/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include
#include
namespace ams::kern {
Result KPageTableBase::InitializeForKernel(bool is_64_bit, void *table, KVirtualAddress start, KVirtualAddress end) {
/* Initialize our members. */
this->address_space_width = (is_64_bit) ? BITSIZEOF(u64) : BITSIZEOF(u32);
this->address_space_start = KProcessAddress(GetInteger(start));
this->address_space_end = KProcessAddress(GetInteger(end));
this->is_kernel = true;
this->enable_aslr = true;
this->heap_region_start = 0;
this->heap_region_end = 0;
this->current_heap_end = 0;
this->alias_region_start = 0;
this->alias_region_end = 0;
this->stack_region_start = 0;
this->stack_region_end = 0;
this->kernel_map_region_start = 0;
this->kernel_map_region_end = 0;
this->alias_code_region_start = 0;
this->alias_code_region_end = 0;
this->code_region_start = 0;
this->code_region_end = 0;
this->max_heap_size = 0;
this->mapped_physical_memory_size = 0;
this->mapped_unsafe_physical_memory = 0;
this->memory_block_slab_manager = std::addressof(Kernel::GetSystemMemoryBlockManager());
this->block_info_manager = std::addressof(Kernel::GetBlockInfoManager());
this->allocate_option = KMemoryManager::EncodeOption(KMemoryManager::Pool_System, KMemoryManager::Direction_FromFront);
this->heap_fill_value = MemoryFillValue_Zero;
this->ipc_fill_value = MemoryFillValue_Zero;
this->stack_fill_value = MemoryFillValue_Zero;
this->cached_physical_linear_region = nullptr;
this->cached_physical_heap_region = nullptr;
this->cached_virtual_heap_region = nullptr;
/* Initialize our implementation. */
this->impl.InitializeForKernel(table, start, end);
/* Initialize our memory block manager. */
return this->memory_block_manager.Initialize(this->address_space_start, this->address_space_end, this->memory_block_slab_manager);
return ResultSuccess();
}
Result KPageTableBase::InitializeForProcess(ams::svc::CreateProcessFlag as_type, bool enable_aslr, bool from_back, KMemoryManager::Pool pool, void *table, KProcessAddress start, KProcessAddress end, KProcessAddress code_address, size_t code_size, KMemoryBlockSlabManager *mem_block_slab_manager, KBlockInfoManager *block_info_manager) {
/* Validate the region. */
MESOSPHERE_ABORT_UNLESS(start <= code_address);
MESOSPHERE_ABORT_UNLESS(code_address < code_address + code_size);
MESOSPHERE_ABORT_UNLESS(code_address + code_size - 1 <= end - 1);
/* Declare variables to hold our region sizes. */
/* Define helpers. */
auto GetSpaceStart = [&](KAddressSpaceInfo::Type type) ALWAYS_INLINE_LAMBDA {
return KAddressSpaceInfo::GetAddressSpaceStart(this->address_space_width, type);
};
auto GetSpaceSize = [&](KAddressSpaceInfo::Type type) ALWAYS_INLINE_LAMBDA {
return KAddressSpaceInfo::GetAddressSpaceSize(this->address_space_width, type);
};
/* Set our width and heap/alias sizes. */
this->address_space_width = GetAddressSpaceWidth(as_type);
size_t alias_region_size = GetSpaceSize(KAddressSpaceInfo::Type_Alias);
size_t heap_region_size = GetSpaceSize(KAddressSpaceInfo::Type_Heap);
/* Adjust heap/alias size if we don't have an alias region. */
if ((as_type & ams::svc::CreateProcessFlag_AddressSpaceMask) == ams::svc::CreateProcessFlag_AddressSpace32BitWithoutAlias) {
heap_region_size += alias_region_size;
alias_region_size = 0;
}
/* Set code regions and determine remaining sizes. */
KProcessAddress process_code_start;
KProcessAddress process_code_end;
size_t stack_region_size;
size_t kernel_map_region_size;
if (this->address_space_width == 39) {
alias_region_size = GetSpaceSize(KAddressSpaceInfo::Type_Alias);
heap_region_size = GetSpaceSize(KAddressSpaceInfo::Type_Heap);
stack_region_size = GetSpaceSize(KAddressSpaceInfo::Type_Stack);
kernel_map_region_size = GetSpaceSize(KAddressSpaceInfo::Type_32Bit);
this->code_region_start = GetSpaceStart(KAddressSpaceInfo::Type_Large64Bit);
this->code_region_end = this->code_region_start + GetSpaceSize(KAddressSpaceInfo::Type_Large64Bit);
this->alias_code_region_start = this->code_region_start;
this->alias_code_region_end = this->code_region_end;
process_code_start = util::AlignDown(GetInteger(code_address), RegionAlignment);
process_code_end = util::AlignUp(GetInteger(code_address) + code_size, RegionAlignment);
} else {
stack_region_size = 0;
kernel_map_region_size = 0;
this->code_region_start = GetSpaceStart(KAddressSpaceInfo::Type_32Bit);
this->code_region_end = this->code_region_start + GetSpaceSize(KAddressSpaceInfo::Type_32Bit);
this->stack_region_start = this->code_region_start;
this->alias_code_region_start = this->code_region_start;
this->alias_code_region_end = GetSpaceStart(KAddressSpaceInfo::Type_Small64Bit) + GetSpaceSize(KAddressSpaceInfo::Type_Small64Bit);
this->stack_region_end = this->code_region_end;
this->kernel_map_region_start = this->code_region_start;
this->kernel_map_region_end = this->code_region_end;
process_code_start = this->code_region_start;
process_code_end = this->code_region_end;
}
/* Set other basic fields. */
this->enable_aslr = enable_aslr;
this->address_space_start = start;
this->address_space_end = end;
this->is_kernel = false;
this->memory_block_slab_manager = mem_block_slab_manager;
this->block_info_manager = block_info_manager;
/* Determine the region we can place our undetermineds in. */
KProcessAddress alloc_start;
size_t alloc_size;
if ((GetInteger(process_code_start) - GetInteger(this->code_region_start)) >= (GetInteger(end) - GetInteger(process_code_end))) {
alloc_start = this->code_region_start;
alloc_size = GetInteger(process_code_start) - GetInteger(this->code_region_start);
} else {
alloc_start = process_code_end;
alloc_size = GetInteger(end) - GetInteger(process_code_end);
}
const size_t needed_size = (alias_region_size + heap_region_size + stack_region_size + kernel_map_region_size);
R_UNLESS(alloc_size >= needed_size, svc::ResultOutOfMemory());
const size_t remaining_size = alloc_size - needed_size;
/* Determine random placements for each region. */
size_t alias_rnd = 0, heap_rnd = 0, stack_rnd = 0, kmap_rnd = 0;
if (enable_aslr) {
alias_rnd = KSystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) * RegionAlignment;
heap_rnd = KSystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) * RegionAlignment;
stack_rnd = KSystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) * RegionAlignment;
kmap_rnd = KSystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) * RegionAlignment;
}
