/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include
namespace ams::kern::arch::arm64 {
namespace {
class AlignedMemoryBlock {
private:
uintptr_t before_start;
uintptr_t before_end;
uintptr_t after_start;
uintptr_t after_end;
size_t current_alignment;
public:
constexpr AlignedMemoryBlock(uintptr_t start, size_t num_pages, size_t alignment) : before_start(0), before_end(0), after_start(0), after_end(0), current_alignment(0) {
MESOSPHERE_ASSERT(util::IsAligned(start, PageSize));
MESOSPHERE_ASSERT(num_pages > 0);
/* Find an alignment that allows us to divide into at least two regions.*/
uintptr_t start_page = start / PageSize;
alignment /= PageSize;
while (util::AlignUp(start_page, alignment) >= util::AlignDown(start_page + num_pages, alignment)) {
alignment = KPageTable::GetSmallerAlignment(alignment * PageSize) / PageSize;
}
this->before_start = start_page;
this->before_end = util::AlignUp(start_page, alignment);
this->after_start = this->before_end;
this->after_end = start_page + num_pages;
this->current_alignment = alignment;
MESOSPHERE_ASSERT(this->current_alignment > 0);
}
constexpr void SetAlignment(size_t alignment) {
/* We can only ever decrease the granularity. */
MESOSPHERE_ASSERT(this->current_alignment >= alignment / PageSize);
this->current_alignment = alignment / PageSize;
}
constexpr size_t GetAlignment() const {
return this->current_alignment * PageSize;
}
constexpr void FindBlock(uintptr_t &out, size_t &num_pages) {
if ((this->after_end - this->after_start) >= this->current_alignment) {
/* Select aligned memory from after block. */
const size_t available_pages = util::AlignDown(this->after_end, this->current_alignment) - this->after_start;
if (num_pages == 0 || available_pages < num_pages) {
num_pages = available_pages;
}
out = this->after_start * PageSize;
this->after_start += num_pages;
} else if ((this->before_end - this->before_start) >= this->current_alignment) {
/* Select aligned memory from before block. */
const size_t available_pages = this->before_end - util::AlignUp(this->before_start, this->current_alignment);
if (num_pages == 0 || available_pages < num_pages) {
num_pages = available_pages;
}
this->before_end -= num_pages;
out = this->before_end * PageSize;
} else {
/* Neither after or before can get an aligned bit of memory. */
out = 0;
num_pages = 0;
}
}
};
constexpr u64 EncodeTtbr(KPhysicalAddress table, u8 asid) {
return (static_cast(asid) << 48) | (static_cast(GetInteger(table)));
}
class KPageTableAsidManager {
private:
using WordType = u32;
static constexpr u8 ReservedAsids[] = { 0 };
static constexpr size_t NumReservedAsids = util::size(ReservedAsids);
static constexpr size_t BitsPerWord = BITSIZEOF(WordType);
static constexpr size_t AsidCount = 0x100;
static constexpr size_t NumWords = AsidCount / BitsPerWord;
static constexpr WordType FullWord = ~WordType(0u);
private:
WordType state[NumWords];
KLightLock lock;
u8 hint;
private:
constexpr bool TestImpl(u8 asid) const {
return this->state[asid / BitsPerWord] & (1u << (asid % BitsPerWord));
}
constexpr void ReserveImpl(u8 asid) {
MESOSPHERE_ASSERT(!this->TestImpl(asid));
this->state[asid / BitsPerWord] |= (1u << (asid % BitsPerWord));
}
constexpr void ReleaseImpl(u8 asid) {
MESOSPHERE_ASSERT(this->TestImpl(asid));
this->state[asid / BitsPerWord] &= ~(1u << (asid % BitsPerWord));
}
constexpr u8 FindAvailable() const {
for (size_t i = 0; i < util::size(this->state); i++) {
if (this->state[i] == FullWord) {
continue;
}
const WordType clear_bit = (this->state[i] + 1) ^ (this->state[i]);
return BitsPerWord * i + BitsPerWord - 1 - ClearLeadingZero(clear_bit);
}
if (this->state[util::size(this->state)-1] == FullWord) {
MESOSPHERE_PANIC("Unable to reserve ASID");
}
__builtin_unreachable();
}
static constexpr ALWAYS_INLINE WordType ClearLeadingZero(WordType value) {
return __builtin_clzll(value) - (BITSIZEOF(unsigned long long) - BITSIZEOF(WordType));
}
public:
constexpr KPageTableAsidManager() : state(), lock(), hint() {
for (size_t i = 0; i < NumReservedAsids; i++) {
this->ReserveImpl(ReservedAsids[i]);
}
}
u8 Reserve() {
KScopedLightLock lk(this->lock);
if (this->TestImpl(this->hint)) {
this->hint = this->FindAvailable();
}
this->ReserveImpl(this->hint);
return this->hint++;
}
void Release(u8 asid) {
KScopedLightLock lk(this->lock);
this->ReleaseImpl(asid);
}
};
KPageTableAsidManager g_asid_manager;
}
void KPageTable::Initialize(s32 core_id) {
/* Nothing actually needed here. */
MESOSPHERE_UNUSED(core_id);
}
Result KPageTable::InitializeForKernel(void *table, KVirtualAddress start, KVirtualAddress end) {
/* Initialize basic fields. */
this->asid = 0;
this->manager = std::addressof(Kernel::GetPageTableManager());
/* Allocate a page for ttbr. */
const u64 asid_tag = (static_cast(this->asid) << 48ul);
const KVirtualAddress page = this->manager->Allocate();
MESOSPHERE_ASSERT(page != Null);
cpu::ClearPageToZero(GetVoidPointer(page));
this->ttbr = GetInteger(KPageTableBase::GetLinearMappedPhysicalAddress(page)) | asid_tag;
/* Initialize the base page table. */
MESOSPHERE_R_ABORT_UNLESS(KPageTableBase::InitializeForKernel(true, table, start, end));
return ResultSuccess();
}
Result KPageTable::InitializeForProcess(u32 id, ams::svc::CreateProcessFlag as_type, bool enable_aslr, bool enable_das_merge, bool from_back, KMemoryManager::Pool pool, KProcessAddress code_address, size_t code_size, KMemoryBlockSlabManager *mem_block_slab_manager, KBlockInfoManager *block_info_manager, KPageTableManager *pt_manager) {
/* The input ID isn't actually used. */
MESOSPHERE_UNUSED(id);
/* Get an ASID */
this->asid = g_asid_manager.Reserve();
auto asid_guard = SCOPE_GUARD { g_asid_manager.Release(this->asid); };
/* Set our manager. */
this->manager = pt_manager;
/* Allocate a new table, and set our ttbr value. */
const KVirtualAddress new_table = this->manager->Allocate();
R_UNLESS(new_table != Null, svc::ResultOutOfResource());
this->ttbr = EncodeTtbr(GetPageTablePhysicalAddress(new_table), asid);
auto table_guard = SCOPE_GUARD { this->manager->Free(new_table); };
/* Initialize our base table. */
const size_t as_width = GetAddressSpaceWidth(as_type);
const KProcessAddress as_start = 0;
const KProcessAddress as_end = (1ul << as_width);
R_TRY(KPageTableBase::InitializeForProcess(as_type, enable_aslr, enable_das_merge, from_back, pool, GetVoidPointer(new_table), as_start, as_end, code_address, code_size, mem_block_slab_manager, block_info_manager));
/* We succeeded! */
table_guard.Cancel();
asid_guard.Cancel();
/* Note that we've updated the table (since we created it). */
this->NoteUpdated();
return ResultSuccess();
}
Result KPageTable::Finalize() {
/* Only process tables should be finalized. */
MESOSPHERE_ASSERT(!this->IsKernel());
