/* * Copyright (c) 2018-2020 Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include "car.h" #include "fuse.h" #include "pmc.h" #include "timers.h" /* Initialize the fuse driver */ void fuse_init(void) { /* Make all fuse registers visible, disable the private key and disable programming. */ clkrst_enable_fuse_regs(true); fuse_disable_private_key(); fuse_disable_programming(); } /* Disable access to the private key and set the TZ sticky bit. */ void fuse_disable_private_key(void) { volatile tegra_fuse_t *fuse = fuse_get_regs(); fuse->FUSE_PRIVATEKEYDISABLE = 0x10; } /* Disable all fuse programming. */ void fuse_disable_programming(void) { volatile tegra_fuse_t *fuse = fuse_get_regs(); fuse->FUSE_DISABLEREGPROGRAM = 1; } /* Enable power to the fuse hardware array. */ void fuse_enable_power(void) { volatile tegra_pmc_t *pmc = pmc_get_regs(); pmc->fuse_control &= ~(0x200); /* Clear PMC_FUSE_CTRL_PS18_LATCH_CLEAR. */ mdelay(1); pmc->fuse_control |= 0x100; /* Set PMC_FUSE_CTRL_PS18_LATCH_SET. */ mdelay(1); } /* Disable power to the fuse hardware array. */ void fuse_disable_power(void) { volatile tegra_pmc_t *pmc = pmc_get_regs(); pmc->fuse_control &= ~(0x100); /* Clear PMC_FUSE_CTRL_PS18_LATCH_SET. */ mdelay(1); pmc->fuse_control |= 0x200; /* Set PMC_FUSE_CTRL_PS18_LATCH_CLEAR. */ mdelay(1); } /* Wait for the fuse driver to go idle. */ static void fuse_wait_idle(void) { volatile tegra_fuse_t *fuse = fuse_get_regs(); uint32_t ctrl_val = 0; /* Wait for STATE_IDLE */ while ((ctrl_val & (0xF0000)) != 0x40000) { ctrl_val = fuse->FUSE_FUSECTRL; } } /* Read a fuse from the hardware array. */ uint32_t fuse_hw_read(uint32_t addr) { volatile tegra_fuse_t *fuse = fuse_get_regs(); /* Wait for idle state. */ fuse_wait_idle(); /* Program the target address. */ fuse->FUSE_FUSEADDR = addr; /* Enable read operation in control register. */ uint32_t ctrl_val = fuse->FUSE_FUSECTRL; ctrl_val &= ~0x3; ctrl_val |= 0x1; /* Set READ command. */ fuse->FUSE_FUSECTRL = ctrl_val; /* Wait for idle state. */ fuse_wait_idle(); return fuse->FUSE_FUSERDATA; } /* Write a fuse in the hardware array. */ void fuse_hw_write(uint32_t value, uint32_t addr) { volatile tegra_fuse_t *fuse = fuse_get_regs(); /* Wait for idle state. */ fuse_wait_idle(); /* Program the target address and value. */ fuse->FUSE_FUSEADDR = addr; fuse->FUSE_FUSEWDATA = value; /* Enable write operation in control register. */ uint32_t ctrl_val = fuse->FUSE_FUSECTRL; ctrl_val &= ~0x3; ctrl_val |= 0x2; /* Set WRITE command. */ fuse->FUSE_FUSECTRL = ctrl_val; /* Wait for idle state. */ fuse_wait_idle(); } /* Sense the fuse hardware array into the fuse cache. */ void fuse_hw_sense(void) { volatile tegra_fuse_t *fuse = fuse_get_regs(); /* Wait for idle state. */ fuse_wait_idle(); /* Enable sense operation in control register */ uint32_t ctrl_val = fuse->FUSE_FUSECTRL; ctrl_val &= ~0x3; ctrl_val |= 0x3; /* Set SENSE_CTRL command */ fuse->FUSE_FUSECTRL = ctrl_val; /* Wait for idle state. */ fuse_wait_idle(); } /* Read the SKU info register. */ uint32_t fuse_get_sku_info(void) { volatile tegra_fuse_chip_common_t *fuse_chip = fuse_chip_common_get_regs(); return fuse_chip->FUSE_SKU_INFO; } /* Read the bootrom patch version. */ uint32_t fuse_get_bootrom_patch_version(void) { volatile tegra_fuse_chip_common_t *fuse_chip = fuse_chip_common_get_regs(); return fuse_chip->FUSE_SOC_SPEEDO_1_CALIB; } /* Read a spare bit register. */ uint32_t fuse_get_spare_bit(uint32_t index) { uint32_t soc_type = fuse_get_soc_type(); if (soc_type == 0) { if (index < 32) { volatile tegra_fuse_chip_erista_t *fuse_chip = fuse_chip_erista_get_regs(); return fuse_chip->FUSE_SPARE_BIT[index]; } } else