/* Setup heap and alias regions. */
this->alias_region_start = alloc_start + alias_rnd;
this->alias_region_end = this->alias_region_start + alias_region_size;
this->heap_region_start = alloc_start + heap_rnd;
this->heap_region_end = this->heap_region_start + heap_region_size;
if (alias_rnd <= heap_rnd) {
this->heap_region_start += alias_region_size;
this->heap_region_end += alias_region_size;
} else {
this->alias_region_start += heap_region_size;
this->alias_region_end += heap_region_size;
}
/* Setup stack region. */
if (stack_region_size) {
this->stack_region_start = alloc_start + stack_rnd;
this->stack_region_end = this->stack_region_start + stack_region_size;
if (alias_rnd < stack_rnd) {
this->stack_region_start += alias_region_size;
this->stack_region_end += alias_region_size;
} else {
this->alias_region_start += stack_region_size;
this->alias_region_end += stack_region_size;
}
if (heap_rnd < stack_rnd) {
this->stack_region_start += heap_region_size;
this->stack_region_end += heap_region_size;
} else {
this->heap_region_start += stack_region_size;
this->heap_region_end += stack_region_size;
}
}
/* Setup kernel map region. */
if (kernel_map_region_size) {
this->kernel_map_region_start = alloc_start + kmap_rnd;
this->kernel_map_region_end = this->kernel_map_region_start + kernel_map_region_size;
if (alias_rnd < kmap_rnd) {
this->kernel_map_region_start += alias_region_size;
this->kernel_map_region_end += alias_region_size;
} else {
this->alias_region_start += kernel_map_region_size;
this->alias_region_end += kernel_map_region_size;
}
if (heap_rnd < kmap_rnd) {
this->kernel_map_region_start += heap_region_size;
this->kernel_map_region_end += heap_region_size;
} else {
this->heap_region_start += kernel_map_region_size;
this->heap_region_end += kernel_map_region_size;
}
if (stack_region_size) {
if (stack_rnd < kmap_rnd) {
this->kernel_map_region_start += stack_region_size;
this->kernel_map_region_end += stack_region_size;
} else {
this->stack_region_start += kernel_map_region_size;
this->stack_region_end += kernel_map_region_size;
}
}
}
/* Set heap and fill members. */
this->current_heap_end = this->heap_region_start;
this->max_heap_size = 0;
this->mapped_physical_memory_size = 0;
this->mapped_unsafe_physical_memory = 0;
const bool fill_memory = KTargetSystem::IsDebugMemoryFillEnabled();
this->heap_fill_value = fill_memory ? MemoryFillValue_Heap : MemoryFillValue_Zero;
this->ipc_fill_value = fill_memory ? MemoryFillValue_Ipc : MemoryFillValue_Zero;
this->stack_fill_value = fill_memory ? MemoryFillValue_Stack : MemoryFillValue_Zero;
/* Set allocation option. */
this->allocate_option = KMemoryManager::EncodeOption(pool, from_back ? KMemoryManager::Direction_FromBack : KMemoryManager::Direction_FromFront);
/* Ensure that we regions inside our address space. */
auto IsInAddressSpace = [&](KProcessAddress addr) ALWAYS_INLINE_LAMBDA { return this->address_space_start <= addr && addr <= this->address_space_end; };
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(this->alias_region_start));
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(this->alias_region_end));
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(this->heap_region_start));
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(this->heap_region_end));
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(this->stack_region_start));
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(this->stack_region_end));
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(this->kernel_map_region_start));
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(this->kernel_map_region_end));
/* Ensure that we selected regions that don't overlap. */
const KProcessAddress alias_start = this->alias_region_start;
const KProcessAddress alias_last = this->alias_region_end - 1;
const KProcessAddress heap_start = this->heap_region_start;
const KProcessAddress heap_last = this->heap_region_end - 1;
const KProcessAddress stack_start = this->stack_region_start;
const KProcessAddress stack_last = this->stack_region_end - 1;
const KProcessAddress kmap_start = this->kernel_map_region_start;
const KProcessAddress kmap_last = this->kernel_map_region_end - 1;
MESOSPHERE_ABORT_UNLESS(alias_last < heap_start || heap_last < alias_start);
MESOSPHERE_ABORT_UNLESS(alias_last < stack_start || stack_last < alias_start);
MESOSPHERE_ABORT_UNLESS(alias_last < kmap_start || kmap_last < alias_start);
MESOSPHERE_ABORT_UNLESS(heap_last < stack_start || stack_last < heap_start);
MESOSPHERE_ABORT_UNLESS(heap_last < kmap_start || kmap_last < heap_start);
/* Initialize our implementation. */
this->impl.InitializeForProcess(table, GetInteger(start), GetInteger(end));
/* Initialize our memory block manager. */
return this->memory_block_manager.Initialize(this->address_space_start, this->address_space_end, this->memory_block_slab_manager);
return ResultSuccess();
}
void KPageTableBase::Finalize() {
this->memory_block_manager.Finalize(this->memory_block_slab_manager);
MESOSPHERE_TODO("cpu::InvalidateEntireInstructionCache();");
}
KProcessAddress KPageTableBase::GetRegionAddress(KMemoryState state) const {
switch (state) {
case KMemoryState_Free:
case KMemoryState_Kernel:
return this->address_space_start;
case KMemoryState_Normal:
return this->heap_region_start;
case KMemoryState_Ipc:
case KMemoryState_NonSecureIpc:
case KMemoryState_NonDeviceIpc:
return this->alias_region_start;
case KMemoryState_Stack:
return this->stack_region_start;
case KMemoryState_Io:
case KMemoryState_Static:
case KMemoryState_ThreadLocal:
return this->kernel_map_region_start;
case KMemoryState_Shared:
case KMemoryState_AliasCode:
case KMemoryState_AliasCodeData:
case KMemoryState_Transfered:
case KMemoryState_SharedTransfered:
case KMemoryState_SharedCode:
case KMemoryState_GeneratedCode:
case KMemoryState_CodeOut:
return this->alias_code_region_start;
case KMemoryState_Code:
case KMemoryState_CodeData:
return this->code_region_start;
MESOSPHERE_UNREACHABLE_DEFAULT_CASE();
}
}
size_t KPageTableBase::GetRegionSize(KMemoryState state) const {
switch (state) {
case KMemoryState_Free:
case KMemoryState_Kernel:
return this->address_space_end - this->address_space_start;
case KMemoryState_Normal:
return this->heap_region_end - this->heap_region_start;
case KMemoryState_Ipc:
case KMemoryState_NonSecureIpc:
case KMemoryState_NonDeviceIpc:
return this->alias_region_end - this->alias_region_start;