/* Note that we've updated (to ensure we're synchronized). */
this->NoteUpdated();
/* Free all pages in the table. */
{
/* Get implementation objects. */
auto &impl = this->GetImpl();
auto &mm = Kernel::GetMemoryManager();
/* Traverse, freeing all pages. */
{
/* Get the address space size. */
const size_t as_size = this->GetAddressSpaceSize();
/* Begin the traversal. */
TraversalContext context;
TraversalEntry cur_entry = {};
bool cur_valid = false;
TraversalEntry next_entry;
bool next_valid;
size_t tot_size = 0;
next_valid = impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), this->GetAddressSpaceStart());
/* Iterate over entries. */
while (true) {
if ((!next_valid && !cur_valid) || (next_valid && cur_valid && next_entry.phys_addr == cur_entry.phys_addr + cur_entry.block_size)) {
cur_entry.block_size += next_entry.block_size;
} else {
if (cur_valid && IsHeapPhysicalAddressForFinalize(cur_entry.phys_addr)) {
mm.Close(GetHeapVirtualAddress(cur_entry.phys_addr), cur_entry.block_size / PageSize);
}
/* Update tracking variables. */
tot_size += cur_entry.block_size;
cur_entry = next_entry;
cur_valid = next_valid;
}
if (cur_entry.block_size + tot_size >= as_size) {
break;
}
next_valid = impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
}
/* Handle the last block. */
if (cur_valid && IsHeapPhysicalAddressForFinalize(cur_entry.phys_addr)) {
mm.Close(GetHeapVirtualAddress(cur_entry.phys_addr), cur_entry.block_size / PageSize);
}
}
/* Cache address space extents for convenience. */
const KProcessAddress as_start = this->GetAddressSpaceStart();
const KProcessAddress as_last = as_start + this->GetAddressSpaceSize() - 1;
/* Free all L3 tables. */
for (KProcessAddress cur_address = as_start; cur_address <= as_last; cur_address += L2BlockSize) {
L1PageTableEntry *l1_entry = impl.GetL1Entry(cur_address);
if (l1_entry->IsTable()) {
L2PageTableEntry *l2_entry = impl.GetL2Entry(l1_entry, cur_address);
if (l2_entry->IsTable()) {
KVirtualAddress l3_table = GetPageTableVirtualAddress(l2_entry->GetTable());
if (this->GetPageTableManager().IsInPageTableHeap(l3_table)) {
while (!this->GetPageTableManager().Close(l3_table, 1)) { /* ... */ }
this->GetPageTableManager().Free(l3_table);
}
}
}
}
/* Free all L2 tables. */
for (KProcessAddress cur_address = as_start; cur_address <= as_last; cur_address += L1BlockSize) {
L1PageTableEntry *l1_entry = impl.GetL1Entry(cur_address);
if (l1_entry->IsTable()) {
KVirtualAddress l2_table = GetPageTableVirtualAddress(l1_entry->GetTable());
if (this->GetPageTableManager().IsInPageTableHeap(l2_table)) {
while (!this->GetPageTableManager().Close(l2_table, 1)) { /* ... */ }
this->GetPageTableManager().Free(l2_table);
}
}
}
/* Free the L1 table. */
this->GetPageTableManager().Free(reinterpret_cast(impl.Finalize()));
/* Perform inherited finalization. */
KPageTableBase::Finalize();
}
/* Release our asid. */
g_asid_manager.Release(this->asid);
return ResultSuccess();
}
Result KPageTable::Operate(PageLinkedList *page_list, KProcessAddress virt_addr, size_t num_pages, KPhysicalAddress phys_addr, bool is_pa_valid, const KPageProperties properties, OperationType operation, bool reuse_ll) {
/* Check validity of parameters. */
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
MESOSPHERE_ASSERT(num_pages > 0);
MESOSPHERE_ASSERT(util::IsAligned(GetInteger(virt_addr), PageSize));
MESOSPHERE_ASSERT(this->ContainsPages(virt_addr, num_pages));
if (operation == OperationType_Map) {
MESOSPHERE_ABORT_UNLESS(is_pa_valid);
MESOSPHERE_ASSERT(util::IsAligned(GetInteger(phys_addr), PageSize));
} else {
MESOSPHERE_ABORT_UNLESS(!is_pa_valid);
}
if (operation == OperationType_Unmap) {
return this->Unmap(virt_addr, num_pages, page_list, false, reuse_ll);
} else {
auto entry_template = this->GetEntryTemplate(properties);
switch (operation) {
case OperationType_Map:
return this->MapContiguous(virt_addr, phys_addr, num_pages, entry_template, properties.disable_merge_attributes == DisableMergeAttribute_DisableHead, page_list, reuse_ll);
case OperationType_ChangePermissions:
return this->ChangePermissions(virt_addr, num_pages, entry_template, properties.disable_merge_attributes, false, page_list, reuse_ll);
case OperationType_ChangePermissionsAndRefresh:
return this->ChangePermissions(virt_addr, num_pages, entry_template, properties.disable_merge_attributes, true, page_list, reuse_ll);
MESOSPHERE_UNREACHABLE_DEFAULT_CASE();
}
}
}
Result KPageTable::Operate(PageLinkedList *page_list, KProcessAddress virt_addr, size_t num_pages, const KPageGroup &page_group, const KPageProperties properties, OperationType operation, bool reuse_ll) {
/* Check validity of parameters. */
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
MESOSPHERE_ASSERT(util::IsAligned(GetInteger(virt_addr), PageSize));
MESOSPHERE_ASSERT(num_pages > 0);
MESOSPHERE_ASSERT(num_pages == page_group.GetNumPages());
/* Map the page group. */
auto entry_template = this->GetEntryTemplate(properties);
switch (operation) {
case OperationType_MapGroup:
return this->MapGroup(virt_addr, page_group, num_pages, entry_template, properties.disable_merge_attributes == DisableMergeAttribute_DisableHead, page_list, reuse_ll);
MESOSPHERE_UNREACHABLE_DEFAULT_CASE();
}
}
Result KPageTable::MapL1Blocks(KProcessAddress virt_addr, KPhysicalAddress phys_addr, size_t num_pages, PageTableEntry entry_template, bool disable_head_merge, PageLinkedList *page_list, bool reuse_ll) {
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
MESOSPHERE_ASSERT(util::IsAligned(GetInteger(virt_addr), L1BlockSize));
MESOSPHERE_ASSERT(util::IsAligned(GetInteger(phys_addr), L1BlockSize));
MESOSPHERE_ASSERT(util::IsAligned(num_pages * PageSize, L1BlockSize));
/* Allocation is never needed for L1 block mapping. */
MESOSPHERE_UNUSED(page_list, reuse_ll);
auto &impl = this->GetImpl();
u8 sw_reserved_bits = PageTableEntry::EncodeSoftwareReservedBits(disable_head_merge, false, false);
/* Iterate, mapping each block. */
for (size_t i = 0; i < num_pages; i += L1BlockSize / PageSize) {
/* Map the block. */
*impl.GetL1Entry(virt_addr) = L1PageTableEntry(PageTableEntry::BlockTag{}, phys_addr, PageTableEntry(entry_template), sw_reserved_bits, false);
sw_reserved_bits &= ~(PageTableEntry::SoftwareReservedBit_DisableMergeHead);
virt_addr += L1BlockSize;
phys_addr += L1BlockSize;
}
return ResultSuccess();
}
Result KPageTable::MapL2Blocks(KProcessAddress virt_addr, KPhysicalAddress phys_addr, size_t num_pages, PageTableEntry entry_template, bool disable_head_merge, PageLinkedList *page_list, bool reuse_ll) {
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
MESOSPHERE_ASSERT(util::IsAligned(GetInteger(virt_addr), L2BlockSize));
MESOSPHERE_ASSERT(util::IsAligned(GetInteger(phys_addr), L2BlockSize));