if (soc_type == 1) { if (index < 30) { volatile tegra_fuse_chip_mariko_t *fuse_chip = fuse_chip_mariko_get_regs(); return fuse_chip->FUSE_SPARE_BIT[index]; } } return 0; } /* Read a reserved ODM register. */ uint32_t fuse_get_reserved_odm(uint32_t index) { if (index < 8) { volatile tegra_fuse_chip_common_t *fuse_chip = fuse_chip_common_get_regs(); return fuse_chip->FUSE_RESERVED_ODM0[index]; } else { uint32_t soc_type = fuse_get_soc_type(); if (soc_type == 1) { volatile tegra_fuse_chip_mariko_t *fuse_chip = fuse_chip_mariko_get_regs(); if (index < 22) { return fuse_chip->FUSE_RESERVED_ODM8[index - 8]; } else if (index < 25) { return fuse_chip->FUSE_RESERVED_ODM22[index - 22]; } else if (index < 26) { return fuse_chip->FUSE_RESERVED_ODM25; } else if (index < 29) { return fuse_chip->FUSE_RESERVED_ODM26[index - 26]; } else if (index < 30) { return fuse_chip->FUSE_RESERVED_ODM29; } } } return 0; } /* Get the DramId. */ uint32_t fuse_get_dram_id(void) { return ((fuse_get_reserved_odm(4) >> 3) & 0x1F); } /* Derive the DeviceId. */ uint64_t fuse_get_device_id(void) { volatile tegra_fuse_chip_common_t *fuse_chip = fuse_chip_common_get_regs(); uint64_t device_id = 0; uint64_t y_coord = fuse_chip->FUSE_OPT_Y_COORDINATE & 0x1FF; uint64_t x_coord = fuse_chip->FUSE_OPT_X_COORDINATE & 0x1FF; uint64_t wafer_id = fuse_chip->FUSE_OPT_WAFER_ID & 0x3F; uint32_t lot_code = fuse_chip->FUSE_OPT_LOT_CODE_0; uint64_t fab_code = fuse_chip->FUSE_OPT_FAB_CODE & 0x3F; uint64_t derived_lot_code = 0; for (unsigned int i = 0; i < 5; i++) { derived_lot_code = (derived_lot_code * 0x24) + ((lot_code >> (24 - 6*i)) & 0x3F); } derived_lot_code &= 0x03FFFFFF; device_id |= y_coord << 0; device_id |= x_coord << 9; device_id |= wafer_id << 18; device_id |= derived_lot_code << 24; device_id |= fab_code << 50; return device_id; } /* Derive the HardwareType with firmware specific checks. */ uint32_t fuse_get_hardware_type_with_firmware_check(uint32_t target_firmware) { uint32_t fuse_reserved_odm4 = fuse_get_reserved_odm(4); uint32_t hardware_type = (((fuse_reserved_odm4 >> 7) & 2) | ((fuse_reserved_odm4 >> 2) & 1)); if (target_firmware < ATMOSPHERE_TARGET_FIRMWARE_4_0_0) { volatile tegra_fuse_chip_common_t *fuse_chip = fuse_chip_common_get_regs(); uint32_t fuse_spare_bit9 = (fuse_chip->FUSE_SPARE_BIT[9] & 1); switch (hardware_type) { case 0x00: return (fuse_spare_bit9 == 0) ? 0 : 3; case 0x01: return 0; /* HardwareType_Icosa */ case 0x02: return 1; /* HardwareType_Copper */ default: return 3; /* HardwareType_Undefined */ } } else { hardware_type |= ((fuse_reserved_odm4 >> 14) & 0x3C); if (target_firmware < ATMOSPHERE_TARGET_FIRMWARE_7_0_0) { switch (hardware_type) { case 0x01: return 0; /* HardwareType_Icosa */ case 0x02: return 1; /* HardwareType_Copper */ case 0x04: return 3; /* HardwareType_Iowa */ default: return 4; /* HardwareType_Undefined */ } } else { if (target_firmware < ATMOSPHERE_TARGET_FIRMWARE_10_0_0) { switch (hardware_type) { case 0x01: return 0; /* HardwareType_Icosa */ case 0x02: return 4; /* HardwareType_Calcio */ case 0x04: return 3; /* HardwareType_Iowa */ case 0x08: return 2; /* HardwareType_Hoag */ default: return 0xF; /* HardwareType_Undefined */ } } else { switch (hardware_type) { case 0x01: return 0; /* HardwareType_Icosa */ case 0x02: return 4; /* HardwareType_Calcio */ case 0x04: return 3; /* HardwareType_Iowa */ case 0x08: return 2; /* HardwareType_Hoag */ case 0x10: return 5; /* HardwareType_Five */ default: return 0xF; /* HardwareType_Undefined */ } } } } } /* Derive the HardwareType. */ uint32_t fuse_get_hardware_type(void) { return