case KMemoryState_Stack:
return this->stack_region_end - this->stack_region_start;
case KMemoryState_Io:
case KMemoryState_Static:
case KMemoryState_ThreadLocal:
return this->kernel_map_region_end - this->kernel_map_region_start;
case KMemoryState_Shared:
case KMemoryState_AliasCode:
case KMemoryState_AliasCodeData:
case KMemoryState_Transfered:
case KMemoryState_SharedTransfered:
case KMemoryState_SharedCode:
case KMemoryState_GeneratedCode:
case KMemoryState_CodeOut:
return this->alias_code_region_end - this->alias_code_region_start;
case KMemoryState_Code:
case KMemoryState_CodeData:
return this->code_region_end - this->code_region_start;
MESOSPHERE_UNREACHABLE_DEFAULT_CASE();
}
}
bool KPageTableBase::CanContain(KProcessAddress addr, size_t size, KMemoryState state) const {
const KProcessAddress end = addr + size;
const KProcessAddress last = end - 1;
const KProcessAddress region_start = this->GetRegionAddress(state);
const size_t region_size = this->GetRegionSize(state);
const bool is_in_region = region_start <= addr && addr < end && last <= region_start + region_size - 1;
const bool is_in_heap = !(end <= this->heap_region_start || this->heap_region_end <= addr);
const bool is_in_alias = !(end <= this->alias_region_start || this->alias_region_end <= addr);
switch (state) {
case KMemoryState_Free:
case KMemoryState_Kernel:
return is_in_region;
case KMemoryState_Io:
case KMemoryState_Static:
case KMemoryState_Code:
case KMemoryState_CodeData:
case KMemoryState_Shared:
case KMemoryState_AliasCode:
case KMemoryState_AliasCodeData:
case KMemoryState_Stack:
case KMemoryState_ThreadLocal:
case KMemoryState_Transfered:
case KMemoryState_SharedTransfered:
case KMemoryState_SharedCode:
case KMemoryState_GeneratedCode:
case KMemoryState_CodeOut:
return is_in_region && !is_in_heap && !is_in_alias;
case KMemoryState_Normal:
MESOSPHERE_ASSERT(is_in_heap);
return is_in_region && !is_in_alias;
case KMemoryState_Ipc:
case KMemoryState_NonSecureIpc:
case KMemoryState_NonDeviceIpc:
MESOSPHERE_ASSERT(is_in_alias);
return is_in_region && !is_in_heap;
default:
return false;
}
}
Result KPageTableBase::CheckMemoryState(const KMemoryInfo &info, u32 state_mask, u32 state, u32 perm_mask, u32 perm, u32 attr_mask, u32 attr) const {
/* Validate the states match expectation. */
R_UNLESS((info.state & state_mask) == state, svc::ResultInvalidCurrentMemory());
R_UNLESS((info.perm & perm_mask) == perm, svc::ResultInvalidCurrentMemory());
R_UNLESS((info.attribute & attr_mask) == attr, svc::ResultInvalidCurrentMemory());
return ResultSuccess();
}
Result KPageTableBase::CheckMemoryState(KMemoryState *out_state, KMemoryPermission *out_perm, KMemoryAttribute *out_attr, KProcessAddress addr, size_t size, u32 state_mask, u32 state, u32 perm_mask, u32 perm, u32 attr_mask, u32 attr, u32 ignore_attr) const {
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
/* Get information about the first block. */
const KProcessAddress last_addr = addr + size - 1;
KMemoryBlockManager::const_iterator it = this->memory_block_manager.FindIterator(addr);
KMemoryInfo info = it->GetMemoryInfo();
/* Validate all blocks in the range have correct state. */
const KMemoryState first_state = info.state;
const KMemoryPermission first_perm = info.perm;
const KMemoryAttribute first_attr = info.attribute;
while (true) {
/* Validate the current block. */
R_UNLESS(info.state == first_state, svc::ResultInvalidCurrentMemory());
R_UNLESS(info.perm == first_perm, svc::ResultInvalidCurrentMemory());
R_UNLESS((info.attribute | ignore_attr) == (first_attr | ignore_attr), svc::ResultInvalidCurrentMemory());
/* Validate against the provided masks. */
R_TRY(this->CheckMemoryState(info, state_mask, state, perm_mask, perm, attr_mask, attr));
/* Break once we're done. */
if (last_addr <= info.GetLastAddress()) {
break;
}
/* Advance our iterator. */
it++;
MESOSPHERE_ASSERT(it != this->memory_block_manager.cend());
info = it->GetMemoryInfo();
}
/* Write output state. */
if (out_state) {
*out_state = first_state;
}
if (out_perm) {
*out_perm = first_perm;
}
if (out_attr) {
*out_attr = static_cast(first_attr & ~ignore_attr);
}
return ResultSuccess();
}
Result KPageTableBase::LockMemoryAndOpen(KPageGroup *out_pg, KPhysicalAddress *out_paddr, KProcessAddress addr, size_t size, u32 state_mask, u32 state, u32 perm_mask, u32 perm, u32 attr_mask, u32 attr, KMemoryPermission new_perm, u32 lock_attr) {
/* Validate basic preconditions. */
MESOSPHERE_ASSERT((attr_mask & lock_attr) == lock_attr);
MESOSPHERE_ASSERT((attr & lock_attr) == lock_attr);
/* Validate the lock request. */
const size_t num_pages = size / PageSize;
R_UNLESS(this->Contains(addr, size), svc::ResultInvalidCurrentMemory());
/* Lock the table. */
KScopedLightLock lk(this->general_lock);
/* Check that the output page group is empty, if it exists. */
if (out_pg) {
MESOSPHERE_ASSERT(out_pg->GetNumPages() == 0);
}
/* Check the state. */
KMemoryState old_state;
KMemoryPermission old_perm;
KMemoryAttribute old_attr;
R_TRY(this->CheckMemoryState(std::addressof(old_state), std::addressof(old_perm), std::addressof(old_attr), addr, size, state_mask | KMemoryState_FlagReferenceCounted, state | KMemoryState_FlagReferenceCounted, perm_mask, perm, attr_mask, attr));
/* Get the physical address, if we're supposed to. */
if (out_paddr != nullptr) {
MESOSPHERE_ABORT_UNLESS(this->GetPhysicalAddress(out_paddr, addr));
}
/* Make the page group, if we're supposed to. */
if (out_pg != nullptr) {
R_TRY(this->MakePageGroup(*out_pg, addr, num_pages));
}
/* Create an update allocator. */
KMemoryBlockManagerUpdateAllocator allocator(this->memory_block_slab_manager);
R_TRY(allocator.GetResult());
/* Decide on new perm and attr. */
new_perm = (new_perm != KMemoryPermission_None) ? new_perm : old_perm;
KMemoryAttribute new_attr = static_cast(old_attr | lock_attr);
/* Update permission, if we need to. */
if (new_perm != old_perm) {
/* We're going to perform an update, so create a helper. */
KScopedPageTableUpdater updater(this);
const KPageProperties properties = { new_perm, false, (old_attr & KMemoryAttribute_Uncached) != 0, true };
R_TRY(this->Operate(updater.GetPageList(), addr, num_pages, Null, false, properties, OperationType_ChangePermissions, false));
}
/* Apply the memory block updates. */
this->memory_block_manager.Update(std::addressof(allocator), addr, num_pages, old_state, new_perm, new_attr);