MESOSPHERE_ASSERT(util::IsAligned(num_pages * PageSize, L2BlockSize));
auto &impl = this->GetImpl();
KVirtualAddress l2_virt = Null;
int l2_open_count = 0;
u8 sw_reserved_bits = PageTableEntry::EncodeSoftwareReservedBits(disable_head_merge, false, false);
/* Iterate, mapping each block. */
for (size_t i = 0; i < num_pages; i += L2BlockSize / PageSize) {
KPhysicalAddress l2_phys = Null;
/* If we have no L2 table, we should get or allocate one. */
if (l2_virt == Null) {
if (L1PageTableEntry *l1_entry = impl.GetL1Entry(virt_addr); !l1_entry->GetTable(l2_phys)) {
/* Allocate table. */
l2_virt = AllocatePageTable(page_list, reuse_ll);
R_UNLESS(l2_virt != Null, svc::ResultOutOfResource());
/* Set the entry. */
l2_phys = GetPageTablePhysicalAddress(l2_virt);
PteDataSynchronizationBarrier();
*l1_entry = L1PageTableEntry(PageTableEntry::TableTag{}, l2_phys, this->IsKernel(), true);
PteDataSynchronizationBarrier();
} else {
l2_virt = GetPageTableVirtualAddress(l2_phys);
}
}
MESOSPHERE_ASSERT(l2_virt != Null);
/* Map the block. */
*impl.GetL2EntryFromTable(l2_virt, virt_addr) = L2PageTableEntry(PageTableEntry::BlockTag{}, phys_addr, PageTableEntry(entry_template), sw_reserved_bits, false);
sw_reserved_bits &= ~(PageTableEntry::SoftwareReservedBit_DisableMergeHead);
l2_open_count++;
virt_addr += L2BlockSize;
phys_addr += L2BlockSize;
/* Account for hitting end of table. */
if (util::IsAligned(GetInteger(virt_addr), L1BlockSize)) {
if (this->GetPageTableManager().IsInPageTableHeap(l2_virt)) {
this->GetPageTableManager().Open(l2_virt, l2_open_count);
}
l2_virt = Null;
l2_open_count = 0;
}
}
/* Perform any remaining opens. */
if (l2_open_count > 0 && this->GetPageTableManager().IsInPageTableHeap(l2_virt)) {
this->GetPageTableManager().Open(l2_virt, l2_open_count);
}
return ResultSuccess();
}
Result KPageTable::MapL3Blocks(KProcessAddress virt_addr, KPhysicalAddress phys_addr, size_t num_pages, PageTableEntry entry_template, bool disable_head_merge, PageLinkedList *page_list, bool reuse_ll) {
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
MESOSPHERE_ASSERT(util::IsAligned(GetInteger(virt_addr), PageSize));
MESOSPHERE_ASSERT(util::IsAligned(GetInteger(phys_addr), PageSize));
auto &impl = this->GetImpl();
KVirtualAddress l2_virt = Null;
KVirtualAddress l3_virt = Null;
int l2_open_count = 0;
int l3_open_count = 0;
u8 sw_reserved_bits = PageTableEntry::EncodeSoftwareReservedBits(disable_head_merge, false, false);
/* Iterate, mapping each page. */
for (size_t i = 0; i < num_pages; i++) {
KPhysicalAddress l3_phys = Null;
bool l2_allocated = false;
/* If we have no L3 table, we should get or allocate one. */
if (l3_virt == Null) {
KPhysicalAddress l2_phys = Null;
/* If we have no L2 table, we should get or allocate one. */
if (l2_virt == Null) {
if (L1PageTableEntry *l1_entry = impl.GetL1Entry(virt_addr); !l1_entry->GetTable(l2_phys)) {
/* Allocate table. */
l2_virt = AllocatePageTable(page_list, reuse_ll);
R_UNLESS(l2_virt != Null, svc::ResultOutOfResource());
/* Set the entry. */
l2_phys = GetPageTablePhysicalAddress(l2_virt);
PteDataSynchronizationBarrier();
*l1_entry = L1PageTableEntry(PageTableEntry::TableTag{}, l2_phys, this->IsKernel(), true);
PteDataSynchronizationBarrier();
l2_allocated = true;
} else {
l2_virt = GetPageTableVirtualAddress(l2_phys);
}
}
MESOSPHERE_ASSERT(l2_virt != Null);
if (L2PageTableEntry *l2_entry = impl.GetL2EntryFromTable(l2_virt, virt_addr); !l2_entry->GetTable(l3_phys)) {
/* Allocate table. */
l3_virt = AllocatePageTable(page_list, reuse_ll);
if (l3_virt == Null) {
/* Cleanup the L2 entry. */
if (l2_allocated) {
*impl.GetL1Entry(virt_addr) = InvalidL1PageTableEntry;
this->NoteUpdated();
FreePageTable(page_list, l2_virt);
} else if (this->GetPageTableManager().IsInPageTableHeap(l2_virt) && l2_open_count > 0) {
this->GetPageTableManager().Open(l2_virt, l2_open_count);
}
return svc::ResultOutOfResource();
}
/* Set the entry. */
l3_phys = GetPageTablePhysicalAddress(l3_virt);
PteDataSynchronizationBarrier();
*l2_entry = L2PageTableEntry(PageTableEntry::TableTag{}, l3_phys, this->IsKernel(), true);
PteDataSynchronizationBarrier();
l2_open_count++;
} else {
l3_virt = GetPageTableVirtualAddress(l3_phys);
}
}
MESOSPHERE_ASSERT(l3_virt != Null);
/* Map the page. */
*impl.GetL3EntryFromTable(l3_virt, virt_addr) = L3PageTableEntry(PageTableEntry::BlockTag{}, phys_addr, PageTableEntry(entry_template), sw_reserved_bits, false);
sw_reserved_bits &= ~(PageTableEntry::SoftwareReservedBit_DisableMergeHead);
l3_open_count++;
virt_addr += PageSize;
phys_addr += PageSize;
/* Account for hitting end of table. */
if (util::IsAligned(GetInteger(virt_addr), L2BlockSize)) {
if (this->GetPageTableManager().IsInPageTableHeap(l3_virt)) {
this->GetPageTableManager().Open(l3_virt, l3_open_count);
}
l3_virt = Null;
l3_open_count = 0;
if (util::IsAligned(GetInteger(virt_addr), L1BlockSize)) {
if (this->GetPageTableManager().IsInPageTableHeap(l2_virt) && l2_open_count > 0) {
this->GetPageTableManager().Open(l2_virt, l2_open_count);
}
l2_virt = Null;
l2_open_count = 0;
}
}
}
/* Perform any remaining opens. */
if (l2_open_count > 0 && this->GetPageTableManager().IsInPageTableHeap(l2_virt)) {
this->GetPageTableManager().Open(l2_virt, l2_open_count);
}
if (l3_open_count > 0 && this->GetPageTableManager().IsInPageTableHeap(l3_virt)) {
this->GetPageTableManager().Open(l3_virt, l3_open_count);
}
return ResultSuccess();
}
Result KPageTable::Unmap(KProcessAddress virt_addr, size_t num_pages, PageLinkedList *page_list, bool force, bool reuse_ll) {
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
auto &impl = this->GetImpl();
/* If we're not forcing an unmap, separate pages immediately. */
if (!force) {
const size_t size = num_pages * PageSize;
R_TRY(this->SeparatePages(virt_addr, std::min(GetInteger(virt_addr) & -GetInteger(virt_addr), size), page_list, reuse_ll));
if (num_pages > 1) {
const auto end_page = virt_addr + size;
const auto last_page = end_page - PageSize;
auto merge_guard = SCOPE_GUARD { this->MergePages(virt_addr, page_list); };
R_TRY(this->SeparatePages(last_page, std::min(GetInteger(end_page) & -GetInteger(end_page), size), page_list, reuse_ll));
merge_guard.Cancel();
}
}
/* Cache initial addresses for use on cleanup. */
const KProcessAddress orig_virt_addr = virt_addr;
size_t remaining_pages = num_pages;
/* Ensure that any pages we track close on exit. */
KPageGroup pages_to_close(this->GetBlockInfoManager());
ON_SCOPE_EXIT { pages_to_close.Close(); };
/* Begin traversal. */
TraversalContext context;
TraversalEntry next_entry;
bool next_valid = impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), virt_addr);
while (remaining_pages > 0) {
/* Handle the case where we're not valid. */
