFlag_Applet; } bool IsApplication(const Meta *meta) { return (MakeProgramInfoFlag(static_cast(meta->aci_kac), meta->aci->kac_size / sizeof(util::BitPack32)) & ProgramInfoFlag_ApplicationTypeMask) == ProgramInfoFlag_Application; } Npdm::AddressSpaceType GetAddressSpaceType(const Meta *meta) { return static_cast((meta->npdm->flags & Npdm::MetaFlag_AddressSpaceTypeMask) >> Npdm::MetaFlag_AddressSpaceTypeShift); } Acid::PoolPartition GetPoolPartition(const Meta *meta) { return static_cast((meta->acid->flags & Acid::AcidFlag_PoolPartitionMask) >> Acid::AcidFlag_PoolPartitionShift); } Result LoadNsoHeaders(NsoHeader *nso_headers, bool *has_nso) { /* Clear NSOs. */ std::memset(nso_headers, 0, sizeof(*nso_headers) * Nso_Count); std::memset(has_nso, 0, sizeof(*has_nso) * Nso_Count); for (size_t i = 0; i < Nso_Count; i++) { fs::FileHandle file; if (R_SUCCEEDED(fs::OpenFile(std::addressof(file), GetNsoPath(i), fs::OpenMode_Read))) { ON_SCOPE_EXIT { fs::CloseFile(file); }; /* Read NSO header. */ size_t read_size; R_TRY(fs::ReadFile(std::addressof(read_size), file, 0, nso_headers + i, sizeof(*nso_headers))); R_UNLESS(read_size == sizeof(*nso_headers), ldr::ResultInvalidNso()); has_nso[i] = true; } } return ResultSuccess(); } Result ValidateNsoHeaders(const NsoHeader *nso_headers, const bool *has_nso) { /* We must always have a main. */ R_UNLESS(has_nso[Nso_Main], ldr::ResultInvalidNso()); /* If we don't have an RTLD, we must only have a main. */ if (!has_nso[Nso_Rtld]) { for (size_t i = Nso_Main + 1; i < Nso_Count; i++) { R_UNLESS(!has_nso[i], ldr::ResultInvalidNso()); } } /* All NSOs must have zero text offset. */ for (size_t i = 0; i < Nso_Count; i++) { R_UNLESS(nso_headers[i].text_dst_offset == 0, ldr::ResultInvalidNso()); } return ResultSuccess(); } Result ValidateMeta(const Meta *meta, const ncm::ProgramLocation &loc, const fs::CodeVerificationData &code_verification_data) { /* Validate version. */ R_TRY(ValidateProgramVersion(loc.program_id, meta->npdm->version)); /* Validate program id. */ R_UNLESS(meta->aci->program_id >= meta->acid->program_id_min, ldr::ResultInvalidProgramId()); R_UNLESS(meta->aci->program_id <= meta->acid->program_id_max, ldr::ResultInvalidProgramId()); /* Validate the kernel capabilities. */ R_TRY(TestCapability(static_cast(meta->acid_kac), meta->acid->kac_size / sizeof(util::BitPack32), static_cast(meta->aci_kac), meta->aci->kac_size / sizeof(util::BitPack32))); /* If we have data to validate, validate it. */ if (code_verification_data.has_data && meta->check_verification_data) { const u8 *sig = code_verification_data.signature; const size_t sig_size = sizeof(code_verification_data.signature); const u8 *mod = static_cast(meta->modulus); const size_t mod_size = crypto::Rsa2048PssSha256Verifier::ModulusSize; const u8 *exp = fssystem::GetAcidSignatureKeyPublicExponent(); const size_t exp_size = fssystem::AcidSignatureKeyPublicExponentSize; const u8 *hsh = code_verification_data.target_hash; const size_t hsh_size = sizeof(code_verification_data.target_hash); const bool is_signature_valid = crypto::VerifyRsa2048PssSha256WithHash(sig, sig_size, mod, mod_size, exp, exp_size, hsh, hsh_size); R_UNLESS(is_signature_valid, ldr::ResultInvalidNcaSignature()); } /* All good. */ return ResultSuccess(); } Result GetCreateProcessFlags(u32 *out, const Meta *meta, const u32 ldr_flags) { const u8 meta_flags = meta->npdm->flags; u32 flags = 0; /* Set Is64Bit. */ if (meta_flags & Npdm::MetaFlag_Is64Bit) { flags |= svc::CreateProcessFlag_Is64Bit; } /* Set AddressSpaceType. */ switch (GetAddressSpaceType(meta)) { case Npdm::AddressSpaceType_32Bit: flags |= svc::CreateProcessFlag_AddressSpace32Bit; break; case Npdm::AddressSpaceType_64BitDeprecated: flags |= svc::CreateProcessFlag_AddressSpace64BitDeprecated; break; case Npdm::AddressSpaceType_32BitWithoutAlias: flags |= svc::CreateProcessFlag_AddressSpace32BitWithoutAlias; break; case Npdm::AddressSpaceType_64Bit: flags |= svc::CreateProcessFlag_AddressSpace64Bit; break; default: return ldr::ResultInvalidMeta(); } /* Set Enable Debug. */ if (ldr_flags & CreateProcessFlag_EnableDebug) { flags |= svc::CreateProcessFlag_EnableDebug; } /* Set Enable ASLR. */ if (!