/* If we have an output group, open. */
if (out_pg) {
out_pg->Open();
}
return ResultSuccess();
}
Result KPageTableBase::UnlockMemory(KProcessAddress addr, size_t size, u32 state_mask, u32 state, u32 perm_mask, u32 perm, u32 attr_mask, u32 attr, KMemoryPermission new_perm, u32 lock_attr, const KPageGroup *pg) {
/* Validate basic preconditions. */
MESOSPHERE_ASSERT((attr_mask & lock_attr) == lock_attr);
MESOSPHERE_ASSERT((attr & lock_attr) == lock_attr);
/* Validate the unlock request. */
const size_t num_pages = size / PageSize;
R_UNLESS(this->Contains(addr, size), svc::ResultInvalidCurrentMemory());
/* Lock the table. */
KScopedLightLock lk(this->general_lock);
/* Check the state. */
KMemoryState old_state;
KMemoryPermission old_perm;
KMemoryAttribute old_attr;
R_TRY(this->CheckMemoryState(std::addressof(old_state), std::addressof(old_perm), std::addressof(old_attr), addr, size, state_mask | KMemoryState_FlagReferenceCounted, state | KMemoryState_FlagReferenceCounted, perm_mask, perm, attr_mask, attr));
/* Check the page group. */
if (pg != nullptr) {
R_UNLESS(this->IsValidPageGroup(*pg, addr, num_pages), svc::ResultInvalidMemoryRegion());
}
/* Decide on new perm and attr. */
new_perm = (new_perm != KMemoryPermission_None) ? new_perm : old_perm;
KMemoryAttribute new_attr = static_cast(old_attr & ~lock_attr);
/* Create an update allocator. */
KMemoryBlockManagerUpdateAllocator allocator(this->memory_block_slab_manager);
R_TRY(allocator.GetResult());
/* Update permission, if we need to. */
if (new_perm != old_perm) {
/* We're going to perform an update, so create a helper. */
KScopedPageTableUpdater updater(this);
const KPageProperties properties = { new_perm, false, (old_attr & KMemoryAttribute_Uncached) != 0, false };
R_TRY(this->Operate(updater.GetPageList(), addr, num_pages, Null, false, properties, OperationType_ChangePermissions, false));
}
/* Apply the memory block updates. */
this->memory_block_manager.Update(std::addressof(allocator), addr, num_pages, old_state, new_perm, new_attr);
return ResultSuccess();
}
Result KPageTableBase::QueryInfoImpl(KMemoryInfo *out_info, ams::svc::PageInfo *out_page, KProcessAddress address) const {
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
MESOSPHERE_ASSERT(out_info != nullptr);
MESOSPHERE_ASSERT(out_page != nullptr);
const KMemoryBlock *block = this->memory_block_manager.FindBlock(address);
R_UNLESS(block != nullptr, svc::ResultInvalidCurrentMemory());
*out_info = block->GetMemoryInfo();
out_page->flags = 0;
return ResultSuccess();
}
Result KPageTableBase::MapMemory(KProcessAddress dst_address, KProcessAddress src_address, size_t size) {
/* Lock the table. */
KScopedLightLock lk(this->general_lock);
/* Validate that the source address's state is valid. */
KMemoryState src_state;
R_TRY(this->CheckMemoryState(std::addressof(src_state), nullptr, nullptr, src_address, size, KMemoryState_FlagCanAlias, KMemoryState_FlagCanAlias, KMemoryPermission_All, KMemoryPermission_UserReadWrite, KMemoryAttribute_All, KMemoryAttribute_None));
/* Validate that the dst address's state is valid. */
R_TRY(this->CheckMemoryState(dst_address, size, KMemoryState_All, KMemoryState_Free, KMemoryPermission_None, KMemoryPermission_None, KMemoryAttribute_None, KMemoryAttribute_None));
/* Create an update allocator for the source. */
KMemoryBlockManagerUpdateAllocator src_allocator(this->memory_block_slab_manager);
R_TRY(src_allocator.GetResult());
/* Create an update allocator for the destination. */
KMemoryBlockManagerUpdateAllocator dst_allocator(this->memory_block_slab_manager);
R_TRY(dst_allocator.GetResult());
/* Map the memory. */
{
/* Determine the number of pages being operated on. */
const size_t num_pages = size / PageSize;
/* Create page groups for the memory being unmapped. */
KPageGroup pg(this->block_info_manager);
/* Create the page group representing the source. */
R_TRY(this->MakePageGroup(pg, src_address, num_pages));
/* We're going to perform an update, so create a helper. */
KScopedPageTableUpdater updater(this);
/* Reprotect the source as kernel-read/not mapped. */
const KMemoryPermission new_src_perm = static_cast(KMemoryPermission_KernelRead | KMemoryPermission_NotMapped);
const KMemoryAttribute new_src_attr = static_cast(KMemoryAttribute_AnyLocked | KMemoryAttribute_Locked);
const KPageProperties src_properties = { new_src_perm, false, false, false };
R_TRY(this->Operate(updater.GetPageList(), src_address, num_pages, Null, false, src_properties, OperationType_ChangePermissions, false));
/* Ensure that we unprotect the source pages on failure. */
auto unprot_guard = SCOPE_GUARD {
const KPageProperties unprotect_properties = { KMemoryPermission_UserReadWrite, false, false, false };
MESOSPHERE_R_ABORT_UNLESS(this->Operate(updater.GetPageList(), src_address, num_pages, Null, false, unprotect_properties, OperationType_ChangePermissions, true));
};
/* Map the alias pages. */
const KPageProperties dst_map_properties = { KMemoryPermission_UserReadWrite, false, false, false };
R_TRY(this->MapPageGroupImpl(updater.GetPageList(), dst_address, pg, dst_map_properties, false));
/* We successfully mapped the alias pages, so we don't need to unprotect the src pages on failure. */
unprot_guard.Cancel();
/* Apply the memory block updates. */
this->memory_block_manager.Update(std::addressof(src_allocator), src_address, num_pages, src_state, new_src_perm, new_src_attr);
this->memory_block_manager.Update(std::addressof(dst_allocator), dst_address, num_pages, KMemoryState_None, KMemoryPermission_UserReadWrite, KMemoryAttribute_None);
}
return ResultSuccess();
}
Result KPageTableBase::UnmapMemory(KProcessAddress dst_address, KProcessAddress src_address, size_t size) {
/* Lock the table. */
KScopedLightLock lk(this->general_lock);
/* Validate that the source address's state is valid. */
KMemoryState src_state;
R_TRY(this->CheckMemoryState(std::addressof(src_state), nullptr, nullptr, src_address, size, KMemoryState_FlagCanAlias, KMemoryState_FlagCanAlias, KMemoryPermission_All, KMemoryPermission_NotMapped | KMemoryPermission_KernelRead, KMemoryAttribute_All, KMemoryAttribute_AnyLocked | KMemoryAttribute_Locked));
/* Validate that the dst address's state is valid. */
KMemoryPermission dst_perm;
R_TRY(this->CheckMemoryState(nullptr, std::addressof(dst_perm), nullptr, dst_address, size, KMemoryState_All, KMemoryState_Stack, KMemoryPermission_None, KMemoryPermission_None, KMemoryAttribute_All, KMemoryAttribute_None));