if (!next_valid) {
MESOSPHERE_ABORT_UNLESS(force);
const size_t cur_size = std::min(next_entry.block_size - (GetInteger(virt_addr) & (next_entry.block_size - 1)), remaining_pages * PageSize);
remaining_pages -= cur_size / PageSize;
virt_addr += cur_size;
next_valid = impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
continue;
}
/* Handle the case where the block is bigger than it should be. */
if (next_entry.block_size > remaining_pages * PageSize) {
MESOSPHERE_ABORT_UNLESS(force);
MESOSPHERE_R_ABORT_UNLESS(this->SeparatePages(virt_addr, remaining_pages * PageSize, page_list, reuse_ll));
next_valid = impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), virt_addr);
MESOSPHERE_ASSERT(next_valid);
}
/* Check that our state is coherent. */
MESOSPHERE_ASSERT((next_entry.block_size / PageSize) <= remaining_pages);
MESOSPHERE_ASSERT(util::IsAligned(GetInteger(next_entry.phys_addr), next_entry.block_size));
/* Unmap the block. */
L1PageTableEntry *l1_entry = impl.GetL1Entry(virt_addr);
switch (next_entry.block_size) {
case L1BlockSize:
{
/* Clear the entry. */
*l1_entry = InvalidL1PageTableEntry;
}
break;
case L2ContiguousBlockSize:
case L2BlockSize:
{
/* Get the number of L2 blocks. */
const size_t num_l2_blocks = next_entry.block_size / L2BlockSize;
/* Get the L2 entry. */
KPhysicalAddress l2_phys = Null;
MESOSPHERE_ABORT_UNLESS(l1_entry->GetTable(l2_phys));
const KVirtualAddress l2_virt = GetPageTableVirtualAddress(l2_phys);
/* Clear the entry. */
for (size_t i = 0; i < num_l2_blocks; i++) {
*impl.GetL2EntryFromTable(l2_virt, virt_addr + L2BlockSize * i) = InvalidL2PageTableEntry;
}
PteDataSynchronizationBarrier();
/* Close references to the L2 table. */
if (this->GetPageTableManager().IsInPageTableHeap(l2_virt)) {
if (this->GetPageTableManager().Close(l2_virt, num_l2_blocks)) {
*l1_entry = InvalidL1PageTableEntry;
this->NoteUpdated();
this->FreePageTable(page_list, l2_virt);
}
}
}
break;
case L3ContiguousBlockSize:
case L3BlockSize:
{
/* Get the number of L3 blocks. */
const size_t num_l3_blocks = next_entry.block_size / L3BlockSize;
/* Get the L2 entry. */
KPhysicalAddress l2_phys = Null;
MESOSPHERE_ABORT_UNLESS(l1_entry->GetTable(l2_phys));
const KVirtualAddress l2_virt = GetPageTableVirtualAddress(l2_phys);
L2PageTableEntry *l2_entry = impl.GetL2EntryFromTable(l2_virt, virt_addr);
/* Get the L3 entry. */
KPhysicalAddress l3_phys = Null;
MESOSPHERE_ABORT_UNLESS(l2_entry->GetTable(l3_phys));
const KVirtualAddress l3_virt = GetPageTableVirtualAddress(l3_phys);
/* Clear the entry. */
for (size_t i = 0; i < num_l3_blocks; i++) {
*impl.GetL3EntryFromTable(l3_virt, virt_addr + L3BlockSize * i) = InvalidL3PageTableEntry;
}
PteDataSynchronizationBarrier();
/* Close references to the L3 table. */
if (this->GetPageTableManager().IsInPageTableHeap(l3_virt)) {
if (this->GetPageTableManager().Close(l3_virt, num_l3_blocks)) {
*l2_entry = InvalidL2PageTableEntry;
this->NoteUpdated();
/* Close reference to the L2 table. */
if (this->GetPageTableManager().IsInPageTableHeap(l2_virt)) {
if (this->GetPageTableManager().Close(l2_virt, 1)) {
*l1_entry = InvalidL1PageTableEntry;
this->NoteUpdated();
this->FreePageTable(page_list, l2_virt);
}
}
this->FreePageTable(page_list, l3_virt);
}
}
}
break;
MESOSPHERE_UNREACHABLE_DEFAULT_CASE();
}
/* Close the blocks. */
if (!force && IsHeapPhysicalAddress(next_entry.phys_addr)) {
const KVirtualAddress block_virt_addr = GetHeapVirtualAddress(next_entry.phys_addr);
const size_t block_num_pages = next_entry.block_size / PageSize;
if (R_FAILED(pages_to_close.AddBlock(block_virt_addr, block_num_pages))) {
this->NoteUpdated();
Kernel::GetMemoryManager().Close(block_virt_addr, block_num_pages);
}
}
/* Advance. */
virt_addr += next_entry.block_size;
remaining_pages -= next_entry.block_size / PageSize;
next_valid = impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
}
/* Ensure we remain coherent. */
if (this->IsKernel() && num_pages == 1) {
this->NoteSingleKernelPageUpdated(orig_virt_addr);
} else {
this->NoteUpdated();
}
return ResultSuccess();
}
Result KPageTable::MapContiguous(KProcessAddress virt_addr, KPhysicalAddress phys_addr, size_t num_pages, PageTableEntry entry_template, bool disable_head_merge, PageLinkedList *page_list, bool reuse_ll) {
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
/* Cache initial addresses for use on cleanup. */
const KProcessAddress orig_virt_addr = virt_addr;
const KPhysicalAddress orig_phys_addr = phys_addr;
size_t remaining_pages = num_pages;
/* Map the pages, using a guard to ensure we don't leak. */
{
auto map_guard = SCOPE_GUARD { MESOSPHERE_R_ABORT_UNLESS(this->Unmap(orig_virt_addr, num_pages, page_list, true, true)); };
if (num_pages < ContiguousPageSize / PageSize) {
R_TRY(this->Map(virt_addr, phys_addr, num_pages, entry_template, disable_head_merge && virt_addr == orig_virt_addr, L3BlockSize, page_list, reuse_ll));
remaining_pages -= num_pages;
virt_addr += num_pages * PageSize;
phys_addr += num_pages * PageSize;
} else {
/* Map the fractional part of the pages. */
size_t alignment;
for (alignment = ContiguousPageSize; (virt_addr & (alignment - 1)) == (phys_addr & (alignment - 1)); alignment = GetLargerAlignment(alignment)) {
/* Check if this would be our last map. */
const size_t pages_to_map = ((alignment - (virt_addr & (alignment - 1))) & (alignment - 1)) / PageSize;
if (pages_to_map + (alignment / PageSize) > remaining_pages) {
break;
}
/* Map pages, if we should. */
if (pages_to_map > 0) {
R_TRY(this->Map(virt_addr, phys_addr, pages_to_map, entry_template, disable_head_merge && virt_addr == orig_virt_addr, GetSmallerAlignment(alignment), page_list, reuse_ll));
remaining_pages -= pages_to_map;
virt_addr += pages_to_map * PageSize;
phys_addr += pages_to_map * PageSize;
}
/* Don't go further than L1 block. */
if (alignment == L1BlockSize) {
break;
}
}
while (remaining_pages > 0) {
/* Select the next smallest alignment. */
alignment = GetSmallerAlignment(alignment);
MESOSPHERE_ASSERT((virt_addr & (alignment - 1)) == 0);
MESOSPHERE_ASSERT((phys_addr & (alignment - 1)) == 0);
/* Map pages, if we should. */
const size_t pages_to_map = util::AlignDown(remaining_pages, alignment / PageSize);
if (pages_to_map > 0) {
R_TRY(this->Map(virt_addr, phys_addr, pages_to_map, entry_template, disable_head_merge && virt_addr == orig_virt_addr, alignment, page_list, reuse_ll));
remaining_pages -= pages_to_map;
virt_addr += pages_to_map * PageSize;
phys_addr += pages_to_map * PageSize;
}
}
}
/* We successfully mapped, so cancel our guard. */
map_guard.Cancel();
}
/* Perform what coalescing we can. */
this->MergePages(orig_virt_addr, page_list);
if (num_pages > 1) {
this->MergePages(orig_virt_addr + (num_pages - 1) * PageSize, page_list);