fuse_get_hardware_type_with_firmware_check(ATMOSPHERE_TARGET_FIRMWARE_CURRENT); } /* Derive the HardwareState. */ uint32_t fuse_get_hardware_state(void) { uint32_t fuse_reserved_odm4 = fuse_get_reserved_odm(4); uint32_t hardware_state = (((fuse_reserved_odm4 >> 7) & 4) | (fuse_reserved_odm4 & 3)); switch (hardware_state) { case 0x03: return 0; /* HardwareState_Development */ case 0x04: return 1; /* HardwareState_Production */ default: return 2; /* HardwareState_Undefined */ } } /* Derive the 16-byte HardwareInfo and copy to output buffer. */ void fuse_get_hardware_info(void *dst) { volatile tegra_fuse_chip_common_t *fuse_chip = fuse_chip_common_get_regs(); uint32_t hw_info[0x4]; uint32_t ops_reserved = fuse_chip->FUSE_OPT_OPS_RESERVED & 0x3F; uint32_t y_coord = fuse_chip->FUSE_OPT_Y_COORDINATE & 0x1FF; uint32_t x_coord = fuse_chip->FUSE_OPT_X_COORDINATE & 0x1FF; uint32_t wafer_id = fuse_chip->FUSE_OPT_WAFER_ID & 0x3F; uint32_t lot_code_0 = fuse_chip->FUSE_OPT_LOT_CODE_0; uint32_t lot_code_1 = fuse_chip->FUSE_OPT_LOT_CODE_1 & 0x0FFFFFFF; uint32_t fab_code = fuse_chip->FUSE_OPT_FAB_CODE & 0x3F; uint32_t vendor_code = fuse_chip->FUSE_OPT_VENDOR_CODE & 0xF; /* Hardware Info = OPS_RESERVED || Y_COORD || X_COORD || WAFER_ID || LOT_CODE || FAB_CODE || VENDOR_ID */ hw_info[0] = (uint32_t)((lot_code_1 << 30) | (wafer_id << 24) | (x_coord << 15) | (y_coord << 6) | (ops_reserved)); hw_info[1] = (uint32_t)((lot_code_0 << 26) | (lot_code_1 >> 2)); hw_info[2] = (uint32_t)((fab_code << 26) | (lot_code_0 >> 6)); hw_info[3] = (uint32_t)(vendor_code); memcpy(dst, hw_info, 0x10); } /* Get the SocType from the HardwareType. */ uint32_t fuse_get_soc_type(void) { switch (fuse_get_hardware_type()) { case 0: case 1: return 0; /* SocType_Erista */ case 3: case 2: case 4: case 5: return 1; /* SocType_Mariko */ default: return 0xF; /* SocType_Undefined */ } } /* Check if have a new ODM fuse format. */ bool fuse_is_new_format(void) { return ((fuse_get_reserved_odm(4) & 0x800) && (fuse_get_reserved_odm(0) == 0x8E61ECAE) && (fuse_get_reserved_odm(1) == 0xF2BA3BB2)); } /* Get the DeviceUniqueKeyGeneration. */ uint32_t fuse_get_device_unique_key_generation(void) { if (fuse_get_soc_type() != 0 || fuse_is_new_format()) { return (fuse_get_reserved_odm(2) & 0x1F); } else { return 0; } } /* Get the Regulator type. */ uint32_t fuse_get_regulator(void) { if (fuse_get_soc_type() == 1) { return ((fuse_get_reserved_odm(28) & 1) + 1); /* Regulator_Mariko_Max77812_A or Regulator_Mariko_Max77812_B */ } else { return 0; /* Regulator_Erista_Max77621 */ } } static const uint32_t fuse_version_increment_firmwares[] = { ATMOSPHERE_TARGET_FIRMWARE_11_0_0, ATMOSPHERE_TARGET_FIRMWARE_10_0_0, ATMOSPHERE_TARGET_FIRMWARE_9_1_0, ATMOSPHERE_TARGET_FIRMWARE_9_0_0, ATMOSPHERE_TARGET_FIRMWARE_8_1_0, ATMOSPHERE_TARGET_FIRMWARE_7_0_0, ATMOSPHERE_TARGET_FIRMWARE_6_2_0, ATMOSPHERE_TARGET_FIRMWARE_6_0_0, ATMOSPHERE_TARGET_FIRMWARE_5_0_0, ATMOSPHERE_TARGET_FIRMWARE_4_0_0, ATMOSPHERE_TARGET_FIRMWARE_3_0_2, ATMOSPHERE_TARGET_FIRMWARE_3_0_0, ATMOSPHERE_TARGET_FIRMWARE_2_0_0, ATMOSPHERE_TARGET_FIRMWARE_1_0_0, }; static const uint32_t num_fuse_increments = sizeof(fuse_version_increment_firmwares) / sizeof(fuse_version_increment_firmwares[0]); uint32_t fuse_get_expected_fuse_count(uint32_t target_firmware) { for (uint32_t i = 0; i < num_fuse_increments; ++i) { if (target_firmware >= fuse_version_increment_firmwares[i]) { return num_fuse_increments - i; } } return 0; } uint32_t fuse_get_burnt_fuse_count(void) { const uint32_t val = fuse_get_reserved_odm(7); uint32_t count = 0; for (uint32_t i = 0; i < sizeof(uint32_t) * CHAR_BIT; ++i) { if (((val >> i) & 1) != 0) { ++count; } } return count; }