/* Create an update allocator for the source. */
KMemoryBlockManagerUpdateAllocator src_allocator(this->memory_block_slab_manager);
R_TRY(src_allocator.GetResult());
/* Create an update allocator for the destination. */
KMemoryBlockManagerUpdateAllocator dst_allocator(this->memory_block_slab_manager);
R_TRY(dst_allocator.GetResult());
/* Unmap the memory. */
{
/* Determine the number of pages being operated on. */
const size_t num_pages = size / PageSize;
/* Create page groups for the memory being unmapped. */
KPageGroup pg(this->block_info_manager);
/* Create the page group representing the destination. */
R_TRY(this->MakePageGroup(pg, dst_address, num_pages));
/* Ensure the page group is the valid for the source. */
R_UNLESS(this->IsValidPageGroup(pg, src_address, num_pages), svc::ResultInvalidMemoryRegion());
/* We're going to perform an update, so create a helper. */
KScopedPageTableUpdater updater(this);
/* Unmap the aliased copy of the pages. */
const KPageProperties dst_unmap_properties = { KMemoryPermission_None, false, false, false };
R_TRY(this->Operate(updater.GetPageList(), dst_address, num_pages, Null, false, dst_unmap_properties, OperationType_Unmap, false));
/* Ensure that we re-map the aliased pages on failure. */
auto remap_guard = SCOPE_GUARD {
const KPageProperties dst_remap_properties = { dst_perm, false, false, false };
MESOSPHERE_R_ABORT_UNLESS(this->MapPageGroupImpl(updater.GetPageList(), dst_address, pg, dst_remap_properties, true));
};
/* Try to set the permissions for the source pages back to what they should be. */
const KPageProperties src_properties = { KMemoryPermission_UserReadWrite, false, false, false };
R_TRY(this->Operate(updater.GetPageList(), src_address, num_pages, Null, false, src_properties, OperationType_ChangePermissions, false));
/* We successfully changed the permissions for the source pages, so we don't need to re-map the dst pages on failure. */
remap_guard.Cancel();
/* Apply the memory block updates. */
this->memory_block_manager.Update(std::addressof(src_allocator), src_address, num_pages, src_state, KMemoryPermission_UserReadWrite, KMemoryAttribute_None);
this->memory_block_manager.Update(std::addressof(dst_allocator), dst_address, num_pages, KMemoryState_None, KMemoryPermission_None, KMemoryAttribute_None);
}
return ResultSuccess();
}
KProcessAddress KPageTableBase::FindFreeArea(KProcessAddress region_start, size_t region_num_pages, size_t num_pages, size_t alignment, size_t offset, size_t guard_pages) const {
KProcessAddress address = Null;
if (num_pages <= region_num_pages) {
if (this->IsAslrEnabled()) {
/* Try to directly find a free area up to 8 times. */
for (size_t i = 0; i < 8; i++) {
const size_t random_offset = KSystemControl::GenerateRandomRange(0, (region_num_pages - num_pages - guard_pages) * PageSize / alignment) * alignment;
const KProcessAddress candidate = util::AlignDown(GetInteger(region_start + random_offset), alignment) + offset;
KMemoryInfo info;
ams::svc::PageInfo page_info;
MESOSPHERE_R_ABORT_UNLESS(this->QueryInfoImpl(&info, &page_info, candidate));
if (info.state != KMemoryState_Free) { continue; }
if (!(region_start <= candidate)) { continue; }
if (!(info.GetAddress() + guard_pages * PageSize <= GetInteger(candidate))) { continue; }
if (!(candidate + (num_pages + guard_pages) * PageSize - 1 <= info.GetLastAddress())) { continue; }
if (!(candidate + (num_pages + guard_pages) * PageSize - 1 <= region_start + region_num_pages * PageSize - 1)) { continue; }
address = candidate;
break;
}
/* Fall back to finding the first free area with a random offset. */
if (address == Null) {
/* NOTE: Nintendo does not account for guard pages here. */
/* This may theoretically cause an offset to be chosen that cannot be mapped. */
/* TODO: Should we account for guard pages? */
const size_t offset_pages = KSystemControl::GenerateRandomRange(0, region_num_pages - num_pages);
address = this->memory_block_manager.FindFreeArea(region_start + offset_pages * PageSize, region_num_pages - offset_pages, num_pages, alignment, offset, guard_pages);
}
}
/* Find the first free area. */
if (address == Null) {
address = this->memory_block_manager.FindFreeArea(region_start, region_num_pages, num_pages, alignment, offset, guard_pages);
}
}
return address;
}
Result KPageTableBase::AllocateAndMapPagesImpl(PageLinkedList *page_list, KProcessAddress address, size_t num_pages, const KPageProperties properties) {
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
/* Create a page group to hold the pages we allocate. */
KPageGroup pg(this->block_info_manager);
/* Allocate the pages. */
R_TRY(Kernel::GetMemoryManager().Allocate(std::addressof(pg), num_pages, this->allocate_option));
/* Ensure that the page group is open while we work with it. */
KScopedPageGroup spg(pg);
/* Clear all pages. */
for (const auto &it : pg) {
std::memset(GetVoidPointer(it.GetAddress()), this->heap_fill_value, it.GetSize());
}
/* Map the pages. */
return this->Operate(page_list, address, num_pages, pg, properties, OperationType_MapGroup, false);
}
Result KPageTableBase::MapPageGroupImpl(PageLinkedList *page_list, KProcessAddress address, const KPageGroup &pg, const KPageProperties properties, bool reuse_ll) {
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
/* Note the current address, so that we can iterate. */
const KProcessAddress start_address = address;
KProcessAddress cur_address = address;
/* Ensure that we clean up on failure. */
auto mapping_guard = SCOPE_GUARD {
MESOSPHERE_ABORT_UNLESS(!reuse_ll);
if (cur_address != start_address) {
const KPageProperties unmap_properties = {};
MESOSPHERE_R_ABORT_UNLESS(this->Operate(page_list, start_address, (cur_address - start_address) / PageSize, Null, false, unmap_properties, OperationType_Unmap, true));
}
};
/* Iterate, mapping all pages in the group. */
for (const auto &block : pg) {
/* We only allow mapping pages in the heap, and we require we're mapping non-empty blocks. */
MESOSPHERE_ABORT_UNLESS(block.GetAddress() < block.GetLastAddress());
MESOSPHERE_ABORT_UNLESS(IsHeapVirtualAddress(block.GetAddress(), block.GetSize()));
/* Map and advance. */
R_TRY(this->Operate(page_list, cur_address, block.GetNumPages(), GetHeapPhysicalAddress(block.GetAddress()), true, properties, OperationType_Map, reuse_ll));
cur_address += block.GetSize();