(ldr_flags & CreateProcessFlag_DisableAslr)) { flags |= svc::CreateProcessFlag_EnableAslr; } /* Set Is Application. */ if (IsApplication(meta)) { flags |= svc::CreateProcessFlag_IsApplication; /* 7.0.0+: Set OptimizeMemoryAllocation if relevant. */ if (hos::GetVersion() >= hos::Version_7_0_0) { if (meta_flags & Npdm::MetaFlag_OptimizeMemoryAllocation) { flags |= svc::CreateProcessFlag_OptimizeMemoryAllocation; } } } /* 5.0.0+ Set Pool Partition. */ if (hos::GetVersion() >= hos::Version_5_0_0) { switch (GetPoolPartition(meta)) { case Acid::PoolPartition_Application: if (IsApplet(meta)) { flags |= svc::CreateProcessFlag_PoolPartitionApplet; } else { flags |= svc::CreateProcessFlag_PoolPartitionApplication; } break; case Acid::PoolPartition_Applet: flags |= svc::CreateProcessFlag_PoolPartitionApplet; break; case Acid::PoolPartition_System: flags |= svc::CreateProcessFlag_PoolPartitionSystem; break; case Acid::PoolPartition_SystemNonSecure: flags |= svc::CreateProcessFlag_PoolPartitionSystemNonSecure; break; default: return ldr::ResultInvalidMeta(); } } else if (hos::GetVersion() >= hos::Version_4_0_0) { /* On 4.0.0+, the corresponding bit was simply "UseSecureMemory". */ if (meta->acid->flags & Acid::AcidFlag_DeprecatedUseSecureMemory) { flags |= svc::CreateProcessFlag_DeprecatedUseSecureMemory; } } /* 11.0.0+/meso Set Disable DAS merge. */ if (meta_flags & Npdm::MetaFlag_DisableDeviceAddressSpaceMerge) { flags |= svc::CreateProcessFlag_DisableDeviceAddressSpaceMerge; } *out = flags; return ResultSuccess(); } Result GetCreateProcessParameter(svc::CreateProcessParameter *out, const Meta *meta, u32 flags, os::NativeHandle resource_limit) { /* Clear output. */ std::memset(out, 0, sizeof(*out)); /* Set name, version, program id, resource limit handle. */ std::memcpy(out->name, meta->npdm->program_name, sizeof(out->name) - 1); out->version = meta->npdm->version; out->program_id = meta->aci->program_id.value; out->reslimit = resource_limit; /* Set flags. */ R_TRY(GetCreateProcessFlags(std::addressof(out->flags), meta, flags)); /* 3.0.0+ System Resource Size. */ if (hos::GetVersion() >= hos::Version_3_0_0) { /* Validate size is aligned. */ R_UNLESS(util::IsAligned(meta->npdm->system_resource_size, os::MemoryBlockUnitSize), ldr::ResultInvalidSize()); /* Validate system resource usage. */ if (meta->npdm->system_resource_size) { /* Process must be 64-bit. */ R_UNLESS((out->flags & svc::CreateProcessFlag_AddressSpace64Bit), ldr::ResultInvalidMeta()); /* Process must be application or applet. */ R_UNLESS(IsApplication(meta) || IsApplet(meta), ldr::ResultInvalidMeta()); /* Size must be less than or equal to max. */ R_UNLESS(meta->npdm->system_resource_size <= SystemResourceSizeMax, ldr::ResultInvalidMeta()); } out->system_resource_num_pages = meta->npdm->system_resource_size >> 12; } return ResultSuccess(); } ALWAYS_INLINE u64 GetCurrentProcessInfo(svc::InfoType info_type) { u64 value; R_ABORT_UNLESS(svc::GetInfo(std::addressof(value), info_type, svc::PseudoHandle::CurrentProcess, 0)); return value; } Result SearchFreeRegion(uintptr_t *out, size_t mapping_size) { /* Get address space extents. */ const uintptr_t heap_start = GetCurrentProcessInfo(svc::InfoType_HeapRegionAddress); const size_t heap_size = GetCurrentProcessInfo(svc::InfoType_HeapRegionSize); const