}
/* Open references to the pages, if we should. */
if (IsHeapPhysicalAddress(orig_phys_addr)) {
Kernel::GetMemoryManager().Open(GetHeapVirtualAddress(orig_phys_addr), num_pages);
}
return ResultSuccess();
}
Result KPageTable::MapGroup(KProcessAddress virt_addr, const KPageGroup &pg, size_t num_pages, PageTableEntry entry_template, bool disable_head_merge, PageLinkedList *page_list, bool reuse_ll) {
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
/* We want to maintain a new reference to every page in the group. */
KScopedPageGroup spg(pg);
/* Cache initial address for use on cleanup. */
const KProcessAddress orig_virt_addr = virt_addr;
size_t mapped_pages = 0;
/* Map the pages, using a guard to ensure we don't leak. */
{
auto map_guard = SCOPE_GUARD { MESOSPHERE_R_ABORT_UNLESS(this->Unmap(orig_virt_addr, num_pages, page_list, true, true)); };
if (num_pages < ContiguousPageSize / PageSize) {
for (const auto &block : pg) {
const KPhysicalAddress block_phys_addr = GetLinearMappedPhysicalAddress(block.GetAddress());
const size_t cur_pages = block.GetNumPages();
R_TRY(this->Map(virt_addr, block_phys_addr, cur_pages, entry_template, disable_head_merge && virt_addr == orig_virt_addr, L3BlockSize, page_list, reuse_ll));
virt_addr += cur_pages * PageSize;
mapped_pages += cur_pages;
}
} else {
/* Create a block representing our virtual space. */
AlignedMemoryBlock virt_block(GetInteger(virt_addr), num_pages, L1BlockSize);
for (const auto &block : pg) {
/* Create a block representing this physical group, synchronize its alignment to our virtual block. */
const KPhysicalAddress block_phys_addr = GetLinearMappedPhysicalAddress(block.GetAddress());
size_t cur_pages = block.GetNumPages();
AlignedMemoryBlock phys_block(GetInteger(block_phys_addr), cur_pages, virt_block.GetAlignment());
virt_block.SetAlignment(phys_block.GetAlignment());
while (cur_pages > 0) {
/* Find a physical region for us to map at. */
uintptr_t phys_choice = 0;
size_t phys_pages = 0;
phys_block.FindBlock(phys_choice, phys_pages);
/* If we didn't find a region, try decreasing our alignment. */
if (phys_pages == 0) {
const size_t next_alignment = KPageTable::GetSmallerAlignment(phys_block.GetAlignment());
MESOSPHERE_ASSERT(next_alignment >= PageSize);
phys_block.SetAlignment(next_alignment);
virt_block.SetAlignment(next_alignment);
continue;
}
/* Begin choosing virtual blocks to map at the region we chose. */
while (phys_pages > 0) {
/* Find a virtual region for us to map at. */
uintptr_t virt_choice = 0;
size_t virt_pages = phys_pages;
virt_block.FindBlock(virt_choice, virt_pages);
/* If we didn't find a region, try decreasing our alignment. */
if (virt_pages == 0) {
const size_t next_alignment = KPageTable::GetSmallerAlignment(virt_block.GetAlignment());
MESOSPHERE_ASSERT(next_alignment >= PageSize);
phys_block.SetAlignment(next_alignment);
virt_block.SetAlignment(next_alignment);
continue;
}
/* Map! */
R_TRY(this->Map(virt_choice, phys_choice, virt_pages, entry_template, disable_head_merge && virt_addr == orig_virt_addr, virt_block.GetAlignment(), page_list, reuse_ll));
/* Advance. */
phys_choice += virt_pages * PageSize;
phys_pages -= virt_pages;
cur_pages -= virt_pages;
mapped_pages += virt_pages;
}
}
}
}
/* We successfully mapped, so cancel our guard. */
map_guard.Cancel();
}
MESOSPHERE_ASSERT(mapped_pages == num_pages);
/* Perform what coalescing we can. */
this->MergePages(orig_virt_addr, page_list);
if (num_pages > 1) {
this->MergePages(orig_virt_addr + (num_pages - 1) * PageSize, page_list);
}
/* We succeeded! We want to persist the reference to the pages. */
spg.CancelClose();
return ResultSuccess();
}
bool KPageTable::MergePages(KProcessAddress virt_addr, PageLinkedList *page_list) {
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
auto &impl = this->GetImpl();
bool merged = false;
/* If there's no L1 table, don't bother. */
L1PageTableEntry *l1_entry = impl.GetL1Entry(virt_addr);
if (!l1_entry->IsTable()) {
/* Ensure the table is not corrupted. */
MESOSPHERE_ABORT_UNLESS(l1_entry->IsBlock() || l1_entry->IsEmpty());
return merged;
}
/* Examine and try to merge the L2 table. */
L2PageTableEntry *l2_entry = impl.GetL2Entry(l1_entry, virt_addr);
if (l2_entry->IsTable()) {
/* We have an L3 entry. */
L3PageTableEntry *l3_entry = impl.GetL3Entry(l2_entry, virt_addr);
if (!l3_entry->IsBlock()) {
return merged;
}
/* If it's not contiguous, try to make it so. */
if (!l3_entry->IsContiguous()) {
virt_addr = util::AlignDown(GetInteger(virt_addr), L3ContiguousBlockSize);
const KPhysicalAddress phys_addr = util::AlignDown(GetInteger(l3_entry->GetBlock()), L3ContiguousBlockSize);
const u64 entry_template = l3_entry->GetEntryTemplateForMerge();
/* Validate that we can merge. */
for (size_t i = 0; i < L3ContiguousBlockSize / L3BlockSize; i++) {
const L3PageTableEntry *check_entry = impl.GetL3Entry(l2_entry, virt_addr + L3BlockSize * i);
if (!check_entry->IsForMerge(entry_template | GetInteger(phys_addr + L3BlockSize * i) | PageTableEntry::Type_L3Block)) {
return merged;
}
if (i > 0 && (check_entry->IsHeadOrHeadAndBodyMergeDisabled())) {
return merged;
}
if ((i < (L3ContiguousBlockSize / L3BlockSize) - 1) && check_entry->IsTailMergeDisabled()) {
return merged;
}
}
/* Determine the new software reserved bits. */
const L3PageTableEntry *head_entry = impl.GetL3Entry(l2_entry, virt_addr + L3BlockSize * 0);
const L3PageTableEntry *tail_entry = impl.GetL3Entry(l2_entry, virt_addr + L3BlockSize * ((L3ContiguousBlockSize / L3BlockSize) - 1));
auto sw_reserved_bits = PageTableEntry::EncodeSoftwareReservedBits(head_entry->IsHeadMergeDisabled(), head_entry->IsHeadAndBodyMergeDisabled(), tail_entry->IsTailMergeDisabled());
/* Merge! */
for (size_t i = 0; i < L3ContiguousBlockSize / L3BlockSize; i++) {
*impl.GetL3Entry(l2_entry, virt_addr + L3BlockSize * i) = L3PageTableEntry(PageTableEntry::BlockTag{}, phys_addr + L3BlockSize * i, PageTableEntry(entry_template), sw_reserved_bits, true);
sw_reserved_bits &= ~(PageTableEntry::SoftwareReservedBit_DisableMergeHead);
}
/* Note that we updated. */
this->NoteUpdated();
merged = true;
}
/* We might be able to upgrade a contiguous set of L3 entries into an L2 block. */
virt_addr = util::AlignDown(GetInteger(virt_addr), L2BlockSize);
KPhysicalAddress phys_addr = util::AlignDown(GetInteger(l3_entry->GetBlock()), L2BlockSize);
const u64 entry_template = l3_entry->GetEntryTemplateForMerge();
/* Validate that we can merge. */
for (size_t i = 0; i < L2BlockSize / L3ContiguousBlockSize; i++) {
const L3PageTableEntry *check_entry = impl.GetL3Entry(l2_entry, virt_addr + L3ContiguousBlockSize * i);
if (!check_entry->IsForMerge(entry_template | GetInteger(phys_addr + L3ContiguousBlockSize * i) | PageTableEntry::ContigType_Contiguous | PageTableEntry::Type_L3Block)) {