}
/* We succeeded! */
mapping_guard.Cancel();
return ResultSuccess();
}
Result KPageTableBase::MakePageGroup(KPageGroup &pg, KProcessAddress addr, size_t num_pages) {
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
const size_t size = num_pages * PageSize;
/* We're making a new group, not adding to an existing one. */
R_UNLESS(pg.empty(), svc::ResultInvalidCurrentMemory());
auto &impl = this->GetImpl();
/* Begin traversal. */
TraversalContext context;
TraversalEntry next_entry;
R_UNLESS(impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), addr), svc::ResultInvalidCurrentMemory());
/* Prepare tracking variables. */
KPhysicalAddress cur_addr = next_entry.phys_addr;
size_t cur_size = next_entry.block_size - (GetInteger(cur_addr) & (next_entry.block_size - 1));
size_t tot_size = cur_size;
/* Iterate, adding to group as we go. */
while (tot_size < size) {
R_UNLESS(impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context)), svc::ResultInvalidCurrentMemory());
if (next_entry.phys_addr != (cur_addr + cur_size)) {
const size_t cur_pages = cur_size / PageSize;
R_UNLESS(IsHeapPhysicalAddress(cur_addr), svc::ResultInvalidCurrentMemory());
R_TRY(pg.AddBlock(GetHeapVirtualAddress(cur_addr), cur_pages));
cur_addr = next_entry.phys_addr;
cur_size = next_entry.block_size;
} else {
cur_size += next_entry.block_size;
}
tot_size += next_entry.block_size;
}
/* Ensure we add the right amount for the last block. */
if (tot_size > size) {
cur_size -= (tot_size - size);
}
/* add the last block. */
const size_t cur_pages = cur_size / PageSize;
R_UNLESS(IsHeapPhysicalAddress(cur_addr), svc::ResultInvalidCurrentMemory());
R_TRY(pg.AddBlock(GetHeapVirtualAddress(cur_addr), cur_pages));
return ResultSuccess();
}
bool KPageTableBase::IsValidPageGroup(const KPageGroup &pg, KProcessAddress addr, size_t num_pages) {
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
const size_t size = num_pages * PageSize;
/* Empty groups are necessarily invalid. */
if (pg.empty()) {
return false;
}
auto &impl = this->GetImpl();
/* We're going to validate that the group we'd expect is the group we see. */
auto cur_it = pg.begin();
KVirtualAddress cur_block_address = cur_it->GetAddress();
size_t cur_block_pages = cur_it->GetNumPages();
auto UpdateCurrentIterator = [&]() ALWAYS_INLINE_LAMBDA {
if (cur_block_pages == 0) {
if ((++cur_it) == pg.end()) {
return false;
}
cur_block_address = cur_it->GetAddress();
cur_block_pages = cur_it->GetNumPages();
}
return true;
};
/* Begin traversal. */
TraversalContext context;
TraversalEntry next_entry;
if (!impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), addr)) {
return false;
}
/* Prepare tracking variables. */
KPhysicalAddress cur_addr = next_entry.phys_addr;
size_t cur_size = next_entry.block_size - (GetInteger(cur_addr) & (next_entry.block_size - 1));
size_t tot_size = cur_size;
/* Iterate, comparing expected to actual. */
while (tot_size < size) {
if (!impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context))) {
return false;
}
if (next_entry.phys_addr != (cur_addr + cur_size)) {
const size_t cur_pages = cur_size / PageSize;
if (!IsHeapPhysicalAddress(cur_addr)) {
return false;
}
if (!UpdateCurrentIterator()) {
return false;
}
if (cur_block_address != GetHeapVirtualAddress(cur_addr) || cur_block_pages < cur_pages) {
return false;
}
cur_block_address += cur_size;
cur_block_pages -= cur_pages;
cur_addr = next_entry.phys_addr;
cur_size = next_entry.block_size;
} else {
cur_size += next_entry.block_size;
}
tot_size += next_entry.block_size;
}
/* Ensure we compare the right amount for the last block. */
if (tot_size > size) {
cur_size -= (tot_size - size);
}
if (!IsHeapPhysicalAddress(cur_addr)) {
return false;
}
if (!UpdateCurrentIterator()) {
return false;
}
return cur_block_address == GetHeapVirtualAddress(cur_addr) && cur_block_pages == (cur_size / PageSize);
}
Result KPageTableBase::SetMemoryPermission(KProcessAddress addr, size_t size, ams::svc::MemoryPermission svc_perm) {
MESOSPHERE_UNIMPLEMENTED();
}
Result KPageTableBase::SetProcessMemoryPermission(KProcessAddress addr, size_t size, ams::svc::MemoryPermission svc_perm) {
const size_t num_pages = size / PageSize;
/* Lock the table. */
KScopedLightLock lk(this->general_lock);
/* Verify we can change the memory permission. */
KMemoryState old_state;
KMemoryPermission old_perm;
R_TRY(this->CheckMemoryState(std::addressof(old_state), std::addressof(old_perm), nullptr, addr, size, KMemoryState_FlagCode, KMemoryState_FlagCode, KMemoryPermission_None, KMemoryPermission_None, KMemoryAttribute_All, KMemoryAttribute_None));
/* Make a new page group for the region. */
KPageGroup pg(this->block_info_manager);
/* Determine new perm/state. */
const KMemoryPermission new_perm = ConvertToKMemoryPermission(svc_perm);
KMemoryState new_state = old_state;
const bool is_w = (new_perm & KMemoryPermission_UserWrite) == KMemoryPermission_UserWrite;
const bool is_x = (new_perm & KMemoryPermission_UserExecute) == KMemoryPermission_UserExecute;
MESOSPHERE_ASSERT(!(is_w && is_x));
if (is_w) {
switch (old_state) {
case KMemoryState_Code: new_state = KMemoryState_CodeData; break;
case KMemoryState_AliasCode: new_state = KMemoryState_AliasCodeData; break;
MESOSPHERE_UNREACHABLE_DEFAULT_CASE();
}
}
/* Create a page group, if we're setting execute permissions. */
if (is_x) {
R_TRY(this->MakePageGroup(pg, GetInteger(addr), num_pages));
}
/* Create an update allocator. */
KMemoryBlockManagerUpdateAllocator allocator(this->memory_block_slab_manager);
R_TRY(allocator.GetResult());
/* We're going to perform an update, so create a helper. */
KScopedPageTableUpdater updater(this);
/* Perform mapping operation. */
const KPageProperties properties = { new_perm, false, false, false };
const auto operation = is_x ? OperationType_ChangePermissionsAndRefresh : OperationType_ChangePermissions;
R_TRY(this->Operate(updater.GetPageList(), addr, num_pages, Null, false, properties, operation, false));
/* Update the blocks. */
this->memory_block_manager.Update(&allocator, addr, num_pages, new_state, new_perm, KMemoryAttribute_None);
/* Ensure cache coherency, if we're setting pages as executable. */
if (is_x) {
for (const auto &block : pg) {
cpu::StoreDataCache(GetVoidPointer(block.GetAddress()), block.GetSize());
}
cpu::InvalidateEntireInstructionCache();
}
return ResultSuccess();
}
Result KPageTableBase::SetHeapSize(KProcessAddress *out, size_t size) {