uintptr_t alias_start = GetCurrentProcessInfo(svc::InfoType_AliasRegionAddress); const size_t alias_size = GetCurrentProcessInfo(svc::InfoType_AliasRegionSize); const uintptr_t aslr_start = GetCurrentProcessInfo(svc::InfoType_AslrRegionAddress); const size_t aslr_size = GetCurrentProcessInfo(svc::InfoType_AslrRegionSize); /* Iterate upwards to find a free region. */ uintptr_t address = aslr_start; while (true) { /* Declare variables for memory querying. */ svc::MemoryInfo mem_info; svc::PageInfo page_info; /* Check that we're still within bounds. */ R_UNLESS(address < address + mapping_size, svc::ResultOutOfMemory()); /* If we're within the heap region, skip to the end of the heap region. */ if (heap_size != 0 && !(address + mapping_size - 1 < heap_start || heap_start + heap_size - 1 < address)) { R_UNLESS(address < heap_start + heap_size, svc::ResultOutOfMemory()); address = heap_start + heap_size; continue; } /* If we're within the alias region, skip to the end of the alias region. */ if (alias_size != 0 && !(address + mapping_size - 1 < alias_start || alias_start + alias_size - 1 < address)) { R_UNLESS(address < alias_start + alias_size, svc::ResultOutOfMemory()); address = alias_start + alias_size; continue; } /* Get the current memory range. */ R_ABORT_UNLESS(svc::QueryMemory(std::addressof(mem_info), std::addressof(page_info), address)); /* If the memory range is free and big enough, use it. */ if (mem_info.state == svc::MemoryState_Free && mapping_size <= ((mem_info.base_address + mem_info.size) - address)) { *out = address; return ResultSuccess(); } /* Check that we can advance. */ R_UNLESS(address < mem_info.base_address + mem_info.size, svc::ResultOutOfMemory()); R_UNLESS(mem_info.base_address + mem_info.size - 1 < aslr_start + aslr_size - 1, svc::ResultOutOfMemory()); /* Advance. */ address = mem_info.base_address + mem_info.size; } } Result DecideAddressSpaceLayout(ProcessInfo *out, svc::CreateProcessParameter *out_param, const NsoHeader *nso_headers, const bool *has_nso, const ArgumentStore::Entry *argument) { /* Clear output. */ out->args_address = 0; out->args_size = 0; std::memset(out->nso_address, 0, sizeof(out->nso_address)); std::memset(out->nso_size, 0, sizeof(out->nso_size)); size_t total_size = 0; bool argument_allocated = false; /* Calculate base offsets. */ for (size_t i = 0; i < Nso_Count; i++) { if (has_nso[i]) { out->nso_address[i] = total_size; const size_t text_end = nso_headers[i].text_dst_offset + nso_headers[i].text_size; const size_t ro_end = nso_headers[i].ro_dst_offset + nso_headers[i].ro_size; const size_t rw_end = nso_headers[i].rw_dst_offset + nso_headers[i].rw_size + nso_headers[i].bss_size; out->nso_size[i] = text_end; out->nso_size[i] = std::max(out->nso_size[i], ro_end); out->nso_size[i] = std::max(out->nso_size[i], rw_end); out->nso_size[i] = util::AlignUp(out->nso_size[i], os::MemoryPageSize); total_size += out->nso_size[i]; if (!argument_allocated && argument != nullptr) { out->args_address = total_size; out->args_size = util::AlignUp(2 * sizeof(u32) + argument->argument_size * 2 + ArgumentStore::ArgumentBufferSize, os::MemoryPageSize); total_size += out->args_size; argument_allocated = true; } } } /* Calculate ASLR. */ uintptr_t aslr_start = 0; size_t aslr_size = 0; if (hos::GetVersion() >= hos::Version_2_0_0) { switch (out_param->flags & svc::CreateProcessFlag_AddressSpaceMask) { case svc::CreateProcessFlag_AddressSpace32Bit: case svc::CreateProcessFlag_AddressSpace32BitWithoutAlias: aslr_start = svc::AddressSmallMap32Start; aslr_size = svc::AddressSmallMap32Size; break; case svc::CreateProcessFlag_AddressSpace64BitDeprecated: aslr_start = svc::AddressSmallMap36Start; aslr_size = svc::AddressSmallMap36Size; break; case