return merged;
}
if (i > 0 && (check_entry->IsHeadOrHeadAndBodyMergeDisabled())) {
return merged;
}
if ((i < (L2BlockSize / L3ContiguousBlockSize) - 1) && check_entry->IsTailMergeDisabled()) {
return merged;
}
}
/* Determine the new software reserved bits. */
const L3PageTableEntry *head_entry = impl.GetL3Entry(l2_entry, virt_addr + L3ContiguousBlockSize * 0);
const L3PageTableEntry *tail_entry = impl.GetL3Entry(l2_entry, virt_addr + L3ContiguousBlockSize * ((L2BlockSize / L3ContiguousBlockSize) - 1));
auto sw_reserved_bits = PageTableEntry::EncodeSoftwareReservedBits(head_entry->IsHeadMergeDisabled(), head_entry->IsHeadAndBodyMergeDisabled(), tail_entry->IsTailMergeDisabled());
/* Merge! */
PteDataSynchronizationBarrier();
*l2_entry = L2PageTableEntry(PageTableEntry::BlockTag{}, phys_addr, PageTableEntry(entry_template), sw_reserved_bits, false);
/* Note that we updated. */
this->NoteUpdated();
merged = true;
/* Free the L3 table. */
KVirtualAddress l3_table = util::AlignDown(reinterpret_cast(l3_entry), PageSize);
if (this->GetPageTableManager().IsInPageTableHeap(l3_table)) {
this->GetPageTableManager().Close(l3_table, L2BlockSize / L3BlockSize);
ClearPageTable(l3_table);
this->FreePageTable(page_list, l3_table);
}
}
/* If the l2 entry is not a block or we can't make it contiguous, we're done. */
if (!l2_entry->IsBlock()) {
return merged;
}
/* If it's not contiguous, try to make it so. */
if (!l2_entry->IsContiguous()) {
virt_addr = util::AlignDown(GetInteger(virt_addr), L2ContiguousBlockSize);
KPhysicalAddress phys_addr = util::AlignDown(GetInteger(l2_entry->GetBlock()), L2ContiguousBlockSize);
const u64 entry_template = l2_entry->GetEntryTemplateForMerge();
/* Validate that we can merge. */
for (size_t i = 0; i < L2ContiguousBlockSize / L2BlockSize; i++) {
const L2PageTableEntry *check_entry = impl.GetL2Entry(l1_entry, virt_addr + L2BlockSize * i);
if (!check_entry->IsForMerge(entry_template | GetInteger(phys_addr + L2BlockSize * i) | PageTableEntry::Type_L2Block)) {
return merged;
}
if (i > 0 && (check_entry->IsHeadOrHeadAndBodyMergeDisabled())) {
return merged;
}
if ((i < (L2ContiguousBlockSize / L2BlockSize) - 1) && check_entry->IsTailMergeDisabled()) {
return merged;
}
}
/* Determine the new software reserved bits. */
const L2PageTableEntry *head_entry = impl.GetL2Entry(l1_entry, virt_addr + L2BlockSize * 0);
const L2PageTableEntry *tail_entry = impl.GetL2Entry(l1_entry, virt_addr + L2BlockSize * ((L2ContiguousBlockSize / L2BlockSize) - 1));
auto sw_reserved_bits = PageTableEntry::EncodeSoftwareReservedBits(head_entry->IsHeadMergeDisabled(), head_entry->IsHeadAndBodyMergeDisabled(), tail_entry->IsTailMergeDisabled());
/* Merge! */
for (size_t i = 0; i < L2ContiguousBlockSize / L2BlockSize; i++) {
*impl.GetL2Entry(l1_entry, virt_addr + L2BlockSize * i) = L2PageTableEntry(PageTableEntry::BlockTag{}, phys_addr + L2BlockSize * i, PageTableEntry(entry_template), sw_reserved_bits, true);
sw_reserved_bits &= ~(PageTableEntry::SoftwareReservedBit_DisableMergeHead);
}
/* Note that we updated. */
this->NoteUpdated();
merged = true;
}
/* We might be able to upgrade a contiguous set of L2 entries into an L1 block. */
virt_addr = util::AlignDown(GetInteger(virt_addr), L1BlockSize);
KPhysicalAddress phys_addr = util::AlignDown(GetInteger(l2_entry->GetBlock()), L1BlockSize);
const u64 entry_template = l2_entry->GetEntryTemplateForMerge();
/* Validate that we can merge. */
for (size_t i = 0; i < L1BlockSize / L2ContiguousBlockSize; i++) {
const L2PageTableEntry *check_entry = impl.GetL2Entry(l1_entry, virt_addr + L2ContiguousBlockSize * i);
if (!check_entry->IsForMerge(entry_template | GetInteger(phys_addr + L2ContiguousBlockSize * i) | PageTableEntry::ContigType_Contiguous | PageTableEntry::Type_L2Block)) {
return merged;
}
if (i > 0 && (check_entry->IsHeadOrHeadAndBodyMergeDisabled())) {
return merged;
}
if ((i < (L1ContiguousBlockSize / L2ContiguousBlockSize) - 1) && check_entry->IsTailMergeDisabled()) {
return merged;
}
}
/* Determine the new software reserved bits. */
const L2PageTableEntry *head_entry = impl.GetL2Entry(l1_entry, virt_addr + L2ContiguousBlockSize * 0);
const L2PageTableEntry *tail_entry = impl.GetL2Entry(l1_entry, virt_addr + L2ContiguousBlockSize * ((L1BlockSize / L2ContiguousBlockSize) - 1));
auto sw_reserved_bits = PageTableEntry::EncodeSoftwareReservedBits(head_entry->IsHeadMergeDisabled(), head_entry->IsHeadAndBodyMergeDisabled(), tail_entry->IsTailMergeDisabled());
/* Merge! */
PteDataSynchronizationBarrier();
*l1_entry = L1PageTableEntry(PageTableEntry::BlockTag{}, phys_addr, PageTableEntry(entry_template), sw_reserved_bits, false);
/* Note that we updated. */
this->NoteUpdated();
merged = true;
/* Free the L2 table. */
KVirtualAddress l2_table = util::AlignDown(reinterpret_cast(l2_entry), PageSize);
if (this->GetPageTableManager().IsInPageTableHeap(l2_table)) {
this->GetPageTableManager().Close(l2_table, L1BlockSize / L2BlockSize);
ClearPageTable(l2_table);
this->FreePageTable(page_list, l2_table);
}
return merged;
}
Result KPageTable::SeparatePagesImpl(KProcessAddress virt_addr, size_t block_size, PageLinkedList *page_list, bool reuse_ll) {
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
auto &impl = this->GetImpl();
/* First, try to separate an L1 block into contiguous L2 blocks. */
L1PageTableEntry *l1_entry = impl.GetL1Entry(virt_addr);
if (l1_entry->IsBlock()) {
/* If our block size is too big, don't bother. */
R_SUCCEED_IF(block_size >= L1BlockSize);
/* Get the addresses we're working with. */
const KProcessAddress block_virt_addr = util::AlignDown(GetInteger(virt_addr), L1BlockSize);
const KPhysicalAddress block_phys_addr = l1_entry->GetBlock();
/* Allocate a new page for the L2 table. */
const KVirtualAddress l2_table = this->AllocatePageTable(page_list, reuse_ll);
R_UNLESS(l2_table != Null, svc::ResultOutOfResource());
const KPhysicalAddress l2_phys = GetPageTablePhysicalAddress(l2_table);
/* Set the entries in the L2 table. */
for (size_t i = 0; i < L1BlockSize / L2BlockSize; i++) {
const u64 entry_template = l1_entry->GetEntryTemplateForL2Block(i);
*(impl.GetL2EntryFromTable(l2_table, block_virt_addr + L2BlockSize * i)) = L2PageTableEntry(PageTableEntry::BlockTag{}, block_phys_addr + L2BlockSize * i, PageTableEntry(entry_template), PageTableEntry::SoftwareReservedBit_None, true);
}
/* Open references to the L2 table. */
this->GetPageTableManager().Open(l2_table, L1BlockSize / L2BlockSize);
/* Replace the L1 entry with one to the new table. */
PteDataSynchronizationBarrier();
*l1_entry = L1PageTableEntry(PageTableEntry::TableTag{}, l2_phys, this->IsKernel(), true);
this->NoteUpdated();