MESOSPHERE_UNIMPLEMENTED();
}
Result KPageTableBase::SetMaxHeapSize(size_t size) {
/* Lock the table. */
KScopedLightLock lk(this->general_lock);
/* Only process page tables are allowed to set heap size. */
MESOSPHERE_ASSERT(!this->IsKernel());
this->max_heap_size = size;
return ResultSuccess();
}
Result KPageTableBase::QueryInfo(KMemoryInfo *out_info, ams::svc::PageInfo *out_page_info, KProcessAddress addr) const {
/* If the address is invalid, create a fake block. */
if (!this->Contains(addr, 1)) {
*out_info = {
.address = GetInteger(this->address_space_end),
.size = 0 - GetInteger(this->address_space_end),
.state = static_cast(ams::svc::MemoryState_Inaccessible),
.perm = KMemoryPermission_None,
.attribute = KMemoryAttribute_None,
.original_perm = KMemoryPermission_None,
.ipc_lock_count = 0,
.device_use_count = 0,
};
out_page_info->flags = 0;
return ResultSuccess();
}
/* Otherwise, lock the table and query. */
KScopedLightLock lk(this->general_lock);
return this->QueryInfoImpl(out_info, out_page_info, addr);
}
Result KPageTableBase::MapIo(KPhysicalAddress phys_addr, size_t size, KMemoryPermission perm) {
MESOSPHERE_ASSERT(util::IsAligned(GetInteger(phys_addr), PageSize));
MESOSPHERE_ASSERT(util::IsAligned(size, PageSize));
MESOSPHERE_ASSERT(size > 0);
R_UNLESS(phys_addr < phys_addr + size, svc::ResultInvalidAddress());
const size_t num_pages = size / PageSize;
const KPhysicalAddress last = phys_addr + size - 1;
/* Get region extents. */
const KProcessAddress region_start = this->GetRegionAddress(KMemoryState_Io);
const size_t region_size = this->GetRegionSize(KMemoryState_Io);
const size_t region_num_pages = region_size / PageSize;
/* Locate the memory region. */
auto region_it = KMemoryLayout::FindContainingRegion(phys_addr);
const auto end_it = KMemoryLayout::GetEnd(phys_addr);
R_UNLESS(region_it != end_it, svc::ResultInvalidAddress());
MESOSPHERE_ASSERT(region_it->Contains(GetInteger(phys_addr)));
/* Ensure that the region is mappable. */
const bool is_rw = perm == KMemoryPermission_UserReadWrite;
do {
/* Check the region attributes. */
R_UNLESS(!region_it->IsDerivedFrom(KMemoryRegionType_Dram), svc::ResultInvalidAddress());
R_UNLESS(!region_it->HasTypeAttribute(KMemoryRegionAttr_UserReadOnly) || !is_rw, svc::ResultInvalidAddress());
R_UNLESS(!region_it->HasTypeAttribute(KMemoryRegionAttr_NoUserMap), svc::ResultInvalidAddress());
/* Check if we're done. */
if (GetInteger(last) <= region_it->GetLastAddress()) {
break;
}
/* Advance. */
region_it++;
} while (region_it != end_it);
/* Lock the table. */
KScopedLightLock lk(this->general_lock);
/* Select an address to map at. */
KProcessAddress addr = Null;
const size_t phys_alignment = std::min(std::min(GetInteger(phys_addr) & -GetInteger(phys_addr), size & -size), MaxPhysicalMapAlignment);
for (s32 block_type = KPageTable::GetMaxBlockType(); block_type >= 0; block_type--) {
const size_t alignment = KPageTable::GetBlockSize(static_cast(block_type));
if (alignment > phys_alignment) {
continue;
}
addr = this->FindFreeArea(region_start, region_num_pages, num_pages, alignment, 0, this->GetNumGuardPages());
if (addr != Null) {
break;
}
}
R_UNLESS(addr != Null, svc::ResultOutOfMemory());
/* Check that we can map IO here. */
MESOSPHERE_ASSERT(this->CanContain(addr, size, KMemoryState_Io));
MESOSPHERE_R_ASSERT(this->CheckMemoryState(addr, size, KMemoryState_All, KMemoryState_Free, KMemoryPermission_None, KMemoryPermission_None, KMemoryAttribute_None, KMemoryAttribute_None));
/* Create an update allocator. */
KMemoryBlockManagerUpdateAllocator allocator(this->memory_block_slab_manager);
R_TRY(allocator.GetResult());
/* We're going to perform an update, so create a helper. */
KScopedPageTableUpdater updater(this);
/* Perform mapping operation. */
const KPageProperties properties = { perm, true, false, false };
R_TRY(this->Operate(updater.GetPageList(), addr, num_pages, phys_addr, true, properties, OperationType_Map, false));
/* Update the blocks. */
this->memory_block_manager.Update(&allocator, addr, num_pages, KMemoryState_Io, perm, KMemoryAttribute_None);
/* We successfully mapped the pages. */
return ResultSuccess();
}
Result KPageTableBase::MapStatic(KPhysicalAddress phys_addr, size_t size, KMemoryPermission perm) {
MESOSPHERE_UNIMPLEMENTED();
}
Result KPageTableBase::MapRegion(KMemoryRegionType region_type, KMemoryPermission perm) {
MESOSPHERE_UNIMPLEMENTED();
}
Result KPageTableBase::MapPages(KProcessAddress *out_addr, size_t num_pages, size_t alignment, KPhysicalAddress phys_addr, bool is_pa_valid, KProcessAddress region_start, size_t region_num_pages, KMemoryState state, KMemoryPermission perm) {
MESOSPHERE_ASSERT(util::IsAligned(alignment, PageSize) && alignment >= PageSize);
/* Ensure this is a valid map request. */
R_UNLESS(this->CanContain(region_start, region_num_pages * PageSize, state), svc::ResultInvalidCurrentMemory());
R_UNLESS(num_pages < region_num_pages, svc::ResultOutOfMemory());
/* Lock the table. */
KScopedLightLock lk(this->general_lock);
/* Find a random address to map at. */
KProcessAddress addr = this->FindFreeArea(region_start, region_num_pages, num_pages, alignment, 0, this->GetNumGuardPages());
R_UNLESS(addr != Null, svc::ResultOutOfMemory());
MESOSPHERE_ASSERT(util::IsAligned(GetInteger(addr), alignment));
MESOSPHERE_ASSERT(this->CanContain(addr, num_pages * PageSize, state));
MESOSPHERE_R_ASSERT(this->CheckMemoryState(addr, num_pages * PageSize, KMemoryState_All, KMemoryState_Free, KMemoryPermission_None, KMemoryPermission_None, KMemoryAttribute_None, KMemoryAttribute_None));
/* Create an update allocator. */
KMemoryBlockManagerUpdateAllocator allocator(this->memory_block_slab_manager);
R_TRY(allocator.GetResult());
/* We're going to perform an update, so create a helper. */
KScopedPageTableUpdater updater(this);
/* Perform mapping operation. */
const KPageProperties properties = { perm, false, false, false };
if (is_pa_valid) {
R_TRY(this->Operate(updater.GetPageList(), addr, num_pages, phys_addr, true, properties, OperationType_Map, false));
} else {
R_TRY(this->AllocateAndMapPagesImpl(updater.GetPageList(), addr, num_pages, properties));
}
/* Update the blocks. */
this->memory_block_manager.Update(&allocator, addr, num_pages, state, perm, KMemoryAttribute_None);
/* We successfully mapped the pages. */
*out_addr = addr;
return ResultSuccess();
}