svc::CreateProcessFlag_AddressSpace64Bit: aslr_start = svc::AddressMap39Start; aslr_size = svc::AddressMap39Size; break; AMS_UNREACHABLE_DEFAULT_CASE(); } } else { /* On 1.0.0, only 2 address space types existed. */ if (out_param->flags & svc::CreateProcessFlag_AddressSpace64BitDeprecated) { aslr_start = svc::AddressSmallMap36Start; aslr_size = svc::AddressSmallMap36Size; } else { aslr_start = svc::AddressSmallMap32Start; aslr_size = svc::AddressSmallMap32Size; } } R_UNLESS(total_size <= aslr_size, svc::ResultOutOfMemory()); /* Set Create Process output. */ uintptr_t aslr_slide = 0; size_t free_size = (aslr_size - total_size); if (out_param->flags & svc::CreateProcessFlag_EnableAslr) { /* Nintendo uses MT19937 (not os::GenerateRandomBytes), but we'll just use TinyMT for now. */ aslr_slide = os::GenerateRandomU64(free_size / os::MemoryBlockUnitSize) * os::MemoryBlockUnitSize; } /* Set out. */ aslr_start += aslr_slide; for (size_t i = 0; i < Nso_Count; i++) { if (has_nso[i]) { out->nso_address[i] += aslr_start; } } if (out->args_address) { out->args_address += aslr_start; } out_param->code_address = aslr_start; out_param->code_num_pages = total_size >> 12; return ResultSuccess(); } Result CreateProcessImpl(ProcessInfo *out, const Meta *meta, const NsoHeader *nso_headers, const bool *has_nso, const ArgumentStore::Entry *argument, u32 flags, os::NativeHandle resource_limit) { /* Get CreateProcessParameter. */ svc::CreateProcessParameter param; R_TRY(GetCreateProcessParameter(std::addressof(param), meta, flags, resource_limit)); /* Decide on an NSO layout. */ R_TRY(DecideAddressSpaceLayout(out, std::addressof(param), nso_headers, has_nso, argument)); /* Actually create process. */ svc::Handle process_handle; R_TRY(svc::CreateProcess(std::addressof(process_handle), std::addressof(param), static_cast(meta->aci_kac), meta->aci->kac_size / sizeof(u32))); /* Set the output handle. */ out->process_handle = process_handle; return ResultSuccess(); } Result LoadNsoSegment(fs::FileHandle file, const NsoHeader::SegmentInfo *segment, size_t file_size, const u8 *file_hash, bool is_compressed, bool check_hash, uintptr_t map_base, uintptr_t map_end) { /* Select read size based on compression. */ if (!is_compressed) { file_size = segment->size; } /* Validate size. */ R_UNLESS(file_size <= segment->size, ldr::ResultInvalidNso()); R_UNLESS(segment->size <= std::numeric_limits::max(), ldr::ResultInvalidNso()); /* Load data from file. */ uintptr_t load_address = is_compressed ? map_end - file_size : map_base; size_t read_size; R_TRY(fs::ReadFile(std::addressof(read_size), file, segment->file_offset, reinterpret_cast(load_address), file_size)); R_UNLESS(read_size == file_size, ldr::ResultInvalidNso()); /* Uncompress if necessary. */ if (is_compressed) { bool decompressed = (util::DecompressLZ4(reinterpret_cast(map_base), segment->size, reinterpret_cast(load_address), file_size) == static_cast(segment->size)); R_UNLESS(decompressed, ldr::ResultInvalidNso()); } /* Check hash if necessary. */ if (check_hash) { u8 hash[crypto::Sha256Generator::HashSize]; crypto::GenerateSha256Hash(hash, sizeof(hash), reinterpret_cast(map_base), segment->size); R_UNLESS(std::memcmp(hash, file_hash, sizeof(hash)) == 0, ldr::ResultInvalidNso()); } return ResultSuccess(); } Result LoadAutoLoadModule(os::NativeHandle process_handle, fs::FileHandle file, uintptr_t map_address, const NsoHeader *nso_header, uintptr_t nso_address, size_t nso_size) { /* Map and read data from file. */ { AutoCloseMap map(map_address, process_handle, nso_address, nso_size); R_TRY(map.GetResult()); /* Load NSO segments. */ R_TRY(LoadNsoSegment(file, std::addressof(nso_header->segments[NsoHeader::Segment_Text]), nso_header->text_compressed_size, nso_header->text_hash, (nso_header->flags & NsoHeader::Flag_CompressedText) != 0, (nso_header->flags & NsoHeader::Flag_CheckHashText) != 0, map_address + nso_header->text_dst_offset, map_address + nso_size)); R_TRY(LoadNsoSegment(file, std::addressof(nso_header->segments[NsoHeader::Segment_Ro]), nso_header->ro_compressed_size, nso_header->ro_hash, (nso_header->flags & NsoHeader::Flag_CompressedRo) != 0, (nso_header->flags & NsoHeader::Flag_CheckHashRo) != 0, map_address + nso_header->ro_dst_offset, map_address + nso_size)); R_TRY(LoadNsoSegment(file, std::addressof(nso_header->segments[NsoHeader::Segment_Rw]), nso_header->rw_compressed_size, nso_header->rw_hash, (nso_header->flags & NsoHeader::Flag_CompressedRw) != 0, (nso_header->flags & NsoHeader::Flag_CheckHashRw) != 0, map_address + nso_header->rw_dst_offset, map_address + nso_size)); /* Clear unused space to zero. */ const size_t text_end = nso_header->text_dst_offset + nso_header->text_size; const size_t ro_end = nso_header->ro_dst_offset + nso_header->ro_size; const size_t rw_end = nso_header->rw_dst_offset + nso_header->rw_size; std::memset(reinterpret_cast(map_address), 0, nso_header->text_dst_offset); std::memset(reinterpret_cast(map_address + text_end), 0, nso_header->ro_dst_offset - text_end); std::memset(reinterpret_cast(map_address + ro_end), 0, nso_header->rw_dst_offset - ro_end); std::memset(reinterpret_cast(map_address + rw_end), 0, nso_header->bss_size); /* Apply embedded patches. */ ApplyEmbeddedPatchesToModule(nso_header->module_id, map_address, nso_size); /* Apply IPS patches. */ LocateAndApplyIpsPatchesToModule(nso_header->module_id, map_address, nso_size); } /* Set permissions. */ const size_t text_size = util::AlignUp(nso_header->text_size, os::MemoryPageSize); const size_t ro_size = util::AlignUp(nso_header->ro_size, os::MemoryPageSize); const size_t rw_size = util::AlignUp(nso_header->rw_size + nso_header->bss_size, os::MemoryPageSize); if (text_size) { R_TRY(svc::SetProcessMemoryPermission(process_handle, nso_address + nso_header->text_dst_offset, text_size, svc::MemoryPermission_ReadExecute)); } if (ro_size) { R_TRY(svc::SetProcessMemoryPermission(process_handle, nso_address + nso_header->ro_dst_offset, ro_size, svc::MemoryPermission_Read)); } if (rw_size) { R_TRY(svc::SetProcessMemoryPermission(process_handle, nso_address + nso_header->rw_dst_offset, rw_size, svc::MemoryPermission_ReadWrite)); } return ResultSuccess(); } Result LoadAutoLoadModules(const ProcessInfo *process_info, const NsoHeader *nso_headers, const bool *has_nso, const ArgumentStore::Entry *argument) { /* Load each NSO. */ for (size_t i = 0; i < Nso_Count; i++) { if (has_nso[i]) { fs::FileHandle file; R_TRY(fs::OpenFile(std::addressof(file), GetNsoPath(i), fs::OpenMode_Read)); ON_SCOPE_EXIT { fs::CloseFile(file); }; uintptr_t map_address; R_TRY(SearchFreeRegion(std::addressof(map_address), process_info->nso_size[i])); R_TRY(LoadAutoLoadModule(process_info->process_handle, file, map_address, nso_headers + i, process_info->nso_address[i], process_info->nso_size[i])); } } /* Load arguments, if present. */ if (argument != nullptr) { /* Write argument data into memory. */ { uintptr_t map_address; R_TRY(SearchFreeRegion(std::addressof(map_address), process_info->args_size)); AutoCloseMap map(map_address, process_info->process_handle, process_info->args_address, process_info->args_size); R_TRY(map.GetResult()); ProgramArguments *args = reinterpret_cast(map_address); std::memset(args, 0, sizeof(*args)); args->allocated_size = process_info->args_size; args->arguments_size = argument->argument_size; std::memcpy(args->arguments, argument->argument, argument->argument_size); } /* Set argument region permissions. */ R_TRY(svc::SetProcessMemoryPermission(process_info->process_handle, process_info->args_address, process_info->args_size, svc::MemoryPermission_ReadWrite)); } return ResultSuccess(); } } /* Process Creation API. */ Result CreateProcess(os::NativeHandle *out, PinId pin_id, const ncm::ProgramLocation &loc, const cfg::OverrideStatus &override_status, const char *path, const ArgumentStore::Entry *argument, u32 flags, os::NativeHandle resource_limit) { /* Mount code. */ AMS_UNUSED(path); ScopedCodeMount mount(loc, override_status); R_TRY(mount.GetResult()); /* Load meta, possibly from cache. */ Meta meta; R_TRY(LoadMetaFromCache(std::addressof(meta), loc, override_status)); /* Validate meta. */ R_TRY(ValidateMeta(std::addressof(meta), loc, mount.GetCodeVerificationData())); /* Load, validate NSOs. */ R_TRY(LoadNsoHeaders(g_nso_headers, g_has_nso)); R_TRY(ValidateNsoHeaders(g_nso_headers, g_has_nso)); /* Actually create process. */ ProcessInfo info; R_TRY(CreateProcessImpl(std::addressof(info), std::addressof(meta), g_nso_headers, g_has_nso, argument, flags, resource_limit)); /* Load NSOs into process memory. */ { /* Ensure we close the process handle, if we fail. */ ON_RESULT_FAILURE { os::CloseNativeHandle(info.process_handle); } /* Load all NSOs. */ R_TRY(LoadAutoLoadModules(std::addressof(info), g_nso_headers, g_has_nso, argument)); } /* Register NSOs with the RoManager. */ { /* Nintendo doesn't validate this get, but we do. */ os::ProcessId process_id = os::GetProcessId(info.process_handle); /* Register new process. */ const auto as_type = GetAddressSpaceType(std::addressof(meta)); RoManager::GetInstance().RegisterProcess(pin_id, process_id, meta.aci->program_id, as_type == Npdm::AddressSpaceType_64Bit || as_type == Npdm::AddressSpaceType_64BitDeprecated); /* Register all NSOs. */ for (size_t i = 0; i < Nso_Count; i++) { if (g_has_nso[i]) { RoManager::GetInstance().AddNso(pin_id, g_nso_headers[i].module_id, info.nso_address[i], info.nso_size[i]); } } } /* If we're overriding for HBL, perform HTML document redirection. */ if (override_status.IsHbl()) { /* Don't validate result, failure is okay. */ RedirectHtmlDocumentPathForHbl(loc); } /* Clear the external code for the program. */ fssystem::DestroyExternalCode(loc.program_id); /* Note that we've created the program. */ SetLaunchedBootProgram(loc.program_id); /* Move the process handle to output. */ *out = info.process_handle; R_SUCCEED(); } Result GetProgramInfo(ProgramInfo *out, cfg::OverrideStatus *out_status, const ncm::ProgramLocation &loc, const char *path) { Meta meta; /* Load Meta. */ { AMS_UNUSED(path); ScopedCodeMount mount(loc); R_TRY(mount.GetResult()); R_TRY(LoadMeta(std::addressof(meta), loc, mount.GetOverrideStatus())); if (out_status != nullptr) { *out_status = mount.GetOverrideStatus(); } } return GetProgramInfoFromMeta(out, std::addressof(meta)); } Result PinProgram(PinId *out_id, const ncm::ProgramLocation &loc, const cfg::OverrideStatus &override_status) { R_UNLESS(RoManager::GetInstance().Allocate(out_id, loc, override_status), ldr::ResultMaxProcess()); return ResultSuccess(); } Result UnpinProgram(PinId id) { R_UNLESS(RoManager::GetInstance().Free(id), ldr::ResultNotPinned()); return ResultSuccess(); } Result GetProcessModuleInfo(u32 *out_count, ldr::ModuleInfo *out, size_t max_out_count, os::ProcessId process_id) { R_UNLESS(RoManager::GetInstance().GetProcessModuleInfo(out_count, out, max_out_count, process_id), ldr::ResultNotPinned()); return ResultSuccess(); } Result GetProgramLocationAndOverrideStatusFromPinId(ncm::ProgramLocation *out, cfg::OverrideStatus *out_status, PinId pin_id) { R_UNLESS(RoManager::GetInstance().GetProgramLocationAndStatus(out, out_status, pin_id), ldr::ResultNotPinned()); return ResultSuccess(); } }