}
/* If we don't have an l1 table, we're done. */
MESOSPHERE_ABORT_UNLESS(l1_entry->IsTable() || l1_entry->IsEmpty());
R_SUCCEED_IF(!l1_entry->IsTable());
/* We want to separate L2 contiguous blocks into L2 blocks, so check that our size permits that. */
R_SUCCEED_IF(block_size >= L2ContiguousBlockSize);
L2PageTableEntry *l2_entry = impl.GetL2Entry(l1_entry, virt_addr);
if (l2_entry->IsBlock()) {
/* If we're contiguous, try to separate. */
if (l2_entry->IsContiguous()) {
const KProcessAddress block_virt_addr = util::AlignDown(GetInteger(virt_addr), L2ContiguousBlockSize);
const KPhysicalAddress block_phys_addr = l2_entry->GetBlock();
/* Mark the entries as non-contiguous. */
for (size_t i = 0; i < L2ContiguousBlockSize / L2BlockSize; i++) {
const u64 entry_template = l2_entry->GetEntryTemplateForL2Block(i);
*(impl.GetL2Entry(l1_entry, block_virt_addr + L2BlockSize * i)) = L2PageTableEntry(PageTableEntry::BlockTag{}, block_phys_addr + L2BlockSize * i, PageTableEntry(entry_template), PageTableEntry::SoftwareReservedBit_None, false);
}
this->NoteUpdated();
}
/* We want to separate L2 blocks into L3 contiguous blocks, so check that our size permits that. */
R_SUCCEED_IF(block_size >= L2BlockSize);
/* Get the addresses we're working with. */
const KProcessAddress block_virt_addr = util::AlignDown(GetInteger(virt_addr), L2BlockSize);
const KPhysicalAddress block_phys_addr = l2_entry->GetBlock();
/* Allocate a new page for the L3 table. */
const KVirtualAddress l3_table = this->AllocatePageTable(page_list, reuse_ll);
R_UNLESS(l3_table != Null, svc::ResultOutOfResource());
const KPhysicalAddress l3_phys = GetPageTablePhysicalAddress(l3_table);
/* Set the entries in the L3 table. */
for (size_t i = 0; i < L2BlockSize / L3BlockSize; i++) {
const u64 entry_template = l2_entry->GetEntryTemplateForL3Block(i);
*(impl.GetL3EntryFromTable(l3_table, block_virt_addr + L3BlockSize * i)) = L3PageTableEntry(PageTableEntry::BlockTag{}, block_phys_addr + L3BlockSize * i, PageTableEntry(entry_template), PageTableEntry::SoftwareReservedBit_None, true);
}
/* Open references to the L3 table. */
this->GetPageTableManager().Open(l3_table, L2BlockSize / L3BlockSize);
/* Replace the L2 entry with one to the new table. */
PteDataSynchronizationBarrier();
*l2_entry = L2PageTableEntry(PageTableEntry::TableTag{}, l3_phys, this->IsKernel(), true);
this->NoteUpdated();
}
/* If we don't have an L3 table, we're done. */
MESOSPHERE_ABORT_UNLESS(l2_entry->IsTable() || l2_entry->IsEmpty());
R_SUCCEED_IF(!l2_entry->IsTable());
/* We want to separate L3 contiguous blocks into L2 blocks, so check that our size permits that. */
R_SUCCEED_IF(block_size >= L3ContiguousBlockSize);
/* If we're contiguous, try to separate. */
L3PageTableEntry *l3_entry = impl.GetL3Entry(l2_entry, virt_addr);
if (l3_entry->IsBlock() && l3_entry->IsContiguous()) {
const KProcessAddress block_virt_addr = util::AlignDown(GetInteger(virt_addr), L3ContiguousBlockSize);
const KPhysicalAddress block_phys_addr = l3_entry->GetBlock();
/* Mark the entries as non-contiguous. */
for (size_t i = 0; i < L3ContiguousBlockSize / L3BlockSize; i++) {
const u64 entry_template = l3_entry->GetEntryTemplateForL3Block(i);
*(impl.GetL3Entry(l2_entry, block_virt_addr + L3BlockSize * i)) = L3PageTableEntry(PageTableEntry::BlockTag{}, block_phys_addr + L3BlockSize * i, PageTableEntry(entry_template), PageTableEntry::SoftwareReservedBit_None, false);
}
this->NoteUpdated();
}
/* We're done! */
return ResultSuccess();
}
Result KPageTable::SeparatePages(KProcessAddress virt_addr, size_t block_size, PageLinkedList *page_list, bool reuse_ll) {
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
/* Try to separate pages, re-merging if we fail. */
auto guard = SCOPE_GUARD { this->MergePages(virt_addr, page_list); };
R_TRY(this->SeparatePagesImpl(virt_addr, block_size, page_list, reuse_ll));
guard.Cancel();
return ResultSuccess();
}
Result KPageTable::ChangePermissions(KProcessAddress virt_addr, size_t num_pages, PageTableEntry entry_template, DisableMergeAttribute disable_merge_attr, bool refresh_mapping, PageLinkedList *page_list, bool reuse_ll) {
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
/* Separate pages before we change permissions. */
const size_t size = num_pages * PageSize;
R_TRY(this->SeparatePages(virt_addr, std::min(GetInteger(virt_addr) & -GetInteger(virt_addr), size), page_list, reuse_ll));
if (num_pages > 1) {
const auto end_page = virt_addr + size;
const auto last_page = end_page - PageSize;
auto merge_guard = SCOPE_GUARD { this->MergePages(virt_addr, page_list); };
R_TRY(this->SeparatePages(last_page, std::min(GetInteger(end_page) & -GetInteger(end_page), size), page_list, reuse_ll));
merge_guard.Cancel();
}
/* ===================================================== */
/* Define a helper function which will apply our template to entries. */
enum ApplyOption : u32 {
ApplyOption_None = 0,
ApplyOption_FlushDataCache = (1u << 0),
ApplyOption_MergeMappings = (1u << 1),
};
auto ApplyEntryTemplate = [this, virt_addr, disable_merge_attr, num_pages, page_list](PageTableEntry entry_template, u32 apply_option) -> void {
/* Create work variables for us to use. */
const KProcessAddress orig_virt_addr = virt_addr;
const KProcessAddress end_virt_addr = orig_virt_addr + (num_pages * PageSize);
KProcessAddress cur_virt_addr = virt_addr;
size_t remaining_pages = num_pages;
auto &impl = this->GetImpl();
/* Parse the disable merge attrs. */
const bool attr_disable_head = (disable_merge_attr & DisableMergeAttribute_DisableHead) != 0;
const bool attr_disable_head_body = (disable_merge_attr & DisableMergeAttribute_DisableHeadAndBody) != 0;
const bool attr_enable_head_body = (disable_merge_attr & DisableMergeAttribute_EnableHeadAndBody) != 0;
const bool attr_disable_tail = (disable_merge_attr & DisableMergeAttribute_DisableTail) != 0;
const bool attr_enable_tail = (disable_merge_attr & DisableMergeAttribute_EnableTail) != 0;
const bool attr_enable_and_merge = (disable_merge_attr & DisableMergeAttribute_EnableAndMergeHeadBodyTail) != 0;
/* Begin traversal. */
TraversalContext context;
TraversalEntry next_entry;
MESOSPHERE_ABORT_UNLESS(impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), cur_virt_addr));
/* Continue changing properties until we've changed them for all pages. */
bool cleared_disable_merge_bits = false;
while (remaining_pages > 0) {
MESOSPHERE_ABORT_UNLESS(util::IsAligned(GetInteger(next_entry.phys_addr), next_entry.block_size));
MESOSPHERE_ABORT_UNLESS(next_entry.block_size <= remaining_pages * PageSize);
/* Determine if we're at the start. */
const bool is_start = (cur_virt_addr == orig_virt_addr);
const bool is_end = ((cur_virt_addr + next_entry.block_size) == end_virt_addr);