Result KPageTableBase::UnmapPages(KProcessAddress address, size_t num_pages, KMemoryState state) {
MESOSPHERE_UNIMPLEMENTED();
}
Result KPageTableBase::MapPageGroup(KProcessAddress *out_addr, const KPageGroup &pg, KProcessAddress region_start, size_t region_num_pages, KMemoryState state, KMemoryPermission perm) {
MESOSPHERE_ASSERT(!this->IsLockedByCurrentThread());
/* Ensure this is a valid map request. */
const size_t num_pages = pg.GetNumPages();
R_UNLESS(this->CanContain(region_start, region_num_pages * PageSize, state), svc::ResultInvalidCurrentMemory());
R_UNLESS(num_pages < region_num_pages, svc::ResultOutOfMemory());
/* Lock the table. */
KScopedLightLock lk(this->general_lock);
/* Find a random address to map at. */
KProcessAddress addr = this->FindFreeArea(region_start, region_num_pages, num_pages, PageSize, 0, this->GetNumGuardPages());
R_UNLESS(addr != Null, svc::ResultOutOfMemory());
MESOSPHERE_ASSERT(this->CanContain(addr, num_pages * PageSize, state));
MESOSPHERE_R_ASSERT(this->CheckMemoryState(addr, num_pages * PageSize, KMemoryState_All, KMemoryState_Free, KMemoryPermission_None, KMemoryPermission_None, KMemoryAttribute_None, KMemoryAttribute_None));
/* Create an update allocator. */
KMemoryBlockManagerUpdateAllocator allocator(this->memory_block_slab_manager);
R_TRY(allocator.GetResult());
/* We're going to perform an update, so create a helper. */
KScopedPageTableUpdater updater(this);
/* Perform mapping operation. */
const KPageProperties properties = { perm, state == KMemoryState_Io, false, false };
R_TRY(this->MapPageGroupImpl(updater.GetPageList(), addr, pg, properties, false));
/* Update the blocks. */
this->memory_block_manager.Update(&allocator, addr, num_pages, state, perm, KMemoryAttribute_None);
/* We successfully mapped the pages. */
*out_addr = addr;
return ResultSuccess();
}
Result KPageTableBase::MapPageGroup(KProcessAddress addr, const KPageGroup &pg, KMemoryState state, KMemoryPermission perm) {
MESOSPHERE_ASSERT(!this->IsLockedByCurrentThread());
/* Ensure this is a valid map request. */
const size_t num_pages = pg.GetNumPages();
const size_t size = num_pages * PageSize;
R_UNLESS(this->CanContain(addr, size, state), svc::ResultInvalidCurrentMemory());
/* Lock the table. */
KScopedLightLock lk(this->general_lock);
/* Check if state allows us to map. */
R_TRY(this->CheckMemoryState(addr, size, KMemoryState_All, KMemoryState_Free, KMemoryPermission_None, KMemoryPermission_None, KMemoryAttribute_None, KMemoryAttribute_None));
/* Create an update allocator. */
KMemoryBlockManagerUpdateAllocator allocator(this->memory_block_slab_manager);
R_TRY(allocator.GetResult());
/* We're going to perform an update, so create a helper. */
KScopedPageTableUpdater updater(this);
/* Perform mapping operation. */
const KPageProperties properties = { perm, state == KMemoryState_Io, false, false };
R_TRY(this->MapPageGroupImpl(updater.GetPageList(), addr, pg, properties, false));
/* Update the blocks. */
this->memory_block_manager.Update(&allocator, addr, num_pages, state, perm, KMemoryAttribute_None);
/* We successfully mapped the pages. */
return ResultSuccess();
}
Result KPageTableBase::UnmapPageGroup(KProcessAddress address, const KPageGroup &pg, KMemoryState state) {
MESOSPHERE_ASSERT(!this->IsLockedByCurrentThread());
/* Ensure this is a valid unmap request. */
const size_t num_pages = pg.GetNumPages();
const size_t size = num_pages * PageSize;
R_UNLESS(this->CanContain(address, size, state), svc::ResultInvalidCurrentMemory());
/* Lock the table. */
KScopedLightLock lk(this->general_lock);
/* Check if state allows us to unmap. */
R_TRY(this->CheckMemoryState(address, size, KMemoryState_All, state, KMemoryPermission_None, KMemoryPermission_None, KMemoryAttribute_All, KMemoryAttribute_None));
/* Check that the page group is valid. */
R_UNLESS(this->IsValidPageGroup(pg, address, num_pages), svc::ResultInvalidCurrentMemory());
/* Create an update allocator. */
KMemoryBlockManagerUpdateAllocator allocator(this->memory_block_slab_manager);
R_TRY(allocator.GetResult());
/* We're going to perform an update, so create a helper. */
KScopedPageTableUpdater updater(this);
/* Perform unmapping operation. */
const KPageProperties properties = { KMemoryPermission_None, false, false, false };
R_TRY(this->Operate(updater.GetPageList(), address, num_pages, Null, false, properties, OperationType_Unmap, false));
/* Update the blocks. */
this->memory_block_manager.Update(&allocator, address, num_pages, KMemoryState_Free, KMemoryPermission_None, KMemoryAttribute_None);
return ResultSuccess();
}
Result KPageTableBase::MakeAndOpenPageGroup(KPageGroup *out, KProcessAddress address, size_t num_pages, u32 state_mask, u32 state, u32 perm_mask, u32 perm, u32 attr_mask, u32 attr) {
/* Ensure that the page group isn't null. */
MESOSPHERE_ASSERT(out != nullptr);
/* Make sure that the region we're mapping is valid for the table. */
const size_t size = num_pages * PageSize;
R_UNLESS(this->Contains(address, size), svc::ResultInvalidCurrentMemory());
/* Lock the table. */
KScopedLightLock lk(this->general_lock);
/* Check if state allows us to create the group. */
R_TRY(this->CheckMemoryState(address, size, state_mask | KMemoryState_FlagReferenceCounted, state | KMemoryState_FlagReferenceCounted, perm_mask, perm, attr_mask, attr));
/* Create a new page group for the region. */
R_TRY(this->MakePageGroup(*out, address, num_pages));
/* Open a new reference to the pages in the group. */
out->Open();
return ResultSuccess();
}
Result KPageTableBase::LockForIpcUserBuffer(KPhysicalAddress *out, KProcessAddress address, size_t size) {
return this->LockMemoryAndOpen(nullptr, out, address, size,
KMemoryState_FlagCanIpcUserBuffer, KMemoryState_FlagCanIpcUserBuffer,
KMemoryPermission_All, KMemoryPermission_UserReadWrite,
KMemoryAttribute_All, KMemoryAttribute_None,
static_cast(KMemoryPermission_NotMapped | KMemoryPermission_KernelReadWrite),
KMemoryAttribute_AnyLocked | KMemoryAttribute_Locked);
}
Result KPageTableBase::UnlockForIpcUserBuffer(KProcessAddress address, size_t size) {
return this->UnlockMemory(address, size,
KMemoryState_FlagCanIpcUserBuffer, KMemoryState_FlagCanIpcUserBuffer,
KMemoryPermission_None, KMemoryPermission_None,
KMemoryAttribute_All, KMemoryAttribute_AnyLocked | KMemoryAttribute_Locked,
KMemoryPermission_UserReadWrite,
KMemoryAttribute_AnyLocked | KMemoryAttribute_Locked, nullptr);
}
}