/* Determine the relevant merge attributes. */
bool disable_head_merge, disable_head_body_merge, disable_tail_merge;
if (next_entry.IsHeadMergeDisabled()) {
disable_head_merge = true;
} else if (attr_disable_head) {
disable_head_merge = is_start;
} else {
disable_head_merge = false;
}
if (is_start) {
if (attr_disable_head_body) {
disable_head_body_merge = true;
} else if (attr_enable_head_body) {
disable_head_body_merge = false;
} else {
disable_head_body_merge = (!attr_enable_and_merge && next_entry.IsHeadAndBodyMergeDisabled());
}
} else {
disable_head_body_merge = (!attr_enable_and_merge && next_entry.IsHeadAndBodyMergeDisabled());
cleared_disable_merge_bits |= (attr_enable_and_merge && next_entry.IsHeadAndBodyMergeDisabled());
}
if (is_end) {
if (attr_disable_tail) {
disable_tail_merge = true;
} else if (attr_enable_tail) {
disable_tail_merge = false;
} else {
disable_tail_merge = (!attr_enable_and_merge && next_entry.IsTailMergeDisabled());
}
} else {
disable_tail_merge = (!attr_enable_and_merge && next_entry.IsTailMergeDisabled());
cleared_disable_merge_bits |= (attr_enable_and_merge && next_entry.IsTailMergeDisabled());
}
/* Encode the merge disable flags into the software reserved bits. */
u8 sw_reserved_bits = PageTableEntry::EncodeSoftwareReservedBits(disable_head_merge, disable_head_body_merge, disable_tail_merge);
/* If we should flush entries, do so. */
if ((apply_option & ApplyOption_FlushDataCache) != 0) {
if (IsHeapPhysicalAddress(next_entry.phys_addr)) {
cpu::FlushDataCache(GetVoidPointer(GetHeapVirtualAddress(next_entry.phys_addr)), next_entry.block_size);
}
}
/* Apply the entry template. */
L1PageTableEntry *l1_entry = impl.GetL1Entry(cur_virt_addr);
switch (next_entry.block_size) {
case L1BlockSize:
{
/* Write the updated entry. */
*l1_entry = L1PageTableEntry(PageTableEntry::BlockTag{}, next_entry.phys_addr, entry_template, sw_reserved_bits, false);
}
break;
case L2ContiguousBlockSize:
case L2BlockSize:
{
/* Get the number of L2 blocks. */
const size_t num_l2_blocks = next_entry.block_size / L2BlockSize;
/* Get the L2 entry. */
KPhysicalAddress l2_phys = Null;
MESOSPHERE_ABORT_UNLESS(l1_entry->GetTable(l2_phys));
const KVirtualAddress l2_virt = GetPageTableVirtualAddress(l2_phys);
/* Write the updated entry. */
const bool contig = next_entry.block_size == L2ContiguousBlockSize;
for (size_t i = 0; i < num_l2_blocks; i++) {
*impl.GetL2EntryFromTable(l2_virt, cur_virt_addr + L2BlockSize * i) = L2PageTableEntry(PageTableEntry::BlockTag{}, next_entry.phys_addr + L2BlockSize * i, entry_template, sw_reserved_bits, contig);
sw_reserved_bits &= ~(PageTableEntry::SoftwareReservedBit_DisableMergeHead);
}
}
break;
case L3ContiguousBlockSize:
case L3BlockSize:
{
/* Get the number of L3 blocks. */
const size_t num_l3_blocks = next_entry.block_size / L3BlockSize;
/* Get the L2 entry. */
KPhysicalAddress l2_phys = Null;
MESOSPHERE_ABORT_UNLESS(l1_entry->GetTable(l2_phys));
const KVirtualAddress l2_virt = GetPageTableVirtualAddress(l2_phys);
L2PageTableEntry *l2_entry = impl.GetL2EntryFromTable(l2_virt, cur_virt_addr);
/* Get the L3 entry. */
KPhysicalAddress l3_phys = Null;
MESOSPHERE_ABORT_UNLESS(l2_entry->GetTable(l3_phys));
const KVirtualAddress l3_virt = GetPageTableVirtualAddress(l3_phys);
/* Write the updated entry. */
const bool contig = next_entry.block_size == L3ContiguousBlockSize;
for (size_t i = 0; i < num_l3_blocks; i++) {
*impl.GetL3EntryFromTable(l3_virt, cur_virt_addr + L3BlockSize * i) = L3PageTableEntry(PageTableEntry::BlockTag{}, next_entry.phys_addr + L3BlockSize * i, entry_template, sw_reserved_bits, contig);
sw_reserved_bits &= ~(PageTableEntry::SoftwareReservedBit_DisableMergeHead);
}
}
break;
MESOSPHERE_UNREACHABLE_DEFAULT_CASE();
}
/* If our option asks us to, try to merge mappings. */
bool merge = ((apply_option & ApplyOption_MergeMappings) != 0 || cleared_disable_merge_bits) && next_entry.block_size < L1BlockSize;
if (merge) {
const size_t larger_align = GetLargerAlignment(next_entry.block_size);
if (util::IsAligned(GetInteger(cur_virt_addr) + next_entry.block_size, larger_align)) {
const uintptr_t aligned_start = util::AlignDown(GetInteger(cur_virt_addr), larger_align);
if (orig_virt_addr <= aligned_start && aligned_start + larger_align - 1 < GetInteger(orig_virt_addr) + (num_pages * PageSize) - 1) {
merge = this->MergePages(cur_virt_addr, page_list);
} else {
merge = false;
}
} else {
merge = false;
}
}
/* If we merged, correct the traversal to a sane state. */
if (merge) {
/* NOTE: Nintendo does not verify the result of this BeginTraversal call. */
MESOSPHERE_ABORT_UNLESS(impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), cur_virt_addr));
/* The actual size needs to not take into account the portion of the block before our virtual address. */
const size_t actual_size = next_entry.block_size - (GetInteger(next_entry.phys_addr) & (next_entry.block_size - 1));
remaining_pages -= std::min(remaining_pages, actual_size / PageSize);
cur_virt_addr += actual_size;
} else {
/* If we didn't merge, just advance. */
remaining_pages -= next_entry.block_size / PageSize;
cur_virt_addr += next_entry.block_size;
}
/* Continue our traversal. */
if (remaining_pages == 0) {
break;
}
MESOSPHERE_ABORT_UNLESS(impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context)));
}
};
/* ===================================================== */
/* If we don't need to refresh the pages, we can just apply the mappings. */
if (!refresh_mapping) {
ApplyEntryTemplate(entry_template, ApplyOption_None);
this->NoteUpdated();
} else {
/* We need to refresh the mappings. */
/* First, apply the changes without the mapped bit. This will cause all entries to page fault if accessed. */
{
PageTableEntry unmapped_template = entry_template;
unmapped_template.SetMapped(false);
ApplyEntryTemplate(unmapped_template, ApplyOption_MergeMappings);
this->NoteUpdated();
}
/* Next, take and immediately release the scheduler lock. This will force a reschedule. */
{
KScopedSchedulerLock sl;
}
/* Finally, apply the changes as directed, flushing the mappings before they're applied. */
ApplyEntryTemplate(entry_template, ApplyOption_FlushDataCache);
}
/* We've succeeded, now perform what coalescing we can. */
this->MergePages(virt_addr, page_list);
if (num_pages > 1) {
this->MergePages(virt_addr + (num_pages - 1) * PageSize, page_list);
}
return ResultSuccess();
}
void KPageTable::FinalizeUpdate(PageLinkedList *page_list) {
while (page_list->Peek()) {
KVirtualAddress page = KVirtualAddress(page_list->Pop());
MESOSPHERE_ASSERT(this->GetPageTableManager().IsInPageTableHeap(page));
MESOSPHERE_ASSERT(this->GetPageTableManager().GetRefCount(page) == 0);
this->GetPageTableManager().Free(page);
}
}
}